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Abstract: The physical features of fruit and vegetables make the task of vision-based classification
of fruit and vegetables challenging. The classification of fruit and vegetables at a supermarket
self-checkout poses even more challenges due to variable lighting conditions and human factors
arising from customer interactions with the system along with the challenges associated with the
colour, texture, shape, and size of a fruit or vegetable. Considering this complex application, we
have proposed a progressive coarse to fine classification technique to classify fruit and vegetables
at supermarket checkouts. The image and weight of fruit and vegetables have been obtained using
a prototype designed to simulate the supermarket environment, including the lighting conditions.
The weight information is used to change the coarse classification of 15 classes down to three,
which are further used in AdaBoost-based Convolutional Neural Network (CNN) optimisation for
fine classification. The training samples for each coarse class are weighted based on AdaBoost
optimisation, which are updated on each iteration of a training phase. Multi-class likelihood
distribution obtained by the fine classification stage is used to estimate a final classification with
a softmax classifier. GoogleNet, MobileNet, and a custom CNN have been used for AdaBoost
optimisation, with promising classification results.

Keywords: adaboost cnn optimisation; image classification; convolutional neural networks;
supermarket self-checkouts; fruit and vegetables classification; progressive classification

1. Introduction

Current supermarket self-checkouts depend upon barcode scanning or selection from a Look Up
Table (LUT) for billing. Packaged products at supermarkets can easily support barcodes, however fruit
and vegetables, i.e., fresh produce items, must currently be selected from a LUT either by the assisted
checkout personnel or by the customer at a self-checkout. This selection from a LUT involves significant
human factors and requires good knowledge of different fruit and vegetable varieties. Fruit and
vegetables are among the most sold produce items and have a significant contribution in the revenue
of supermarkets and, hence, the economy of a country. For example, Australian supermarkets are a
AUD 101 billion industry according to the IBISWorld Senior Industry Analyst [1,2]. This industry is
also an employer of approximately 360,000 personnel across the nation. Given the size of the industry,
intentional or unintentional incorrect scanning of fruit and vegetables can cause significant losses that
can aggregate across the sector. Hence, the introduction of an image-based technique, as proposed in
this paper, that eliminate the requirement for a LUT, can significantly improve revenues. The proposed
technique also has significant environmental benefits by reducing the use of light-weight plastic
packaging and shrink warps, which are currently used to locate barcodes. This plastic waste is an
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exponentially growing problem all over the world. For instance, approximately 3.5 million tonnes of
plastic waste is produced in Australia annually and 0.6 million tonnes was produced via packaging
in 2016–2017 [3]. Most of this plastic is not recycled, and as well as going into landfills, a significant
percentage of this waste makes its way to sea. Recently, it has been estimated that there will be
approximately 12 million kg of plastic waste in international oceans by 2050 [4]. The Environmental
Protection Authority (EPA) of Australia recently reported that approximately 75% of low weight plastic
is produced by plastic bags and packaging in supermarkets. Considering these factors, there is a strong
justification to support the concept of a barcode-less supermarket self-checkout.

Fruit and vegetable classification is a complex problem and involves significant challenges.
At a higher level of abstraction these challenges can be categorised as: (a) Classification of different
fruit and vegetables and (b) classification of different varieties of a fruit or vegetable. The challenges
for vision-based classification result from the highly variant physical features of fruit and vegetables
i.e., level of ripeness, texture, colour, and shape. However, classification of fruit and vegetables at
supermarket self-checkouts presents additional challenges such as variable ambient lighting conditions,
human elements in the scanning process, and scanning of multiple fruit and vegetables at the same time.
Much research has been published to discuss the design and implementation of automated supermarket
self-checkouts [5–8]. However, a complete discussion on the classification of multiple fruit and
vegetables in a supermarket environment is required to analyse the effectiveness of the concept.
Moreover, the existing techniques have analysed the classification of fruit and vegetables by using
vision-based information only. However, the weight of a fruit or vegetable is also available with the
help of a built-in weight sensor at the supermarket checkout counter. This weight information has not
previously been considered for classification purposes. Therefore, we propose a novel approach to
incorporate the weight information of a fruit or vegetable for classification. A comparison of recent
state-of-the-art features and Machine Learning (ML) techniques for fruit and vegetables, can be seen
in Table 1 for our proposed approach. An implication can be observed in that much of the existing
state-of-the-art work has been performed for small numbers of fruit and vegetable classes with small
data sets, which can cause overfitting. In this paper, we propose a progressive fruit and vegetable
classification technique for supermarket self-checkouts. Fruit and vegetable images are initially
grouped based on the average weight of each fruit or vegetable class so as to give a coarse classification.
These coarse classes are further processed with AdaBoost-based optimisation of Convolutional Neural
Networks (CNNs) for fine classification.

Table 1. Comparison of recent state-of-the-art features and Machine Learning (ML) techniques for fruit
and vegetable classification.

Ref. Year Fruit/Vegetable Features ML Technique Accuracy (%)

[9] 2016 Rice Crop Morphology, height, length KNN 87.9
[10] 2017 FoodCast dataset Colour mean and variance Naive Bayes 73.0
[11] 2017 Radish Spectral features Discriminant Analysis 74.4
[12] 2017 Wheat Texture approximation Discriminant Analysis 77.0
[13] 2017 Grapes Correlation similarity matrix K-Means 86.8
[14] 2018 Cucumber Blob centroid Pixel SVM 85.6
[15] 2019 Date fruit Deep texture feature AlexNet 92.3
[16] 2020 Fruit and vegetables HSV colour transforms SVM 92.7
[17] 2020 Lettuce Deep CNN features DarkNet 93.0

This paper Fruit and vegetables
Sample weight
Deep CNN features

Jenks Natural Breaks
AdaBoost Optimised CNN 93.9

The rest of the article is organised as follows. An overview of the state-of-the-art techniques of
fruit and vegetables classification along with their applications is presented in Section 2. A prototype
design to emulate the placement of fruit or vegetables at a self-checkout for billing with typical
supermarket ambient lighting conditions is discussed in Section 3.1. A process of weight and image
data acquisition and their organisation for further processing is explained in Section 3.2. A progressive
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coarse to fine classification-based methodology for fruit and vegetables classification is discussed
in Section 4. The implementation of the proposed technique and the experimental results are presented
in Section 5. A detailed discussion on the results obtained and future applications of the proposed
approach for real-world supermarket self-checkouts can be found in Section 6.

2. Literature Review

The vision-based classification of fruit and vegetables has been performed in many fields for a
range of different applications. The most common applications include the classification of fruit or
vegetables for automated harvesting in agricultural settings [18–20] or vision-based quality assessment
of fruit or vegetables [21–23].

2.1. Robotic Harvesting

DarkNet has been used for the classification of lettuces for robotic harvesting in [17]. The lettuces
were initially identified with a You Only Look Once (YOLO3) CNN, where the image of each identified
lettuce is further processed for Representation Learning (RL) and classification. A classification
accuracy of 82% is obtained for the harvesting and grading of lettuces. A pixel accumulation-based rice
crop classification has been reported in [24]. A combination of two cameras was used for imaging and
crop boundary estimation. Recently, multiple cameras were used to estimate the 3D coordinates
of banana bunches in an orchard in [25]. A triangulation technique has been used for picking
point estimation. A detailed review on vision-based fruit localisation and picking techniques can
be found in [26,27]. The maturity of date fruit is estimated for making harvesting decisions in [15].
A multi-class classification frame work is defined based on transfer learned AlexNet and VGGNet [28].
The multi-class classification obtained from the Alex and VGG Nets then becomes an input of a binary
classifier for making decision related to harvesting. A modified classifier block is used with VGGNet
for the classification of date fruit in [29]. The date fruit was classified based on the maturity level
and surface defects, where an accuracy of 96.98% was reported. A compression of statistical and
CNN-based features is performed in [30] for recognition of food types. Two Support Vector Machine
(SVM) classifiers were trained based on two kinds of features extracted by statistical techniques and
CNN, where a respective accuracy of 93.03% and 94.01% were obtained.

2.2. Quality Grading

A colour-based citrus fruit quality assessment has been performed in [31], where three dominant
colours of the obtained images are estimated by K-means clustering with different cluster sizes.
RGB colour gradient, variance, and chromatic coordinates are used as features for correlation with
standard quality parameters of citrus fruits. Statistical and Artificial Neural Network (ANN)-based
techniques have been used to estimate Bayesian regulation, Levenberg Marquardt, and gradient
descent as correlation parameters. A vision-based diseased Papaya fruit detection is performed
in [32], where Grey Level Co-occurrence Matrix (GLCM)-based statistical features are extracted.
These extracted features are classified with a SVM for diseased fruit identification. A ResNet-based
classification of defects on tomatoes has been performed with transfer learning in [33]. The images
for this detection were obtained after manual sorting based on different kinds of defects and are
used for the transfer learning of the ResNet pre-trained on ImageNet dataset. The quality assessment
of multiple kinds of apples including single-colour and multi-colour varieties has been performed
with computer vision techniques in [34]. The randomness of grey-level pixels is used as a feature,
where mean, variance, standard deviation, Root Mean Square (RMS), and Kurtosis were used for
feature representation. The grey-level spatial variance was estimated by texture features. Both kinds of
features are used as an input for a SVM and Sparse Representation Classifier (SRC) for the classification
of defects in fruit. In another work, a combination of 18 colour and texture features has been used for
grading tomatoes, where SVM has been used as a classifier [35].
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2.3. Vision-Based Retail

Preliminary efforts related to the classification of fruit and vegetables at supermarket
self-checkouts have been reported recently [36–40]. A MobileNet-based fruit classification system
for a supermarket has been presented in [41]. A dataset of images of different fruit was obtained
and used for transfer learning the MobileNet. The MobileNet architecture is selected to reduce the
computational cost. To improve the overall effectiveness of MobileNet, new features are proposed
as an input to MobileNet. A unique RGB code is defined for each fruit which is considered as a
feature vector along with an RGB histogram and K-means centroid. An accuracy of 95% has been
reported, however the number of varieties of fruit considered are significantly low. Considering
the large number of fruit and vegetables sold at a supermarket, the proposed idea of a unique RGB
code can be a limitation. The concept of using multiple patches of local features of a supermarket
object was used in [42]. A Local Concepts Accumulation (LCA) layer is defined as a penultimate
layer on CNN architecture. Entropy maximisation is used as a loss function for the classification of
supermarket produce, where an accuracy of 100% has been achieved for ResNet with LCA. Recently,
an attention fusion network has been proposed for image-based nutrition estimation of cooked food
in [43]. A progressive weighted average of CNN weights is presented for the classification of fruit and
vegetable images in [44]. Only colour and texture were considered as a feature for classification where
a patch of 640 × 640 pixels was cropped from the images taken in a real supermarket environment.
A more detailed discussion on utilisation of machine learning techniques for different applications
including fruit and vegetables classification can be found in [41,45–47].

Current supermarket self-checkout systems require an unassisted selection from a LUT for billing
of fruit and vegetables. This selection from the LUT can require good knowledge about the various
species and kinds of fruit and vegetables, which increases the chances of an incorrect selection.
The addition of a vision sensor can significantly improve the process of LUT-based selection. There can
be many methods to realise for this application, for example a threshold can be set on the classification
accuracy to consider it as a final selection. In the case where the classification accuracy is less than the
threshold, the customer can be directed to a subset of the LUT with selections that are limited based
on the classification results. The limited selection will be populated with a subset of similar fruit or
vegetables varieties. This can significantly reduce the chances of incorrect selection and will improve
the billing experience even if the systems cannot achieve 100% accuracy.

3. Data Acquisition and Pre-Processing

The working principles and apparatus design of supermarket self-checkouts have been studied in
detail [36–40]. Considering the design of a supermarket self-checkout, we propose a prototype
for acquiring images of fruit and vegetables, and for emulating the supermarket environment.
The laboratory set-up for image and weight data acquisition and the organisation of obtained data are
discussed below.

3.1. Prototype Design

The prototype consisted of multiple sensors for image acquisition, illuminance sensing, and weight
sensing of individual fruit or vegetables. A detailed description of the multiple sensors used is
presented in Table 2. A weight scale is used as a base for the placement of the fruit or vegetable and for
the illuminance sensors. The relative positions of vision sensors are also considered from the centre of
the weight scale. An AccuPost PP-70N was chosen as a low-cost weight sensor to obtain the weight of
individual fruit and vegetable in the dataset. The scale has a resolution of 10 g and is easily compatible
to multiple operating systems through a Universal Serial Bus (USB)-based connection. The supermarket
environment involves significant challenges in terms of ambient lighting conditions. These ambient
lighting conditions of a supermarket have been studied in detail, where an approximate illuminance
level of 550–650 lux has been recommended in [48–52] for real-world supermarket environments
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considering the required illuminance for the placement of items in shelves. A minimum illuminance
of 500 lux has been recommended for trade counters i.e., self-checkout desks [48]. Considering this
condition, we have used an illuminance of approximately (500–530) lux for image data acquisition.
To measure the consistency of illuminance while taking images of fruit and vegetables a set of four
Arduino BH1750 illuminance sensors (LS1, LS2, LS3, and LS4) was used. The incident ambient
illuminance from a laboratory fluorescent ceiling light source on the weight scale and on fruits or
vegetables placed at the centre of the scale was recorded. An Arduino Uno based on an ATmega-328
microcontroller was used for the integration of illuminance sensors and data acquisition with a
USB-based connection. A detailed layout of the relative placement of the weight scale, light source,
illuminance sensors, and the fruit or vegetable sample is described in Figure 1. Example illuminance
values obtained with the sensors (LS1–LS4) are described in Table 3. These values are obtained by
averaging the values for the first 500 samples per class. Two different vision sensors were used
for image acquisition. The selection of sensors was made based on two considerations: (a) Using a
readily-available low-cost embedded system [53] with High Definition (HD) cameras (e.g., ArduCAM,
ArduinoCAM) and (b) using mobile phone cameras to support mobile platforms in future extensions of
the proposed project. We have used ArduCAM (MT9F001) and Huawei P9 Lite mobile phone cameras
as vision sensors for image acquisition. The vision sensors were mounted at a particular distance from
the centre of the weight scale, considering the requirements of: (a) Capture of a reasonable area to
accommodate fruit or vegetables that are significantly different in size, and (b) potential placement
of vision sensor on a self-checkout in a supermarket. A detailed schematic of the vision sensors,
illuminance sensors, and weight scale is provided for the experimental laboratory setup and a potential
placement of a vision sensor on a self-checkout kiosk is illustrated in Figure 2.

Weight sensor
(AccuPost PP-70N)

Illuminance sensor

Control buttons

Display

LS1 LS2

LS3 LS4

(a)

Ambient light source

(b)

Figure 1. The detailed layout of: (a) Relative placement of weight scale, light source, illuminance sensor,
and fruit or vegetable sample, and (b) Illustration of the light source w.r.t. fruit and illuminance sensors.
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Table 2. Description of multiple sensors used for building the laboratory setup as a prototype of images
based on supermarket self-checkouts for weight and image data acquisition.

Vision Sensors

Brand Name Resolution Sensor Height Distance

1 ArduCAM MT9F001 4384 × 3288 1/2.3 inch CMOS 8 cm 19.5 cm
2 Huawei P9 Lite 3120 × 4160 Sony IMX214 Exmor RS 16 cm 30 cm

Weight sensor

3 AccuPost PP-70N 10 g–32 kg, USB 2.0/3.0 supported Windows 10

Illuminance sensor

4 Ambient light sensor Arduino BH1750 ambient light sensor

Controlling embedded system

5 Embedded system Arduino Uno (ATmega-328), 8-bit, 16 MHz

Table 3. A description of the classes in the obtained dataset, nomenclature, and illuminance values
obtained with sensors (LS1–LS4).

Fruit/Vegetable Nomenclature Avg. Weight (kg) Average Illuminance (LS1-LS4) Lux

1 Brown onion ONIBRXXXX 0.212 526.17 524.84 523.56 522.57
2 Carrot CARROXXXX 0.064 525.02 527.20 522.95 524.39
3 Cauliflower CABCAXXXX 0.419 526.34 525.12 525.35 523.08
4 Continental cucumber CUCCOXXXX 0.014 533.08 525.70 529.26 525.94
5 Creme potato POTCRXXXX 0.140 527.94 523.90 525.08 527.10
6 Drumhead cabbage CABDRXXXX 0.833 534.03 528.22 523.58 529.09
7 Granny Smith apple APPGSXXXX 0.164 523.79 522.65 525.75 526.06
8 Iceberg lettuce LETICXXXX 0.432 531.46 525.87 530.42 526.30
9 Lady finger banana BANLFXXXX 0.125 523.67 522.55 523.45 526.62
10 Mandarin MANDAXXXX 0.138 525.85 526.88 529.81 526.49
11 Navel orange ORANAXXXX 0.138 524.97 526.92 528.67 523.33
12 Packham pear PEAPAXXXX 0.150 529.43 530.63 530.13 535.69
13 Pink lady apple APPPLXXXX 0.326 529.32 523.56 522.13 535.77
14 Strawberry BERSTXXXX 0.012 525.81 525.63 522.00 527.37
15 Tomato TOMFIXXXX 0.132 523.55 523.56 526.91 532.98

XXXX: denotes the count of the samples per class.

Huawei P9 lite

Base mount

ArduCAM
Weight scale

Fruit / Vegetable

Illuminance sensor

(a)

Vision sensor
Weight sensor

Main table

Coin dispenser

Display screen

Bagging table

Base mount

(b)

Figure 2. A schematic of the proposed prototype: (a) Laboratory setup depicting the placement of
vision sensor, illuminance sensors, weight sensor, and fruit or vegetable sample, and (b) A proposed
placement of sensors on a typical supermarket self-checkout kiosk.
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3.2. Image Acquisition

A dataset of fruit and vegetable images was obtained using the prototype laboratory setup based
on considering the real-world supermarket environment. The prototype design was considered
carefully to maintain the integrity among the images obtained with both vision sensors used.
This integrity is important in order to use the obtained dataset for transfer learning of the CNN
for classification, and maintaining classification effectiveness among the images of multiple sensors.
The images of 15 different classes of fruit and vegetables were obtained where each class consists of
1000 images. The images were cropped to a maximum size of 3000 × 3000 pixels for both sensors,
the initial resolution of obtained images is presented in Table 2 for both sensors. This image size was
selected by considering the variations in sizes of fruit or vegetables used for building the dataset.
The images were further ordered in a unified nomenclature along with the weight of individual
fruit and vegetables saved in a separate repository. A description on the nomenclature and average
weight of each class is presented in Table 3. Uniform ordering was achieved with the help of the
nomenclature to integrate the weights and images in the dataset and to make the dataset consistent for
future applications. Examples of obtained images are shown in Figure 3.

Figure 3. Example images obtained from the experiments with ArduCAM (upper row) and Huawei
P9 Lite (bottom row).

4. Methodology

A coarse to fine classification-based two-stage classification technique is proposed in this paper.
The fruit and vegetable images were initially classified into coarse classes, which are used to optimise
a CNN for each coarse class to obtain the fine classification. A combined class level likelihood
distribution is then estimated for the fine classification of all coarse classes so as to obtain the final
classification described in Figure 4. This progressive classification is considered as a natural process
where the weight is used as an inherent feature of the fruit and vegetable, which also helps in achieving
better time complexity and memory requirements.

4.1. Coarse Classification

Initially, images are coarsely classified into three classes based on the weight information
where the weight values are grouped into their natural distribution. The Jenks Natural Breaks
(JNB) classification [54] technique is used to estimate the inherent natural distribution in the weight
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information of the fruit and vegetable. The Accumulated Squared Deviation from the Mean (ASDM) of
each class is reduced, and hence, the Accumulated Squared Deviation (ASD) among means of different
classes is increased. A set of individual weights of each fruit or vegetable in a class i is represented as
wi, where the cardinality of wi is considered as li. An integrated ordered vector of all weight sets of
fruit and vegetable classes is denoted as:

W = {w1, w2, w3, . . . , wn} = {ϕ1, ϕ2, ϕ3, . . . , ϕm}, (1)

where n is the maximum number of classes and m = ∑n
k=1 lk. To estimate the ASDM, a set of mean

weights w.r.t. each class in W is represented as:

M = {µw1, µw2, µw3, . . . , µwn}. (2)

The accumulated deviation of individual weight value in wi from mean µwi of a class i is
estimated as:

σASDM
i =

li

∑
k=1

wi(k)− µwi , (3)

where µwi =
∑

li
k=1 wi(k)

li
. The ASD among means of different classes is estimated based on W for all

possible combination range distribution that can be described as:

σASD
i =

n

∑
j=1

m

∑
k=1

ϕk − µi, (4)

where the minimum value of σASD
i represents the increased inter class deviation and hence the optimal

distribution. A Goodness of Variance Fit (GVF) metric is maximised to estimate the effectiveness of
the distribution. The GVF considered as a normalised difference of accumulated squared variance
between class means and the weights of individual fruit and vegetables is described as:

GVFi =
(σASDM

i − σASD
i )

σASDM
i

. (5)

This is an iterative process where greater values of GVF indicates more effective distribution.
This weight based coarse distribution groups the different varieties of a fruit or vegetable.
This grouping helps in learning more effective features for the classification of the same species
of a fruit or vegetable in the fine classification phase.

Images Weights

Jenks Natural Breaks

k3

Softmax Classifier

k2k1

CNN

AdaBoost

CNN

AdaBoost

CNN

AdaBoost

(a)

sti = 1/n 

Train CNN

Update Weights

T = {t1, t2, t3, … tn}

J 
>

 0

(b)

Figure 4. A stack based sequential description of the proposed approach: (a) A progressive coarse to
fine classification based approach, and (b) AdaBoost CNN optimisation for fine classification of fruit
and vegetables.
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4.2. Fine Classification

A CNN has been optimised based on the AdaBoost [55] technique for each coarse class estimated
by natural distribution. A sequential linear CNN boosting has been performed to obtain the
classification results where a block level abstraction of coarse, fine, and final classification is presented
in Figure 4.

Considering each coarse class as a combination of multiple classes, a multi-class classification
problem can be defined as:

ĉ = arg max
θ∈{1...k}

hθ(x), (6)

where x is an unseen element of data randomly sampled from k classes. The classifier hθ is trained on
dataset T = {t1, t2, t3, . . . , tn} to assign a label ĉ to x such that the corresponding classification error
is minimum. In our proposed approach, we have used the multi-class AdaBoost technique defined
in [56] to optimise a CNN for each coarse class. The elements in the training dataset of each coarse class
are initially weighted equally as: sti = 1/n where n is the size of the training dataset. The CNN is then
trained on T for J iterations to obtain an optimised CNN, where ImageNet weights have been used for
the initialisation of the CNN when J = 0. The dataset weights of each element ti are updated after
each iteration for J ≥ 1. The corresponding weight of each ti is estimated by extracting a k dimensional
classification likelihood vector with a trained classifier (i.e., CNN) hj≥1

θ . This k dimensional vector P is
used for the estimation of weight for each ti in T after every iteration, which can be described as:

s j
ti = s j−1

ti exp
(
− α

k− 1
k

ĉ i
g log(P j(t j−1

i ))
)

, (7)

where sti is the weight of ith training sample in T used in the jth iteration with a learning rate
of α. The ground truth labels of corresponding classes are represented as ĉi

g for k dimensional
likelihood vectors. The weights of the wrongly classified samples are improved in each iteration
to optimise the classifier for wrongly classified samples in j − 1th iterations. The AdaBoost [56]
uses a random forest as a combination of trees to make an ensemble of weak learners where, each
contributing tree is initialised with random weights. The CNNs have the capability of finding a strong
classification likelihood and correlations for a large dataset. However, considering the findings in (7)
it can be concluded that strong correlation between ĉi

g and the output of the CNN will reduce the
value of the exponential function, which will constrain the weights improvement to a small set of data
not trained with the CNN previously. Training the CNNs on a small dataset can cause significant
overfitting, and will add an overhead of extra computational cost. We initialised the CNN with
the ImageNet weights for the first iteration where the weights of the CNN in further optimisation
iterations have been retained and improved with the weighted training samples. This assumption
has been made considering the sequential Representation Learning (RL) of a CNN in the training
process, where retaining the previous information can help in the effective convergence of the CNN for
a large dataset. This iterative process is repeated for all coarse classes obtained in the initial stage of the
classification process. A detailed process for the fine classification stage has been described in Figure 4.

The CNNs used in the fine classification stage are a combination of a number of layers stacked
together to perform the classification task. Each layer in the CNN plays a specific role for RL where
the level of abstraction of the features learned increases from lower to upper layers. The low-level
features i.e., pixel-level textures, are extracted with the help of conventional layers. These features are
then combined in a Fully Connected (FC) layer. The flattened and combined representation obtained
with the FC layer are then used to estimate the class level likelihood distribution for final classification.
This class-level likelihood is estimated with the help of a softmax classifier. All these processes are
performed sequentially for the classification task, a detailed description of the overall process of
CNN-ased image classification can be found in [28]. The loss of feature representation learned in the
training process of a CNN is propagated among the layers in each training step. A multi-class cross
entropy-based loss is used in the proposed approach for the estimation of the discrete regression loss.
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The AdaBoost optimisation based sample weights are considered at this stage for training on dataset T
in a CNN, described as:

Ei =
n

∑
j=1

ĉ j
g log(tj

i) sj
ti , (8)

where Ei is the cross entropy loss of training sample ti. The corresponding ground truth label and
sample weight are represented as ĉg and sti, respectively.

4.3. Testing the Proposed Approach

The coarse to fine classification-based CNNs are trained for the classification of fruit and
vegetables. To perform the classification of test images with the help of the proposed technique,
the class likelihoods are obtained by each optimised CNN in the fine classification stage. The softmax
layers of each CNN are removed to make a final classification, where a global softmax layer is added
based on the concept in [57,58] represented as a bottom layer in Figure 4 and can be described as:

σzi =
exp(zi)

∑Φ
j=1 exp(zj)

, (9)

where σzi is the normalised likelihood of an element zi in a combined set of output probabilities
obtained by fine classification CNNs. The combined number of classes are represented as Φ.
These normalised probabilities obtained by the final softmax layer are used for the final classification
of the fruit or vegetable sample to a class.

5. Implementation and Results

Experimental implementation and classification effectiveness achieved based on the dataset
obtained in Section 3.2 is described in detail in this section. To validate our results a comparison of the
proposed approach on GoogleNet, MobileNet, and a custom CNN, is performed.

5.1. Implementation

The experiments have been performed on the dataset obtained in Section 3. The images have been
apportioned into 90%, 5%, and 5% segments for training, validation, and testing datasets, respectively.
We used three CNNs with the proposed AdaBoost-based optimisation technique as base classifiers
for implementation and testing. GoogleNet [58], MobileNet-v2 [59], and a 15-layer custom CNN
based on the concept presented in [60] is used. A detailed description of the layers of the custom
CNN is presented in Table 4. A decision was made to use a shallower network as compared to
GoogleNet and MobileNet to optimise for the proposed technique. The Google and MobileNets were
considered based on the assumption of a deeper and lighter weight CNN respectively to test our
concept, where MobileNet is also intended to be used for mobile platforms with less computational
power in our future extensions. Considering the small input image size of GoogleNet and MobileNet,
we considered a larger input image size in the custom CNN. The custom CNN consists of a sequential
combination of convolutional (Conv), pooling and Fully Connected (FC) layers followed by a softmax
classification layer to estimate the class-level probability distribution. Considering the capabilities of
sparse representation and equivariant parameters sharing we used a sequence of convolutional and
pooling layers for RL. The architecture used for the custom CNN has been reported as state-of-the-art
in comparison to logistic regression, Extreme Learning (EL), and SVM in [60]. The local features of a
fruit or vegetable image are extracted by the application of a convolution operation with particular
kernel size and number of nodes as described in Table 4. A ReLU function is applied as a threshold
on the features obtained from the convolutional nodes where filtered features are represented as the
output of the layer. The neighbouring statistical summary of the features is extracted and converted
to an invariant representation with the help of a pooling operation applied to the output of the
convolutional layers. The depth of the custom CNN is considered carefully in comparison to the
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Google and MobileNets where the custom CNN is considered as a weak classifier for optimisation with
the proposed AdaBoost technique. The ReLU was used as an activation function for all hidden layers
where the weighted training sample based cross entropy loss defined in (8) was used for training.
Experiments have been performed on a 12 GB Tesla K80 with 32 GB of installed memory.

Table 4. Description of the custom CNN used as the base classifier in the AdaBoost optimisation based
on [60].

Layer Kernel Size No. of Nodes Stride Padding Layer Weights Layer Bias Output Size

1 Input - - - - - - 512 × 512 × 3
2 Conv 7 × 7 40 3 × 3 0 × 0 7 × 7 × 3 × 40 1 × 1 × 40 170 × 170 × 40
3 Pooling 3 × 3 - 3 × 3 0 × 0 - - 56 × 56 × 40
4 Conv 7 × 7 80 3 × 3 2 × 2 7 × 7 × 40 × 80 1 × 1 × 80 18 × 18 × 80
5 Pooling 3 × 3 - 1 × 1 1 × 1 - - 18 × 18 × 80
6 Conv 3 × 3 120 1 × 1 1 × 1 3 × 3 × 80 × 120 1 × 1 × 120 18 × 18 × 120
7 Pooling 3 × 3 - 1 × 1 1 × 1 - - 18 × 18 × 120
8 Conv 3 × 3 80 1 × 1 1 × 1 3 × 3 × 120 × 80 1 × 1 × 80 18 × 18 × 80
9 Pooling 3 × 3 - 1 × 1 1 × 1 - - 18 × 18 × 80
10 Conv 1 × 1 80 1 × 1 1 × 1 1 × 1 × 80 × 80 1 × 1 × 80 20 × 20 × 80
11 Pooling 3 × 3 - 1 × 1 1 × 1 - - 20 × 20 × 80
12 FC - 40 - - - - 1 × 1 × 40
13 FC - 15 - - - - 1 × 1 × 15
14 Softmax - - - - - - 1 × 1 × 15
15 Output - - - - - - 1 × 1 × 15

Conv: represents the convolutional layer, FC: represents the fully connected layer.

5.2. Experimental Results

The experiments were performed with all three CNNs i.e., GoogleNet, MobileNet, and the custom
CNN. The classification results obtained with the transferred learned pre-trained GoogleNet and
MobileNet were used for comparison. The Google and MobileNets were initialised with the ImageNet
weights where we used Xavier’s initialisation [61] technique was used for the initialisation of the
custom CNN. A weight-based coarse classification was performed based on the JNB technique defined
in ((4) and (5)). The result based on the weight-based classification is shown in Table 5 for a GVF of
0.65. This GVF was selected based on the experimental results obtained, where an approximately equal
size of classes was considered for coarse classification. However, the AdaBoost technique is considered
significantly prone to imbalanced class sizes [55].

Table 5. Jenks Natural Break (JNB) based coarse classification of fruit and vegetables.

Fruit/Vegetables Avg. Weight (kg) Weight. Dev Class % of Dataset

1 Strawberry 0.012 0.02

Class 1 46.66

2 Continental cucumber 0.014 0.07
3 Carrot 0.064 0.02
4 Lady finger banana 0.125 0.02
5 Tomato 0.132 0.02
6 Mandarin 0.138 0.03
7 Navel orange 0.138 0.03

8 Creme potato 0.140 0.03

Class 2 26.669 Packham pear 0.150 0.03
10 Granny Smith apple 0.164 0.03
11 Brown onion 0.212 0.04

12 Pink lady apple 0.326 0.19

Class 3 26.6613 Cauliflower 0.419 0.05
14 Iceberg lettuce 0.432 0.03
15 Drumhead cabbage 0.833 0.06
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GoogleNet was considered as a deep base classifier for AdaBoost optimisation. The accuracy
attained for the training and test datasets is presented in Table 6 for different epochs, where samples
were randomly selected and shuffled for both datasets. The training and test accuracy are proportional
for the initial 12 epochs, however the accuracy of the test set decreases for higher numbers of epochs.
The basic intuition of AdaBoost was to use a linear combination of weak classifiers [55], GoogleNet in
comparison is a deep classifier that can approximate the strong correlations. Hence, using GoogleNet
with AdaBoost for a higher number of epochs increases bias for the test set. MobileNet was considered
as a light weight CNN for AdaBoost-based optimisation to classify fruit and vegetables. The accuracy
of MobileNet is presented in Table 6 for multiple epochs. The test accuracy of MobileNet increases
for the first 12 epochs and remains consistent up to 15 epochs however the accuracy deceases when
18–20 epochs are used. For a higher number of epochs, the AdaBoost technique assigns negligible
weights to the correctly classified samples, so to improve the weights of wrongly-classified samples.
This negligible weight assignment causes a significant bias for the partial training dataset. This bias
causes an overfitting for higher numbers of epochs and hence, a decrease in the classification accuracy
of the test dataset. This decrease is due to partial training of the CNNs after a particular number of
epochs, which depends upon the size and number of parameters in the CNN. This partial training can
be considered a kind of overfitting where training a CNN on (a) a small dataset, and (b) higher number
of epochs increases the CNN bias for unseen test samples. The classification accuracy for AdaBoost
optimisation of the Google and MobileNets is compared with the transfer learned pre-trained Google
and Mobile Nets on the ImageNet dataset. To transfer learn, a set of 500 images per class was used
for training, where both CNNs were trained for 30 epochs. A set of 250 images per class was used for
cross validation in the transfer learning phase.

The custom CNN is considered a weak learner for AdaBoost optimisation in the proposed
technique. The CNN consists of 15 layers that are based on the architecture proposed in [60].
The custom CNN was trained for 25 epochs, where the result for multiple epochs is described in
Table 7. A similar CNN test accuracy trend has been noted however, the custom CNN is less prone to
negligible weight criteria observed for both the Google and MobileNets. A significant conclusion can be
drawn here that the AdaBoost-based optimisation of CNNs can converge to complex data correlations
with smaller or less deep networks. This makes the proposed approach more suitable for larger and
complex correlations in datasets, i.e., classification of different varieties of a fruit or vegetable with
less computational requirements. Moreover, weight-based coarse classification used in the proposed
approach also helps in reducing the computational and memory requirements. A detailed comparison
of the confusion matrix-based classification metrics of accuracy, Error Rate (ER), Positive Predictive
Value (PPV), True Negative Rate (TNR), True Positive Rate (TPR), and F1 score is presented in Table 8.
The classification accuracy of each class is obtained as a ratio of correctly classified images and the
total number of images of a class, where the effectiveness of the proposed techniques is presented
as ER. The precision or PPV is presented as the ratio of correctly predicted images and the total
number of images identified as a particular fruit or vegetable. Test accuracy is also presented as an
F1 score, which is obtained as a harmonic mean of precision and recall. The proposed approach can
be considered significantly prone to complex and imbalanced dataset distributions. This implication
can be observed by the average TPR or sensitivity and the F1 score (93.57%) that is comparable to
the overall accuracy presented in Table 7. It can be observed that approximately 11 out of 15 fruit or
vegetables can be classified with an accuracy of 99%. A classification confusion matrix of the custom
CNN AdaBoost optimisation is depicted in Figure 5 for the fruit and vegetable classes presented in
Table 3.

An inference time analysis was performed to estimate the practical implementation of the
proposed technique. A batch of 15 random images, with one from each class was selected for
inference analysis where the total inference time (ms) was noted as the time to classify all 15 images.
We performed this analysis on a device for both CPU and GPU-based classification where the fastest
CPU-based inference is approximately three times slower than GPU-based inference. A description of
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the hardware used for the computation is presented in Table 9. The images were loaded in the form
of a tensor in the memory where total inference time includes a time to read the tensor of 15 images
from memory and the model computation time. On average, a GPU-based inference of an image takes
approximately 588.44 ms which is 2.8 times faster than the CPU-based inference time of 1647.65 ms
with the optimised custom CNN. A comparison of inference times for the AdaBoost optimised Google,
MobileNets, and custom CNN models is presented in Table 10, the time for single image inference
is obtained by dividing the total inference time by the number of images in the batch. The inference
time for Google and MobileNets is significantly higher than the proposed AdaBoost-optimised CNN
network, however, an inference in a real implementation will also depends upon the Input/Output
(I/O) and related overheads of an execution platform.

Table 6. A comparison of training and test accuracy of transfer learned and AdaBoost-optimised
Google and MobileNets.

Epochs Network Training
Accuracy (%)

Test
Accuracy (%) Network Training

Accuracy (%)
Test

Accuracy (%)

10

Pre-trained
GoogleNet

81.90 78.56

Pre-trained
MobileNet

78.69 71.52
15 93.45 82.71 81.23 78.86
20 94.65 81.78 89.98 80.23
25 96.45 83.56 94.87 81.44
30 95.67 82.10 95.56 83.15

10

AdaBoost
GoogleNet

81.86 72.96

AdaBoost
MobileNet

86.56 81.45
12 87.10 81.24 92.63 87.21
14 89.74 78.58 94.44 88.45
16 93.25 76.63 95.50 91.33
18 96.21 76.00 94.88 87.56

Table 7. Training and test accuracy achieved with AdaBoost-optimised custom CNN.

Epochs Training
Accuracy (%)

Test
Accuracy (%)

10 93.10 80.13
15 94.17 83.43
20 96.42 88.69
22 95.67 93.97
25 97.14 85.11

Table 8. Classification metric comparison for AdaBoost-optimised CNN based fruit and
vegetables classification.

Fruit/Vegetable Accuracy (%) ER (%) PPV (%) TNR (%) TPR (%) F1 Score

1 Brown onion 99.47 0.53 96.00 99.71 96.00 0.960
2 Carrot 99.73 0.27 98.00 99.86 98.00 0.980
3 Cauliflower 99.47 0.53 100.00 100.00 92.00 0.958
4 Continental cucumber 99.73 0.27 100.00 100.00 96.00 0.980
5 Creme potato 99.07 0.93 90.57 99.29 96.00 0.932
6 Drumhead cabbage 98.40 1.60 85.19 98.86 92.00 0.885
7 Granny Smith apple 99.47 0.53 96.00 99.71 96.00 0.960
8 Iceberg lettuce 98.53 1.47 88.24 99.14 90.00 0.891
9 Lady finger banana 99.87 0.13 100.00 100.00 98.00 0.990
10 Mandarin 97.73 2.27 83.67 98.86 82.00 0.828
11 Navel orange 97.60 2.40 80.77 98.57 84.00 0.824
12 Packham pear 99.60 0.40 97.96 99.86 96.00 0.970
13 Pink lady apple 99.60 0.40 100.00 100.00 94.00 0.969
14 Strawberry 99.60 0.40 97.96 99.86 96.00 0.970
15 Tomato 99.70 0.93 90.57 99.29 96.00 0.932
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Figure 5. A classification confusion matrix of fruit and vegetables for the custom CNN.

Table 9. Hardware description for inference time analysis.

Device Type Memory Execution Unit

1 CPU 16 GB Intel Xenon (8-cores)
2 GPU 32 GB Tesla K80 (4992-cores)

Table 10. Inference time (per image) comparison for proposed approach.

Model CPU (ms) GPU (ms)

1 GoogleNet 1954.32 723.82
2 MobileNet 1889.56 674.84
3 Custom CNN 1647.65 588.44

6. Conclusions

The classification of fruit and vegetables includes significant challenges due to the highly variable
physical features of a fruit or vegetable which can include shape, size, colour, texture, and level
of ripeness. On top of this, the classification of fruit and vegetables at supermarket checkouts
faces additional challenges due to ambient lighting conditions and human factors. In this paper,
we proposed a progressive coarse to fine classification-based technique for classifying fruit and
vegetables at supermarket self-checkouts. The weight of individual fruit or vegetable was used
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for coarse classification from 15 classes down to three using the Jenks Natural Breaks classification
technique. These three classes are then used for AdaBoost-based optimisation of CNNs for fine
classification. The training samples were initially weighted equally and their weights then improved in
each iteration to optimise the CNN, where samples from the wrongly classified classes were weighted
more as compared to other classes. The results obtained from all three fine classification CNNs were
then used to estimate a multi-class probability distribution for final classification. Three kinds of
CNNs were used for comparing and testing the proposed technique. GoogleNet, MobileNet-v2, and a
custom 15-layer CNN were used based on the following criteria: (a) Selection of a deep CNN for
optimisation with the proposed technique, (b) selection of a light weight small CNN for optimisation,
and (c) selection of a weak classifier for optimisation. The experiments were performed for all three
CNNs and a positive result was obtained for all three CNNs, where the custom CNN-based weak
classifier was considered the most effective despite a lower number of parameters and computational
requirements. Considering the capability of the proposed approach to classify the complex data
correlations i.e., classification of different kinds of fruit and vegetables, this approach looks promising
for applications to large datasets in a real supermarket environment.
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