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Abstract: Background: Diagnosis of Parkinson’s disease (PD) is mainly based on motor symptoms and
can be supported by imaging techniques such as the single photon emission computed tomography
(SPECT) or M-iodobenzyl-guanidine cardiac scintiscan (MIBG), which are expensive and not always
available. In this review, we analyzed studies that used machine learning (ML) techniques to
diagnose PD through resting state or motor activation electroencephalography (EEG) tests. Methods:
The review process was performed following Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. All publications previous to May 2020 were included, and their
main characteristics and results were assessed and documented. Results: Nine studies were included.
Seven used resting state EEG and two motor activation EEG. Subsymbolic models were used in
83.3% of studies. The accuracy for PD classification was 62–99.62%. There was no standard cleaning
protocol for the EEG and a great heterogeneity in the characteristics that were extracted from the
EEG. However, spectral characteristics predominated. Conclusions: Both the features introduced into
the model and its architecture were essential for a good performance in predicting the classification.
On the contrary, the cleaning protocol of the EEG, is highly heterogeneous among the different studies
and did not influence the results. The use of ML techniques in EEG for neurodegenerative disorders
classification is a recent and growing field.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurological disease after Alzheimer’s
disease, affecting 2–3% of the population older than 65 years of age [1]. It is characterized by the loss
of dopaminergic neurons in the substantia nigra [2]. The diagnosis of PD relies on the presence of
motor symptoms (bradykinesia, rigidity and tremor at rest [3]). However, autopsy and neuroimaging
studies indicate that the motor signs of PD are a late manifestation that is evident when the degree of
degeneration of dopaminergic neurons is 50–70% [4,5].

There are a wide variety of techniques in the field of neurology that are used individually or in
combination to support the clinical diagnosis. Commonly used techniques include image-based tests
(single photon emission computed tomography (SPECT), M-iodobenzyl-guanidine cardiac scintiscan
(MIBG)), however, these are costly and are not always accessible.

Electroencephalography (EEG) is a non-invasive technique that records the electrical activity
of the pyramidal neurons of the brain, giving an indirect insight of their function with a great time
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resolution. It has been widely used to study epileptic disorders and is a widely accessible and low-cost
technique. Visual EEG analysis is the gold standard for clinical EEG interpretation and analysis, but the
information processing techniques allow for the extraction of different characteristics that can be of
help when characterizing neurological diseases.

Due to its good temporal resolution, EEG data provide dynamic information on the electrical
brain activity and connectivity. For this reason, EEG has been recorded in different physiological
conditions such as basal awake condition, during sleep, during specific sensitive input or cognitive
tasks and finally in resting state. During each of these conditions, different networks are expected to be
activated and spontaneous connectivity is expected in resting state.

In addition to the well known inter/intra-subjects’ variability, two main characteristics define the
EEG signals and make their subsequent analysis difficult. These are the low signal-to-noise ratio and
the stochastic nature of the signals. A low signal-to-noise ratio indicates a high level of noise in EEG
signals, so pre-processing is required to filter out the signal noise and to remove the possible artifacts,
such as contamination by other biological and non-biological signal sources, and then analyze the
signals and obtain results. The main problem to filter the signals is that there are several validated
protocols with no gold standard defined to perform the cleaning. Another problem comes from the
fact that when the signal noise is removed, relevant components in EEG signals can also be eliminated,
which may lead to false diagnosis. On the other hand, the stochastic character indicates that the state
or occurrence of an event does not depend on the previous event. Hence, to extract the essential
characteristics of the signals, advanced non-linear techniques must be used, which require more
expensive computational methods [6–8]. These difficulties can be overcome by implementing machine
learning (ML) techniques to analyze the EEG signals, since they are quite strong techniques that allow
to carry out studies of non-linear nature, as well as to deal with raw EEGs.

Machine learning is a discipline of artificial intelligence that develops algorithms with the capacity
to generalize behaviors and recognize hidden patterns in a large amount of data, defined by Arthur
Samuel as the “field of study that gives computers the ability to learn without being explicitly
programmed” [9]. ML techniques can be classified into two categories depending on the type of
processing that is carried out: symbolic processing, which uses formal languages, logical orders,
and symbols, and subsymbolic processing, which is designed to estimate functional relationships
between data. Within ML techniques, artificial neural networks (ANN) are those whose architecture is
based in multiple-layer hierarchical models that can learn representations of data with multiple levels
of abstraction. However, they require a large amount of input data and a careful training process.
All these techniques are receiving increasing interest from the medical domain, where they have been
mostly used in image analysis [10], although in recent years, their application has spread to other
areas [11,12].

The analysis of EEG has already been used in other non-epileptic neurological diseases such as
Alzheimer’s, schizophrenia, and major depressive disorder [13–15] and there are numerous articles
that apply ML techniques to study their EEG [16–23]. EEG processing using ML techniques has
also been used for therapeutical purposes such as stroke rehabilitation [24]. The use of EEG to study
Parkinson’s disease has not been fully validated, but in the last 5 years, its interest has increased
with the introduction of ML techniques in EEG analysis, leading to a growing development of the
literature. The aim of this review consists, firstly, in evaluating the current impact of ML techniques
on the EEG analysis of patients with PD, and secondly, naming the most commonly used techniques
and analyzing those that have provided the best results. These objectives, focused on the diagnosis
and evolution of PD, will provide an entry point for further studies seeking to determine an early,
non-invasive and accessible diagnostic marker that minimizes the delay on the disease diagnosis.
Hopefully, the advances in new diagnostic techniques in PD could help to detect this disease in its
early stages, that is, in pre-motor stage, favoring the development of preventive therapies that slow the
degree of advancement of motor and cognitive decline in PD [25].
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2. Methods

2.1. PRISMA Statement

With the main objective of assuring the quality of this systematic review, the selection process
followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA—
http://www.prisma-statement.org) guidelines. For more information about the review protocols, see the
Statement article [26] and the Explanation and Elaboration article [27].

Figure 1 shows the PRISMA flow diagram, which summarizes the search, screening and eligibility
processes carried out in this review. The precise information of each of the steps is detailed in the
sections below.
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the bibliographic review conducted.

2.2. Identification: Search Strategy and Sources

The following terms were selected: 1. Parkinson’s; 2. EEG; 3. electroencephalogram; 4. machine
learning; 5. deep learning; and 6. neural networks. The proposed search terms were combined using
logical operators as follows: 1 AND (4 OR 5 OR 6) AND (2 OR 3). This combination was introduced in
the following 6 databases: Web of Science, PUBMED, Scopus, MEDLINE, CINAHL and Science Direct.
The search was performed on 19 May 2020, with no time limit, providing a total of 230 results.

2.3. Screening and Eligibility

The screening process was carried out in two steps. First, duplicates were removed. Second,
with the main aim of removing the studies that had not been peer reviewed, only those publications
cataloged as research articles were considered, even if they were not indexed in the Journal Citation

http://www.prisma-statement.org
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Reports (JCRs) of Clarivate Analytics (http://jcr.clarivate.com). Thus, proceedings, conference articles,
chapters in books, posters and editorials were excluded.

Within the eligibility process, the inclusion and exclusion criteria were applied, according to
the objective of this review. For this purpose, two review authors (J.P.R. and A.M.M.) screened
the title, the abstract, and the full article, if necessary, to determine if they satisfied the selection
criteria. Any disagreement was resolved through consensus. The search was limited to studies
written in English and Spanish. Inclusion criteria were: prospective or retrospective studies using
EEG to assess PD progression or diagnosis using different ML architectures in awake surface EEG
recordings. The exclusion criteria were: studies that did not consider EEGs, studies that did not use
ML techniques for EEG analysis, studies that focused their analysis on other neurological diseases,
animal studies, pharmacological studies, articles studying evoked changes in EEGs due to exogenous
stimuli, invasive and sleep EEG recordings. Finally, those studies that did not include information
about the methodology were omitted. As a consequence, the resulting selected articles consisted of
PD studies that sought to diagnose or determine the evolution of this disease, by means of using ML
techniques in resting state EEG tests or motor activation EEG tests.

2.4. Data Extraction and Analysis

Once the inclusion and exclusion criteria were applied, two review authors independently screened
the full-text articles to obtain a score in the checklist as proposed in the Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical Research [28]. The checklist consists of
12 reporting items to be included in a research article in order to assure the good quality of the article.
The categories evaluated through the checklist include requirements within the field of biomedicine,
the field of computer science, and requirements on how these two fields overlap with each other.
The precise descriptions of the checklist items displayed in Table 1 are summarized in the following
points, which were the ones mainly considered for the assessment:

• Items 1, 2: the structure and content of the title and abstract are evaluated;
• Items 3, 4: the clinical objective is identified, the state of the art of existing models is reviewed and

the study is justified;
• Items 5, 6: the dataset is described, providing an assessment of its quality and justifying the

chosen model;
• Item 7: data pre-processing and validation metrics are described;
• Item 8: the model is described, providing sufficient information about the parameters that define

its architecture for its reproducibility. It is evaluated whether the available data are sufficient for a
good fit of the model;

• Item 9: the predictive performance of the model is provided in terms of the validation metrics;
• Items 10, 11, 12: the clinical implications of the results obtained are provided, limitations of the

study are discussed, and unexpected results are reported.

http://jcr.clarivate.com
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Table 1. Items to include when reporting predictive models in biomedical research. Luo et al., 2016 [28].

Item Section Topic Checklist Item
1 Title Nature of study Identify the report as introducing a predictive model.

2 Abstract Structured summary Background. Objectives. Data sources. Performance metrics of the predictive models (in both point estimates and
confidence intervals). Conclusion including the practical value of the developed predictive model or models.

3 Introduction Rationale Identify the clinical goal. Review the current practice and prediction accuracy of any existing models.

4 Objectives State the nature of study being predictive modeling, defining the target of prediction. Identify how the prediction
problem may benefit the clinical goal.

5 Methods Describe the setting Identify the clinical setting for the target predictive model. Identify the modeling context in terms of facility type,
size, volume, and duration of available data.

6 Define the prediction problem
Define a measure for the prediction goal. Identify the problem to be prognostic or diagnostic. Determine the form
of the prediction model: classification, regression, or survival prediction. Explain practical costs of prediction
errors. Define quality metrics for prediction models. Define the success criteria for prediction.

7 Prepare data for model building

Identify relevant data sources and quote the ethics approval number for data access. State the inclusion and
exclusion criteria for data. Describe the time span of data and the sample or cohort size. Define the observational
units on which the response variable and predictor variables are defined. Define the predictor variables. Describe
the data pre-processing performed, including data cleaning and transformation. State any criteria used for outlier
removal. State how missing values were handled. Describe the basic statistics of the dataset as the ratio of
positive to negative classes for a classification problem. Define the model validation strategies. Define the
validation metrics. For classification problems, the metrics should include sensitivity, specificity, positive
predictive value, negative predictive value, area under the ROC curve, and calibration plot.

8 Build the predictive model

Identify independent variables that predominantly take a single value. Identify and remove redundant
independent variables. Identify the independent variables that may suffer from the perfect separation problem.
Assess whether sufficient data are available for a good fit of the model. Determine a set of candidate modeling
techniques. If only one type of model was used, justify the decision for using that model. Define the performance
metrics to select the best model.

9 Results Report the final model and performance

Report the predictive performance of the final model in terms of the validation metrics specified in the methods
section. If possible, report the parameter estimates in the model and their confidence intervals. When the direct
calculation of confidence intervals is not possible, report nonparametric estimates from bootstrap samples.
Comparison with other models in the literature should be based on confidence intervals. Interpretation of the
final model. If possible, report what variables were shown to be predictive of the response variable. State which
subpopulation has the best prediction and which subpopulation is most difficult to predict.

10 Discussion Clinical implications Report the clinical implications derived from the obtained predictive performance.

11 Limitations of the model Discuss the following potential limitations: assumed input and output data format. Potential pitfalls in
interpreting the model. Potential bias of the data used in modeling. Generalizability of the data.

12 Unexpected results during the experiments Report unexpected signs of coefficients, indicating collinearity or complex interaction between predictor variables.
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The evaluation of each article through the checklist of Table 1 carried out by 2 independent
evaluators (A.M. and P.C.) minimized the bias produced by a single reviewer. To measure the consensus
between both evaluations taking into account the option of agreement by chance, the kappa value
between both evaluations was calculated (>0.7 means a high level of agreement among the evaluators,
0.5–0.7 a moderate level of agreement, and <0.5 a low level of agreement). This procedure generated
an objective assessment of the content of each article so that the information included in each of them
could be compared. As a consequence, the evaluation of the quality of the publications selected for
this review is performed in the Results section.

After the previous selection process, for each selected article, the information associated with the
following topics was extracted: 1. the dataset quality, through clinical and technical parameters such
as the number of patients in the study, severity of the disease, the type of EEG tests performed and the
parameters associated with the EEG recording; 2. pre-processing the data, through the EEG cleaning
protocol and feature extraction methods; 3. ML techniques used, through validation criteria, quality of
the training/validation process, metrics used and results of each model. These fields were chosen in
order to synthesize the most relevant information within each of the articles according to the items in
the checklist in Table 1.

This made it possible to study the combination of model parameters for which, depending on
the problem studied, better results were achieved. The conclusions were obtained, on the one hand,
comparing for each of these points the information collected in the different articles, and on the other
hand, evaluating the results obtained by an article in relation to the parameters used. To perform
this analysis, the Matplotlib (https://matplotlib.org) library in Python was used to make the graphs,
the Numpy (https://numpy.org) and Scipy (https://scipy.org) libraries in Python were used for data
analysis, and the PyMeta (https://pymeta.com) website based on the PythonMeta package in Python
was used in the meta-analysis.

3. Results

3.1. Eligibility According to PRISMA Flow Diagram

The PRISMA diagram shown in Figure 1 reflects the methodology that was carried out together
with the results obtained in each of the steps described below. Initially, the search process in the
databases provided us with 230 results (49 from Web of Science, 29 from PUBMED, 84 from Scopus, 25
from MEDLINE, 3 from CINAHL and 40 from Science Direct), 65 of which were duplicates, and thus,
were eliminated as a first step within the screening process, getting 165 results. The studies not
cataloged as research articles were rejected (that is, 36 proceedings and conference articles, 17 book
chapters, and 4 posters and editorials) as not being peer reviewed, as described in the methods section.
As a consequence, 57 studies were removed in this step, leaving a total of 108 articles, which were
submitted to the eligibility process. The inclusion and exclusion criteria described were applied. As a
result of this phase, 9 articles were excluded for not using ML techniques, 24 articles did not focus their
study on PD, 27 articles did not use EEG recordings, 3 articles considered animal studies, 1 article had
pharmacological interventions, 24 articles were reviews with a different purpose, 3 articles performed
studies on sleep EEG recordings, 6 articles were based on EEG changes evoked by exogenous stimuli
and 2 articles had incomplete descriptions of the methodology used. The sum of all these types of
articles resulted in a total of 99 exclusions, leaving us with 9 research articles that were included in
this review.

3.2. Analysis of the Quality of the Articles

To evaluate the quality of the publications obtained for the review, the items of the checklist shown
in Table 1 were considered to compare the content of the publications. The first evaluator provided an
average value of 9.56 ± 1.89 out of 12 for the 9 articles, whereas the second evaluator determined an
average assessment of 8.89 ± 1.97 out of 12. To assess the concordance on the evaluations, the kappa

https://matplotlib.org
https://numpy.org
https://scipy.org
https://pymeta.com
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(κ) value was calculated, which takes into account the effect of chance on the observed agreement,
obtaining a value of κ = 0.67. This result indicates a moderate-high level of agreement between the
evaluators. To facilitate the analysis on the fulfillment of the checklist items, Figure 2 shows a plot
displaying the number of articles that satisfies each of the items.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 21 

 
Figure 2. Plot of the number of selected articles that satisfy each of the items of the checklist 
introduced in Table 1. 

Regarding the content of the articles selected for this review, Tables 2 and 3 below show a 
summary with their characteristics, from the clinical and computer sciences points of view, 
respectively, providing a qualitative analysis of the checklist items in Table 1. The aspects that were 
extracted included: 1. analysis of the quality of the dataset, through the study of the number of 
patients recruited, the type of EEG recording performed and its parameters. 2. analysis of the pre-
processing of the data, through the EEG cleaning protocol used and the features extracted from the 
EEG, if any. 3. characteristics of the model utilized, specifying if one or more models were used, the 
parameters of the model architecture and the training and validation methods used. Table 3 includes 
an additional column with the most relevant results obtained in each of the articles, allowing the 
analysis of the most representative model parameter pairs for this study. 

 

Figure 2. Plot of the number of selected articles that satisfy each of the items of the checklist introduced
in Table 1.

Regarding the content of the articles selected for this review, Tables 2 and 3 below show a summary
with their characteristics, from the clinical and computer sciences points of view, respectively, providing
a qualitative analysis of the checklist items in Table 1. The aspects that were extracted included:
1. analysis of the quality of the dataset, through the study of the number of patients recruited, the type of
EEG recording performed and its parameters. 2. analysis of the pre-processing of the data, through the
EEG cleaning protocol used and the features extracted from the EEG, if any. 3. characteristics of the
model utilized, specifying if one or more models were used, the parameters of the model architecture
and the training and validation methods used. Table 3 includes an additional column with the most
relevant results obtained in each of the articles, allowing the analysis of the most representative model
parameter pairs for this study.

The information summarized in Tables 2 and 3 facilitates the comparison between the different
articles and the properties of the studies carried out in each of them. Regarding the objective of the
selected articles, eight of them studied classification problems, which seek for the diagnosis of PD
by distinguishing between patients with PD and healthy patients or controls. The remaining article
classified the degree of cognitive decline of PD.

The balance between the number of patients with PD and controls is crucial when using ML
techniques, because unbalanced data can lead to errors in prediction. It can be verified that this was a
common practice in the reviewed articles, since seven of the eight articles that classified PD considered
a balanced dataset. Regarding the number of patients included in the studies, it should be noted that
studies with less than 50 patients in each category predominated, with an average value of 28.20 ± 11.53
for the group of patients with PD and an average value of 27.20 ± 7.83 for the controls. The articles did
not indicate whether the number of patients was adequate for the classification problem. Moreover,
although the average value of the age of both groups was not specified in all the articles, it was a
general practice in all of them to take patients with PD aged between 45 and 70 years, with a mean
value oscillating around 60 years, which corresponds to the age of incidence of the disease. On the
other hand, the healthy patients, or controls, were chosen so that they exhibited the same demographic
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characteristics as the group of patients with PD. It is worth noting that only four of the selected articles
indicated whether the patients had taken their dose of levodopa (three studies performed the EEG in
ON state, one in OFF state).

Regarding the degree of the progression of the disease, a general lack of data can be noticed
according to the information summarized in Table 2. Only six articles specified the status of the patients
according to the Hoehn–Yahr (HY) scale, four of them considered HY: 1–3, and two of them only
considered patients in early stages of the disease (HY 1 and 1.5). None of them included patients in the
most advanced phases of the disease, which may be a limitation to evaluate the ability of the results to
be extrapolated or evaluate the disease progression. Similarly, only three articles showed the state
of the patients according to the UPDRS, with an average value of 34.43 ± 6.43. The duration of the
disease was specified in four articles, with an average value of 6.38 ± 1.35 years.

With respect to the parameters of the EEG recording, one may notice that the number of EEG
channels varied among the different studies. An EEG recording with a high density of electrodes
(greater than 100) was used in two articles, whereas a low density of electrodes (fewer or equal than
20) was considered in five articles with an average value of 16.2 ± 2.72 electrodes. The remaining
two articles used EEG recordings with only two channels, which they considered a technique that
combined both EEG and EMG. It should be remarked that these articles were related to the same
study, carried out by the same research group. The EEG recording time was also variable between the
articles, showing heterogeneous values again. The test mostly performed with a duration of 5 min,
which appeared in four articles.

Regarding the pre-processing, it is possible to distinguish between the EEG cleaning protocol
(shown in Table 2), and the feature extraction from the dataset (shown in Table 3). The EEG
pre-processing, or EEG cleaning, varied from one article to another, mainly due to the lack of a
standard EEG cleaning protocol. This makes it difficult to assess the quality of the dataset. In particular,
three of the articles performed the EEG pre-processing by removing signal artifacts, three articles
minimized the signal noise through the filters, and the remaining three articles did not specify the
cleaning process, which leads us to think that no alteration in the EEG signals was carried out. On the
other hand, associated with the dataset pre-processing for the input of the model, it should be remarked
that the features extracted from EEG signals were very different in between the articles. However, all of
them were extracted from the frequency spectrum, and there was only one article in which no data
pre-processing was performed.

Regarding the ML models, as shown in Table 3, the nine selected articles made use of a total of 11
different ML techniques in order to carry out the classification problems to distinguish patients with PD
and controls. The number of techniques exceeds the number of articles due to the fact that, whereas in
five articles, a unique model was considered, in the remaining four articles, different techniques were
compared. Concerning the type of processing, it is worth noting that the models associated with a
subsymbolic processing predominated over those related with a symbolic one.

To conclude this analysis of the information summarized in the Tables 2 and 3, it should be
pointed out the great heterogeneity between the articles from the point of view of the model used
and the absence of a baseline that allows the comparison between the different studies, making it
especially difficult to discuss the information displayed in the model parameters and validation
columns. The results obtained in each article will be discussed in the subsequent sections of this review.
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Table 2. Summary of the clinical variables, such as objectives, subjects, EEG recording protocol, EEG cleaning protocol and dataset pre-processing. Acronyms:
QEEG—quantitative electroencephalogram; EEG—electroencephalogram; PD—Parkinson’s disease; HC—healthy controls; LD—levodopa; RBD—REM behavior
disorder; HY—Hoehn–Yahr scale; UPDRS—unified Parkinson’s disease rating scale; EMG—electromyogram; PET—positron emission tomography—ECG
electrocardiogram; EOG—electrooculogram; HOS—higher order spectrum. Here n stands for the number of patients.

Ref. Objective Subjects Sex (F/M) Age Hoehn–Yahr (n) UPDRS Disease Duration EEG Parameters EEG Pre-Processing

[29]

Selection of the best
QEEG characteristics to
identify different levels

of cognitive
impairment in PD.

118 PD with LD
classified into 5

groups according to
the severity of

the disease.
G1: n = 28,
G2: n = 33,
G3: n = 43,
G4: n = 5,
G5: n = 9.

G1 = 8/20
G2 = 9/24
G3 = 16/27
G4 = 3/2
G5 = 0/9

G1 = 60.54 ± 8.75
G2 = 66.09 ± 6.65
G3 = 67.04 ± 7.94
G4 = 73.19 ± 5.29
G5 = 67.56 ± 5.51

G1 = 1.93 ± 0.4
G2 = 2.14 ± 0.55
G3 = 2.21 ± 0.59
G4 = 2.40 ± 0.55
G5 = 2.00 ± 0.97

G1 = 26.00 ± 11.73
G2 = 29.55 ± 12.22
G3 = 28.74 ± 11.44
G4 = 31.00 ± 12.79
G5 = 29.00 ± 18.87

G1 = 7.75 ± 5.29
G2 = 8.36 ± 7.49
G3 = 8.81 ± 5.02
G4 = 6.60 ± 3.58

G5 = 12.00 ± 6.56

122-channel EEG
recorded during 10 min

in resting state with
512 Hz sampling rate.

Average reference and 0.1–100 Hz
bandwidth filter. Ocular artifacts were

corrected and a 50 Hz filter was applied.
Periods of drowsiness were removed, and

the semi-automatic rejection of artifacts was
performed to eliminate muscle activity.

Each channel was divided into 4 s epochs.
At least 20 segments were

used for the analysis.

[30]

Selection of the QEEG
parameters that best
distinguish between

controls and PD.

50 PD and
41 controls.

PD: 17/33
HC: 20/21

PD: 68.8 ± 7
HC: 71.1 ± 7 Not specified. Not specified. 5.3 ± 5.1

256-channel EEG
recorded during 12 min

in resting state with
eyes closed and 500 Hz

sampling rate.

Three minutes of EEG were constructed
with segments of at least 30 s without

artifacts, and a 0.5–70 Hz filter was applied.
An inverse Hanning window was used to

join segments. It was referenced with
respect to mean and defective channels

were interpolated with the spherical spline
method. “Runica” was used with default

settings to remove further artifacts.

[31]
Classification of

patients vs. controls for
the diagnosis of PD.

20 PD with LD and
20 controls.

All right-handed.

PD: 10/10
HC: 11/9

PD: (45–65)
HC: 58.1 ± 2.95

1: (2)
2: (11)
3: (7)

Not specified. 5.75 ± 3.52

Fourteen-channel EEG
recorded during 5 min
in Resting state with

128 Hz sampling rate.

Epochs of 2 s were segmented and a
threshold technique was applied at ±100 µV.
A sixth order Butterworth band-pass filter
was applied with direct reverse filtering

technique at 1–49 Hz.

[32]

Classification of
patients with RBD and
controls. Some of the

patients with RBD were
eventually diagnosed

with PD and dementia.

118 RBD and 74
controls.

14 RBD became PD.
No direct

patient data.

Not specified. Not specified. Not specified. Not specified. Not specified.

Fourteen-channel EEG
at 256 Hz sampling rate

in resting state with
open-eye periods

followed by
closed-eye periods.

The first EEG of each patient was
considered baseline. A band-pass filter was
passed at 0.3–100 Hz with a notch filter at 60

Hz to minimize the noise from the power
line. It was also filtered at 4–44 Hz.

The signals were referenced to the ears.

[33]

Classification of
patients with PD in the

early stages of the
disease vs. controls.

30 PD and
30 controls. Not specified. PD: (50-70)

HC: (50-70) 1–1.5 Not specified. Not specified.

Two-channel EEG
recorded during 30 min

for the flexion and
extension of the wrist.

Not specified.
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Table 2. Cont.

Ref. Objective Subjects Sex (F/M) Age Hoehn–Yahr (n) UPDRS Disease Duration EEG Parameters EEG Pre-Processing

[34]

Classification of the
patients with PD in the

early stages of the
disease vs. controls

using various
algorithms.

100 PD and
100 controls. Not specified. PD: (50-70)

HC: (50-70) 1–1.5 Not specified. Not specified.

Two-channel EEG
recorded during 30 min

for the flexion and
extension of the wrist.

5–50 Hz band-pass filter was applied.

[35]

Classification of
patients with

neurological diseases
vs. controls to search

for spectral equivalence
between various
neurological and
neuropsychiatric

disorders with
Thalamocortical

dysrhythmia.

31 PD and
264 controls.

PD: 14/17
HC:112/152

PD: 56.62 ± 12.32
HC: 49.51 ± 12.54 1–3 43.44 ± 15.53 Not specified.

Nineteen-channel EEG
recorded during 5 min

in resting state with
eyes closed and

1024 Hz sampling rate.

The data were referenced to the ears, and
the impedances were <5 kΩ at all electrodes

during the recording. High-pass filter at
0.15 Hz and low-pass filter at 200 Hz were
used. Data were resampled at 128 Hz, and

band-pass filtered at 2–44 Hz.
Artifacts were manually removed.

[36]

Classification of PD and
controls to demonstrate

the utility of EEG as
biomarker for PD.

21 PD (18 for DAT
PET) OFF LD

during 12 h and 25
controls (24 for

DAT PET).

PD: 7/14
HC: 9/16

PD: 62.7 ± 7.32
HC: 54.6 ± 10.5 2.07 ± 0.39 PD: 31.00 ± 10.37

HC: 0.83 ± 1.27 Not specified.

Twenty-channel EEG
and 4 additional

channels for ECG,
EMG or EOG.

Two recordings per
patient are recorded

during 5 min in resting
state with eyes closed
and 256 Hz sampling.

Not specified.

[37]

Selection the best
classifier of PD vs.
controls using the

minimum number of
HOS features.

20 PD with LD and
20 Controls.

All right-handed.

PD: 10/10
HC: 11/9

PD: 59.05 ± 5.64
HC: 58.10 ± 2.95

1: (2)
2: (11)
3: (7)

Not specified. 5.75 ± 3.52

Fourteen-channel EEG
recorded during 5 min

in resting state with
eyes closed and 128 Hz

sampling rate.

Threshold technique at 80 µV. Butterworth
sixth-order band-pass filter at 1–49 Hz.

Each channel is separated into 2 s epochs
with 50% overlap.
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Table 3. Summary of the model parameters, such as features extracted, models used, model architecture, training and validation methods, results and metric used for
the articles included in this review. The columns with the references and objectives of the selected articles are included again for the sake of readability. Acronyms:
EEG—electroencephalogram; PD—Parkinson’s disease; FFT—fast Fourier transform; ROI—regions of interest; SVM—support vector machine; KNN—K-nearest
neighbors with k being the number of nearest neighbors considered; LR—logistic regression; LASSO—least absolute shrinkage and selection operator; ROC—receiver
operating characteristic; AUC—area under the curve; CNN—convolutional neural network; RNN—recurrent neural network; LSTM—long-short term memory
network—GRU—gated-recurrent unit—MLP—multilayer perceptron; DT—decision tree; RF—random forest; RBF—radial basis function; EMG—electromyogram;
ANN—artificial neural network; PET —positron emission tomography; DFA—discriminant function analysis; FKNN—fuzzy K-nearest neighbors with m being
the fuzzy strength parameter; NB—naïve Bayes; PNN—probabilistic neural network with σ being the smoothing parameter; PPV—positive predictive value;
NPV—negative predictive value; HOS—higher order spectrum. Here n stands for the number of patients.

Ref. Objective Features Models Model Parameters Training Validation Strategy Metrics Best Result

[29]

Selection of the best
QEEG characteristics to
identify different levels

of cognitive
impairment in PD.

The relative and absolute spectral
power was obtained for each epoch
using a FFT and a 50% overlap for
the Delta, Theta, Alpha and Beta

bands. Moreover, a division into 5
ROI was performed. For each case,

high and low electrode density were
considered. A statistical dependency
study with an analysis of variance
and the selection of characteristics
with Pearson’s correlation method

was carried out.

SVM,
KNN

SVM: Gaussian kernel
KNN: k = 9 and the

Euclidean distance as
a metric.

The dataset is randomly
split into k-fold (for this

case k = 5). k-1-folds
were used to train the

models and the rest fold
was the testing set.

The dataset used for the
k-fold cross-validation

was the set with n = 100.

Two validation strategies.
First: divide the full

dataset into training set
with n = 100 and

validation set with n = 18.
Second: the training set

was used for 5-fold
cross-validation.

Accuracy.

SVM:
Accuracy = 87 ± 3.5

KNN:
Accuracy = 88 ± 2.8

Both were achieved for
the relative power with
low-electrode density.

Groups with few
patients had

worse results.

[30]

Selection of the QEEG
parameters that best
distinguish between

controls and PD.

Ten brain regions were considered
with 79 different measurements. All
of the features were extracted from

the frequency spectrum.

RF,
SVM,
DT,

LR and LR
with LASSO

SVM: Non-linear kernels
such as RBF were used.

A 10-fold cross-validation
was considered and

optimization was carried
out for tuning
parameters.

A 10-fold
cross-validation.

Accuracy,
AUC.

The most significant
models were:

RF:
Accuracy = 78

AUC = 0.8
LR with LASSO:

AUC = 0.76

[31]
Classification of

patients vs. controls for
the diagnosis of PD.

There was no pre-processing of data. CNN

Thirteen layers with 4 1D
convolution layers,

4 max-pooling layers and
3 fully connected layers.

Adam optimizer
(learning rate = 10−4).

Activation function Relu
and the last one Softmax.

Dropout of 0.5.

A 10-fold cross-validation
with 9 parts for training
and 1 for testing; 20% of
the training data were

also used for validation.

Two validation strategies.
First: 10-fold

cross-validation with all
the data.

Second: 20% of the
training data were also

used for validation at the
end of each epoch.

Accuracy,
sensitivity,
specificity.

CNN:
Accuracy = 88.25,
sensitivity = 84.71,
specificity = 91.77
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Table 3. Cont.

Ref. Objective Features Models Model Parameters Training Validation Strategy Metrics Best Result

[32]

Classification of
patients with RBD and
controls. Some of the

patients with RBD were
eventually diagnosed

with PD and dementia.

Several spectrograms per
subject were generated, each of
them of 20 s and artifact-free,

until about 2.5 min per patient
was obtained. The data were
centered and normalized to

unit variance.

CNN,
RNN

CNN: 4 hidden-layer
convolutional net with
pooling. Dropout was
used as regularization,

max-pooling layers and
using a cross-entropy

loss function.
RNN: with LSTM and

GRU, with 3 cells which
32 units each. Dropout

was used.

For training, datasets
were balanced by random
replication preserving the

distribution of
the subjects.

Leave-pair out (LPO)
cross-validation, where
one subject from each

class was left out
for validation.

Accuracy,
AUC.

The results for controls vs.
PD:

CNN:
Accuracy = 79 ± 1
AUC = 0.87 ± 0.1

RNN:
accuracy = 81 ± 1
AUC = 0.87 ± 0.1

In RNN, there was no
difference between LSTM

and GRU.

[33]

Classification of
patients with PD in the

early stages of the
disease vs. controls.

EEG: Shannon entropy,
Lyapunov and inverse

Lyapunov exponent were
calculated.

EMG: power, standard
deviation, root mean square,
variance, waveform length,

modified median, and
mean frequency.

MLP

Back
Propagation was used as

the learning algorithm
and ‘trainlm’ was used as

the training function.
Sigmoid transfer function
was used for the hidden

layer.

The dataset was divided
into: training 70%,
validation 15% and

testing 15%.

Validation with
validation and test sets. Accuracy.

MLP with inputs:
EEG: accuracy = 62
EMG: accuracy = 73

EEG+EMG: accuracy = 98.8

[34]

Classification of
patients with PD in the

early stages of the
disease vs. controls

using various
algorithms.

EEG: Lyapunov and inverse
Lyapunov exponent,

Shannon entropy.
EMG: power, Standard

deviation, root mean square,
variance, waveform length,

modified median, and
mean frequency.

MLP

3 algorithms were tested:
Gradient Descent

algorithms (traingd,
traingdm), Conjugate
Gradient algorithms

(traininscg, traincgp), and
Quasi-Newton

algorithms (trainbfg,
trainlm).

Sigmoid function was
used in the hidden layer.
The number of hidden

neurons was checked for
5, 7, 9,10,20,30.

The dataset was divided
into: training 70%,
validation 15% and

testing 15%.

Validation with
validation and test sets.

Accuracy
RMSE,

R value.

ANN with Trainlm and 10
neurons:

accuracy = 100
RMSE = 4.03 × 10−3

R value = 0.9998
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Table 3. Cont.

Ref. Objective Features Models Model Parameters Training Validation Strategy Metrics Best Result

[35]

Classification of
patients with

neurological diseases
vs. controls to search

for spectral equivalence
between various
neurological and
neuropsychiatric

disorders with
Thalamocortical

dysrhythmia.

The power spectrum was
calculated for each subject and
the five frequency bands (delta,
theta, alpha, beta, and gamma)
were considered for each ROI.

SVM
The default settings were

used as the running
parameters.

A 10-fold cross-validation
was performed on the full
dataset with 90% of the

data for training and 10%
of the data for testing.
The distribution of the

patients was kept.

A 10-fold
cross-validation.

Moreover, controls with
obesity were used to
validate the model.

Accuracy,
TPR,
FPR,
ROC,
MAE,

RMSE.

The results for controls vs.
PD:

accuracy = 94.34 ± 1.81
TPR = 0.93 ± 0.02
FPR = 0.11 ± 0.01
ROC = 0.95 ± 0.02
MAE = 0.07 ± 0.02
RMSE = 0.16 ± 0.02

[36]

Classification of PD and
controls to demonstrate
the utility of EEG as a

biomarker for PD.

Coherence analysis with 2 s
windows with 50% overlap
was carried out. Pearson’s

correlation was calculated to
assess the relationships

between coherence and disease
severity. The relative and

absolute PSD was calculated at
1–40 Hz. Only 14 EEG-based

features were finally used.

DFA

A linear DFA was used to
build the classifier.

The classifier input was
selected by utilizing the
step-wise discriminant

analysis procedure in the
SPSS software package.

Not specified. Cross-validation.

Accuracy,
sensitivity,
Specificity,

PPV (precision),
NPV.

Accuracy = 95.24
sensitivity = 94.74
Specificity = 95.65

PPV = 94.74
NPV = 95.65

An excessive coherence
was observed in the Beta

and Gamma bands for PD.

[37]

Selection the best
classifier of PD vs.
controls using the

minimum number of
HOS features.

For each epoch, a total of 13
HOS characteristics were

calculated. The Student’s t-test
was also obtained to determine

the importance of the
characteristics.

DT,
KNN,

FKNN,
NB,

PNN,
SVM

FKNN: Euclidean
distance, m = 1.24 and

k = 3.
KNN: k = 2 and

Euclidean distance.
PNN: exponential

activation function and
σ = 0.284.

SVM: polynomial kernel
functions of order 2 and 3,
RBF and linear kernels.

The characteristics were
added one by one to each
classifier until maximum

precision is achieved.

A 10-fold
cross-validation.

Accuracy,
sensitivity,
specificity,
precision,
F-score.

The best model was SVM
with RBF kernel:

accuracy = 99.62 ± 0.58
sensitivity = 100 ± 0.0

specificity = 99.25 ± 0.53
precision = 99.38 ± 0.47

F-score = 0.98 ± 0.05



Appl. Sci. 2020, 10, 8662 14 of 21

3.3. Types of Models Considered

One of the most notable characteristics of the selected articles has to do with the variety of models
used. Figure 3 shows a pie chart with the different models and the number of times they were considered
in the articles. These models are: support vector machine (SVM), K-nearest neighbors (KNN), decision
tree (DT), convolutional neural network (CNN), multilayer perceptron (MLP), random forest (RF),
recurrent neural network (RNN), discriminant function analysis (DFA), fuzzy K-nearest neighbors
(FKNN), naïve Bayes (NB) and probabilistic neural network (PNN). It can be noticed from Table 3,
and more specifically from Figure 3, that the number of models used exceeds the number of articles.
This follows, as a consequence of the fact that four of the selected articles compared the results offered
by different models, whereas five of them considered a single model.
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Concerning the type of processing associated to the models, both DT and RF belong to the group
of symbolic models, whereas the remaining ones are subsymbolic. Hence, despite the diversity of the
ML models considered, those whose processing was subsymbolic predominated. As an individual
technique, SVM was the mostly used one, and as it will be seen later, it provided the best results for
classifying patients with PD vs. healthy controls. On the other hand, it is worth emphasizing the
fact that artificial neural networks (ANN) also played an important role in the reviewed articles since
these techniques were used six times through CNN, MLP, RNN and PNN. Note that one of the articles
considered two different models associated with RNN, with LSTM and GRU layers, respectively,
as shown in Table 3, although this has not been taken into account, neither in Figure 3, nor in the
previous computation.

Taking into account that the most used models were SVM and KNN and the most used metric was
accuracy, a comparative study between both models was carried out through a forest plot. To perform
this analysis, it is necessary that several studies use these two models, and only two articles satisfied
this condition [29,37], respectively. Figure 4 shows the meta-analysis with the results of the accuracy of
both models, for the choice of standard mean difference (SMD) for the effect measure, inverse variance
Hedges’ adjusted g for the algorithm, and fixed models for the effect models considered.
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As pointed out before, this plot shows the (standardized) difference of the means of SVM and
KNN data. Thus, it favors the results with smaller values of the accuracy. For instance, in the first
article, the lowest accuracy value was obtained by KNN and in the second article by SVM. Since the
difference between both models is greater in the first article, the confidence interval (CI) is far away
from zero, whereas in the case of the second article, as the values of the means are close to each other,
the CI is close to zero. From the information shown in Figure 4, the difference between the number
of subjects considered in each of the studies and how much the meta-analysis is affected by this fact
become particularly noticeable. It is particularly striking how the sample size influences both the CI
and the weight in each case. Indeed, the larger the number of patients, the smaller the amplitude
of the CI, and the greater the weight. Since none of the confidence intervals crosses the ‘no effect
line’, the difference between the models’ SVM and KNN is statistically significant in both studies.
However, as the overall result, the meta-analysis shows that there is no statistically significant benefit
of choosing one model over the other, since the diamond crosses the ‘no effect line’. One needs to
keep in mind that only two articles are being compared, and that the meta-analysis exhibits a great
heterogeneity, which makes the represented data less conclusive. Hence, more studies considering
both ML models simultaneously are needed to provide a more reliable objective conclusion. Finally,
it is worth emphasizing that, although ML techniques are influenced by the amount of data introduced
to the model, this does not imply that models with more data always give better results, but it is crucial
that the training set is sufficiently large for the study.

3.4. Type of EEG Recording

As can be seen in Table 2, the selected articles considered two types of EEG records. Therefore,
the articles have been divided into two categories based on the EEG tests performed. On the one hand,
the resting state EEG group corresponds to articles [29–32,35–37], for which the EEG was recorded in
the resting state. On the other hand, the motor action EEG group corresponds to articles [33,34] which
recorded the EEG by means of a motor activation test, specifically a wrist extension and flexion test.
For each of these articles, the model considered, the classification results obtained, the characteristics
introduced, and the type of EEG cleaning performed are shown in Table 4.
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Table 4. Summary of the results, features introduced to the models and signal filtering
shown in Tables 2 and 3 for the selected articles. The year of publication of each article
has been added. Acronyms: ANN—artificial neural network; DFA—discriminant function
analysis; EEG—electroencephalogram; EMG—electromyogram; SVM—support vector machine;
KNN—K-nearest neighbors; CNN—convolutional neural network; RNN—recurrent neural network.

Ref Year Accuracy Results Features Artifacts

[29] 2019 84%—SVM and 88%—KNN Relative power low-electrode density Free-artifact

[30] 2017 78%—random forest Selects the most important characteristics Free-artifact

[31] 2018 88.25%—CNN Not considered Noise filter

[32] 2019 79%—CNN and 81%—RNN Spectrogram Noise filter

[33] 2019 EEG—62%, EMG—73%, and both
combined—98.8%

EEG: non-lineal parameters.
EMG: statistical parameters. Not specified

[34] 2019 ANN 100% with the
quasi-Newton algorithm Trainlm

EEG: non-lineal parameters.
EMG: statistical parameters. Not specified

[35] 2018 94.34%—SVM Power spectra of bands and regions Free artifact

[36] 2020 95.24%—DFA Coherence in the beta band Not specified

[37] 2018 99.62%—SVM Features of the higher-order spectra Noise filter

3.4.1. Resting State EEG Group

The resting state EEG group contains seven articles, which considered different measurement
protocols and channels of the EEG recording. Articles [31,37] were based on the same study but using
different features and models, as it can be seen in Table 3. The predominant protocol within this
group consisted of recording the EEG in the eyes closed resting state, which was used in four articles.
On the other hand, the articles exhibited different recording durations, with an average value of
6.37 ± 3.10 min, and a mode of 5 min, which was considered in four of the seven articles of this group.
The number of EEG channels also varied inside the resting group, with a low density of electrodes
prevailing: 71.43% of these articles considered between 14 and 20 electrodes, whereas in the rest the
number of channels exceeded 100 electrodes.

Data pre-processing can be divided into two categories, which are EEG pre-processing or EEG
cleaning, and data pre-processing or EEG feature extraction. Regarding EEG cleaning, it can be
concluded from the summary displayed in Table 4 that there was no standard cleaning protocol,
because the EEG was left free of artifacts in three articles, whereas three of the remaining articles
only performed a pre-processing with filters to reduce the noise in the signals (artifacts were not
eliminated). The protocol was not specified in [36]. On the other hand, regarding the extraction of
features, only in [31] the EEG signal was introduced to make a morphological analysis, whereas in the
remaining articles, different spectral characteristics were calculated.

The results in Table 4 show that both SVM and DFA, considered by articles [35–37], were the
models that provided better classification results (accuracy greater than 90%) for patients with PD vs.
controls. Note that [36] recorded the EEG of patients with PD without Levodopa intake. These articles
introduced different features of the frequency spectrum into the network and performed different EEG
cleaning protocols. On the other hand, [29], which also used SVM, did not classify patients with PD
vs. controls, but studied the disease progression. Thus, the precision obtained for that case is not
comparable with that of the others.

To conclude, in this group, the evaluation of the quality criteria according to the checklist of
Table 1 provided an average value of 10.43 ± 1.05 out of 12 according to the first evaluator and a value
of 9.71 ± 1.28 out of 12 according the second one. The kappa value calculated for the items in this
group was 0.71. It can be appreciated that this value is higher than the one obtained when considering
all the selected articles. This indicates that the evaluators exhibit a greater agreement when restricting
to the articles of the resting state EEG group.
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3.4.2. Motor Action EEG Group

Only two articles performed motor action tests. Actually, they were based on the same study.
Therefore, in both of them, two channels of EEG and EMG were recorded for 30 min, in a test of motor
activation in which the wrist was extended and flexed. The same non-linear parameters were calculated,
although the parameters introduced into the network changed in each article. EEG pre-processing
was not specified. In both cases, ANN was used but for different purposes. In [33], three studies
were made to select the input parameters to the model that provided the best results, whereas in [34],
six different techniques were studied for the same input parameters with the aim of selecting the best
model. Moreover, in [34], the input features were a combination of EEG and EMG coinciding with the
parameters that provided better results in [33]. The summary of the motor group results is shown in
Table 4.

According to the checklist in Table 1, the articles received an assessment of 6.5 ± 0.5 out of 12 by
the first evaluator and 6 ± 1.0 out of 12 by the second one. The kappa value for this group was 0.58.
In this case, it can be appreciated that the resulting kappa value is slightly lower than the ones obtained
for the resting state EEG group and for the global set of articles, which indicates a lower agreement
between the evaluators with respect to previous cases.

4. Discussion

PD is a disease mainly characterized by motor dysfunctions which affects the quality of life of
patients. The application of ML techniques in EEG may be able to identify diagnostic and progression
markers with the potential to be applied in the clinical setting through a simple quick-to-perform test,
with a low error rate and at low cost and invasiveness. It can be observed that the oldest article of the
nine selected in this review was just three years old, and the number of articles has increased in the
following years, showing the novelty and growing development of ML techniques applied in EEG in
relation to PD. On the other hand, regarding the global distribution of the selected articles, it can be
appreciated that, according to the first affiliation country of the first author, although Asia stands out
as the continent with the highest number of publications, the distribution is relatively homogeneous
between the continents of Asia, Europe and North America, reflecting a global interest in encompassing
the objectives of this review.

To assess the quality of the selected articles and facilitate the comparison between them, the content
of each article was evaluated using the checklist of the guidelines for developing and reporting machine
learning predictive models in biomedical research [28]. This evaluation was carried out by two different
evaluators and obtained an average value of 9.56 ± 1.89 out of 12, and 8.89 ± 1.97 out of 12, respectively,
which indicates the good quality of the included articles. The kappa value among the two independent
reviewers was calculated, obtaining a value of 0.67, which indicates a substantial agreement between
the evaluations. Both evaluators agree that the less fulfilled items were 11 and 12, which are related to
the limitations of the model and the unexpected results, respectively. The fact that most of the articles
did not include this kind of analysis may be due to the fact that sometimes the scope or limitations
were unknown at the time of publication and they only became evident over the years and with the
development of new algorithms.

Among the different clinical variables studied by the articles, it becomes apparent that a lack
of clinical parameters was associated to the state of the PD. As it can be noticed from Table 2,
variables like the degree of disease progression according to the HY scale, the state of the disease
according to the UPDRS, and the years of duration of the disease, were not provided by all the articles.
The lack of information about these variables can influence the classification results and lead to false
positives/negatives. For instance, if a binary classification network (Parkinson vs. no Parkinson) is
trained with patients in advanced stages of the disease, it may be the case that the model misclassifies
a patient with PD in the early stage of the disease. It would be interesting to further evaluate these
data, since a classifier may work differently with patients in different phases of the disease. Actually,
it should be noted that only [29] did a study classifying the degree of progression of the disease,
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in which the groups with more advanced stage patients obtained worse results in the classification,
nevertheless, these groups were the smaller ones (less than 10 subjects) meanwhile the rest of the
stages with better results had more than 20 subjects. ML techniques require a large enough dataset to
work properly, so these results suggest that small groups of patients are not sufficient for the model
used in that study (SVM). Furthermore, we did not find information in all the articles regarding the
medication taken by the subjects, despite the fact that dopaminergic drugs are known to influence the
EEG characteristics and therefore vary the classification results. Finally, on the side of the ML models,
the information incorporated in the articles is more abundant and homogeneous. However, it stands
out that the absence of metrics associated to the area of medicine and the clinical setting, such as
sensitivity, specificity, true positives, etc. The lack of both these metrics and information concerning the
state of the patient lead us to think about the necessity for new translational studies that incorporate
these variables.

Regarding the quality of the EEG signals, it is conditioned both by the EEG recording parameters
and by the EEG acquisition protocol. Within the recording of the EEG signals, although the number
of electrodes and the duration of the EEG test vary among articles, they do not affect the quality but
rather the spatial resolution of the EEG signal, which is outside the scope of this review. Nevertheless,
although the number of electrodes does not affect the quality of the signal, a high density of electrodes
may benefit the study of some neurological diseases with a widespread pattern of involvement in
the brain. Furthermore, there are parameters of the EEG recording, such as the sampling frequency,
that can affect the result obtained from the variables calculated from the EEG, and therefore can
influence the quality of the study. Finally, since PD is characterized by motor dysfunctions, it is striking
that the resting state tests predominated over the tests associated with motor activation, such as the
finger tapping test or the wrist extension and flexion test, which were only considered only in two of
the selected studies. This may be caused by the influence of the abundant publications available of
neuroimaging studies on the resting state in neurological diseases as PD.

In the articles of this review, two types of data pre-processing were evaluated, which are the
cleaning of the EEG and the extraction of EEG characteristics. As can be seen in Table 2, there was no
standard cleaning protocol for the EEG. This makes it difficult to perform an evaluation of the dataset,
since it is not possible to evaluate the loss of elements in the EEG and how these affect the results of the
classification problem. As shown in Table 3, there was also a great heterogeneity in the features that
were extracted from the EEG. However, it should be noted that spectral characteristics predominated.
This may be due to the fact that the spectral features provide information on variations in the EEG
bands, and alterations in these bands provide more clinical information than a morphological analysis
of the signal, especially in Parkinson’s disease, where visual alterations in the EEG signals of patients
with PD are not observed.

To evaluate how the extraction of features affects the accuracy of the model, we must take into
account the architecture of the ML model used. ML techniques allow the analysis of large amounts of
data, as well as the extraction of essential characteristics from them. Hence, the choice of the model
is influenced both by the size of the dataset and the nature of the data. In the case of this review,
the dataset of the selected articles was composed of EEG, and the subsymbolic models are precisely
those designed to estimate relationships among data. For this reason, one may expect the subsymbolic
models to be the most used ones. This was confirmed by the summary shown in Table 3 and more
specifically, by Figure 3. Furthermore, in both of them, it can be appreciated that the most widely
used techniques, within subsymbolic processing, were those classified as ANN, i.e., CNN, MLP, RNN
and PNN. However, these techniques require a large amount of data for their training, and since in
the medical field it is more difficult to obtain data to constitute the dataset, this may justify that the
most used individual model was SVM. It is worth emphasizing that ML techniques are continuously
growing, and given the novelty of this field of study, there is still a lack of applications for the most
complex and novel techniques (like CNN and RNN), which have only been considered in a small
number of studies.
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To conclude, let us discuss how the extracted features and the cleaning protocol may influence
the classification results of the computational models. As can be seen in Table 4, when comparing
the articles [35,37], both used SVM with results of an accuracy of 94.34 and 99.62%, respectively.
Furthermore, in both of them, different spectral characteristics were introduced and they both
considered different EEG cleaning protocols, with [37] being the one that obtained the highest precision
by performing less EEG processing. This could lead us to think that EEG processing may be unnecessary
when using ML techniques. On the other hand, when comparing the articles [31,32], it can be seen that
both used CNN with accuracies of 88.25 and 79%, respectively. Moreover, Table 4 shows that [31,32]
carried out similar EEG processing whereas they introduced different features into the models.
Furthermore, they considered a different model architecture, the one that obtained the best results
being the most complex model. This could indicate that both the parameters that define the model
and the characteristics introduced are decisive for obtaining a better performance in the classification
problem. The combination of these factors can be appreciated in articles [33,34], since [33] studied
the changes in precision when varying the input parameters of the network, whereas [34] analyzed
the changes in precision by varying the model parameters. In both cases, very different values were
obtained in the PD classification results, which indicates that both the extraction of features and the
model parameters are decisive for the study of PD through ML techniques for the analysis of EEG.
Hence, the search for a balance between both parameters becomes essential for the development of a
precise model that classifies PD.

5. Conclusions

Machine learning techniques play a fundamental role in data analysis, allowing one to obtain
patterns and relationships between different classes automatically and efficiently. These techniques are
increasingly being applied to EEG analysis, facilitating the use of this low-cost clinical test to detect or
extract information on various neurological diseases. Despite the limited number of articles found,
it can be noticed that the studies using the resting state tests to classify PD predominate, emphasizing a
lack of studies using motor activation tests as well as studies focused on the progression of the disease.
There is a great heterogeneity in the data provided by the articles, with a lack of clinical variables
such as the use of medication during the recordings and the stage of the disease. In general, the size
of the datasets considered in the studies is relatively small compared to the one usually found in
the ML literature. However, the selected articles exhibited good results in the classification problem,
with values higher than 90% in various studies. A further analysis of the models considered in these
articles indicated that both the features introduced into the model and its architecture were essential for
a good performance in predicting the classification. On the contrary, the cleaning protocol of the EEG,
which was highly heterogeneous among the different studies, did not influence the results, and thus it
could be omitted. Since this cleaning process is usually carried out manually, omitting it would benefit
the development of an efficient and fast automatic prediction model. Finally, it should be emphasized
that ML techniques have experienced significant growth in recent years, incorporating more complex
models, and thus, this review and the conclusions obtained herein should be considered as a first step
in the analysis of the role played by ML techniques and EEG in the study of PD.
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