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Abstract: Brain–computer interface (BCI) systems communicate the human brain and computers
by converting electrical activity into commands to use external devices. Such kind of system
has become an alternative for interaction with the environment for people suffering from motor
disabilities through the motor imagery (MI) paradigm. Despite being the most widespread,
electroencephalography (EEG)-based MI systems are highly sensitive to noise and artifacts. Further,
spatially close brain activity sources and variability among subjects hampers the system performance.
This work proposes a methodology for the classification of EEG signals, termed Multiple Kernel Stein
Spatial Patterns (MKSSP) dealing with noise, raveled brain activity, and subject variability issues.
Firstly, a bank of bandpass filters decomposes brain activity into spectrally independent multichannel
signals. Then, Multi-Kernel Stein Spatial Patterns (MKSSP) maps each signal into low-dimensional
covariance matrices preserving the nonlinear channel relationships. The Stein kernel provides a
parameterized similarity metric for covariance matrices that belong to a Riemannian manifold. Lastly,
the multiple kernel learning assembles the similarities from each spectral decomposition into a single
kernel matrix that feeds the classifier. Experimental evaluations in the well-known four-class MI
dataset 2a BCI competition IV proves that the methodology significantly improves state-of-the-art
approaches. Further, the proposal is interpretable in terms of data distribution, spectral relevance,
and spatial patterns. Such interpretability demonstrates that MKSSP encodes features from different
spectral bands into a single representation improving the discrimination of mental tasks.

Keywords: brain–computer interface; motor imagery; electroencephalography; multiple kernel learning

1. Introduction

Brain–computer interfaces (BCI) are systems that aim to establish a direct connection between the
human brain and a computer. These systems can convert specific patterns of brain electrical activity
from electroencephalographic (EEG) signals into commands to control external devices, allowing direct
interaction with the environment [1]. Thanks to the provided alternative means of mobility and
communication, BCI systems become especially useful in people suffering from motor disabilities
such as amyotrophic lateral sclerosis, cerebral strokes, and paralysis, [2,3]. In particular, the motor
imagery (MI) paradigm takes advantage of the mental simulation of actions without physical execution
to capture electrical activity patterns from the sensory-motor cortex [4]. BCI systems translate the
MI-associated task pattern from electroencephalography (EEG) into control commands.

Despite the potential of EEG-based systems, the background noise, muscle artifacts,
head movements, and blinks largely detriment its performance, which constrains its introduction into
real-world applications [5,6]. One way to deal with the above issues comprises the design of robust
feature sets. Among the wide variety of feature extraction approaches, the Common Spatial Patterns
(CSP) stands out for capturing the MI activity within the EEG. CSP projects signals from two classes
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into a space with maximum variance for one class and minimum for the other, providing discriminant
features [7]. In this sense, the relative power in the CSP space, computed from the channel-wise
covariance matrix, characterizes a band-passed multichannel EEG trial. Nonetheless, the interclass
variability within subjects hampers the system effectiveness for MI applications [8].

As an initial solution, multiple CSP-based variants optimize the spectral filtering for yielding
discriminative features under varying conditions. For instance, the Common Spatio-Spectral Patterns
(CSSP) approach enhances a finite impulse response (FIR) filter by incorporating a time delay for
filtering to improve CSP performance proposed [9]. The Common Sparse Spectral-Spatial Patterns
modified the CSSP by simultaneously tuning the FIR and CSP filters [10]. Later, Novi et al. introduced
the CSP features from multiple sub-bands for EEG classification with a score fusion strategy [11].
In the same approach, the Filter-Bank CSP (FBCSP) exploited the potential correlation between CSP
characteristics extracted from different bands to improve the signal discrimination [8]. In general,
filter-banked feature extraction approaches outperform conventional multichannel time-series
representations, including traditional CSP, in supervised learning schemes [12]. Nonetheless,
spectral variants of CSP hardly decode MI tasks that activate spatially close regions, no matter the
frequency differences [13].

A different solution decodes the trial variability through Riemannian manifolds composed of
Symmetric Positive Definite (SPD) matrices, i.e., trial covariance estimations. Due to preserving the
geometric structure and behaving like a matrix Hilbert space, the Riemannian manifolds devote
conventional pattern recognition machines to time-series classification [14]. However, the covariance
matrices as features suffer from the curse of dimensionality, since the usual matrix dimensions compare
to the number of training samples [15]. For coping with high-dimensionality, various approaches
map data from the Riemannian manifold into lower-dimensional vector spaces. For instance,
the extension of three nonlinear dimension reduction (DR) approaches, namely, Local Linear
Embedding (LLE), Hessian LLE, and Laplacian Eigenmaps, to the Riemannian geometry allowed the
motion and image segmentation from a clustering point of view [16]. Nonetheless, such nonlinear DR
algorithms lack a parametric mapping to the low-dimensional space, depending on an interpolation
stage [17]. In addition, Principal Geodesic Analysis (PGA) emerges as a principal component analysis
generalization for Riemannian manifolds by finding a tangent space with maximized variance [18].
Two subsequent tangent space approaches introduce kernel-based mappings [16,19]. However, tangent
space projections distort data structure, with larger distortions at regions far from the space origin [20].
Another DR alternative maps from high to low-dimensional manifolds, where the resulting output
manifold serves as input for existing SPD-based algorithms [15]. As an example, a linear mapping takes
advantage of provided labels to maximize the geodesic distance among samples from different classes
while minimizing distances among equally-labeled samples [17]. Despite favoring the supervised
tasks, the linear combination of distances as a cost function underperforms at inherently nonlinear
distributed classes.

For dealing with the above issues, this work proposes a methodology for the classification of SPD
matrices with three main contributions: firstly, we introduce a dimension reduction for SPD matrices.
Contrarily to other approaches, the approach uses the provided labels to learn the mapping that
not only preserves the data structure but also favors the class discrimination thanks to a supervised
learning scheme. Secondly, we propose two kernel mappings to decode the nonlinear relationships
that enhance the separability of classes at the component level, namely, the Stein kernel devoted to
SPD matrices, and the linear combination of kernel functions unifying the knowledge from different
spectral bands.

The methodology, termed Multi-Kernel Stein Spatial Patterns (MKSSP), includes a spectral
decomposition, spatial filtering, and supervised kernel learning stages to enhance the discrimination
of multichannel EEG signals. Firstly, a bank of bandpass filters decomposes the multichannel signals,
from which MKSSP computes the covariance matrices. Then, the spatial filtering projects the band-wise
covariances into smaller-dimensional Riemannian manifolds by maximizing a supervised kernel-based
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cost function. The Jensen-Bregman LogDet Divergence, devoted to SPD matrices, parameterizes the
considered kernel pair-wise comparing EEG trial at each band. Finally, a multiple-kernel yields a
single similarity measure that feeds a classifier. The centered kernel alignment (CKA) works as the
cost function for training the dimension reduction and the multikernel. We tested our methodology
in the Dataset IIa of the BCI Competition IV, outperforming the state of the art in the four task MI
classification for most of the subjects and achieving significant improvements for the ones with usual
low-performance scores.

Aiming to gain insight into the methodology benefits, we analyze the methodology from four
perspectives. The data analysis evidences the class separation. The noise sensitivity validates the
robustness and class unbiasing. The spectral and spatial points of view explain the subject variability
and model interpretability, respectively.

The paper outline is as follows. Section 2 describes the EEG decomposition, the time-series
similarity through the Stein kernel, the proposed spatial filter optimization and multiple kernel
learning based on CKA. Section 3 presents the evaluation setup for the proposed MKSSP. Section 4
describes the classification results, the comparison with other methods, and the model interpretability.
Lastly, Section 5 concludes the manuscript discussing the main findings.

2. Methods

2.1. EEG Decomposition

Let a set of N labeled multichannel EEG time series (trials), acquired from a single subject
X=

{
xn(t) ∈ RC, yn ∈ L

}N
n=1 , where C stands for the number of channels, t ∈ [1, T] indexes the time

instants, and yn labels the n-th time series xn(t). L defines the set of possible classes, usually related to
mental states.

To take advantage of the spectral content of the EEG signals, each trial is band-passed through
a set of B filters, achieving the filter-banked time series representation of EEG data described in
Equation (1):

XB=
{

xnb(t) = [xnc(t) ∗ hb(t)]Cc=1, b ∈ [1, B]
}N

n=1
(1)

where xnc(t) ∈ R stands for the c-th channel from the n-th trial, hb(t) ∈ R corresponds to the impulse
response of the b-th linear phase FIR filter, and ∗ denotes the convolution operator. Afterwards,
a band-wise spatial filtering linearly mixes the input channels into components at each time instant
resulting in a new set of band-filtered time series as follows:

XW=
{

znb(t) = W>
b xnb(t) : b ∈ [1, B]

}N

n=1
(2)

with Wb ∈ RC×Q as the linearly mixing matrix of spatial filters for the band b, and znb(t) ∈ RQ stands
for the spatially-filtered trial with Q components.

2.2. Time-Series Similarity through the Stein Kernel for PSD Matrices

Since each trial in the component space is band-pass filtered, the expected value of znb(t)
becomes zero. Hence, the band-wise covariance is computed as

Snb =znb(t)znb(t)> (3)

Snb =W>
b xnb(t)xnb(t)>Wb (4)

with Snb ∈ RQ×Q. The set of covariance matrices from the dataset X holds the linear relationships
between component pairs:

S=
{

Snb = W>
b ΣnbWb : b ∈ [1, B]

}N

n=1
(5)



Appl. Sci. 2020, 10, 8628 4 of 16

being Σnb = xnb(t)xnb(t)> ∈ RC×C the trial covariance for the b-th band in the input channel space.
Given that each matrix in the set S satisfies that 〈 A, Snb A〉 ≤ 0 for any A 6= 0, then Snb ∈ S is positive
semidefinite (PSD). As a set of PSD matrices, S belongs to the Riemannian manifold PQ, which is
differentiable and a canonical higher-rank symmetric space within the real symmetric matrix space
SQ [21]. Therefore, there exists a PSD matrix representing each time-series in a Hilbert space of matrices
endowed with a metric allowing to compare two trials.

For such a manifold, the Jensen-Bregman divergence δF(Snb, Smb) ∈ R+ measures the disimilarity
between two matrix elements Snb and Smb as:

δ(Snb, Smb) =
BF(Snb, S̄b) + BF(S̄b, Smb)

2
(6)

BF(Snb, Smb) = F(Snb)− F(Smb)− 〈Snb − Smb,∇F(Smb)〉F (7)

S̄b =
Snb + Smb

2
(8)

where ∇F denotes the gradient of the strictly convex and differentiable function F(·), 〈A, B〉F =

tr
(

A>B
)

the Frobenius inner product in the PSD matrix space, and tr (·) the trace operator. Equation (7)
defines the Bregman divergence as the positive tail of the first-order Taylor expansion of F(·). Then,
Equation (6) corresponds to the symmetrized version of BF and holds the properties of a distance
function in PQ [22]. In particular, using as the convex function F(Snb) = − log |Snb| yields the
Jensen-Bregman LogDet divergence defined in Equation (9), with | · | as the determinant operator.

D(Snb, Smb) = log
∣∣∣∣Snb + Smb

2

∣∣∣∣− log |SnbSmb|
2

(9)

Moreover, Equation (9) is invariant to affine transformations, that is, the LogDet divergence at the
component space is the same in the channel space if the number of components equals the number of
channels (Q = C). The following procedure proves the affine-invariance, assuming W ∈ RC×C square:

D(Snb, Smb) = log
∣∣∣∣Snb + Smb

2

∣∣∣∣− log |SnbSmb|
2

D(Snb, Smb) = log

∣∣∣∣∣W>ΣnbW + W>ΣmbW
2

∣∣∣∣∣− log
∣∣W>ΣnbWW>ΣmbW

∣∣
2

D(Snb, Smb) = log
∣∣∣∣W>Σnb + Σmb

2
W
∣∣∣∣− log

∣∣W>ΣnbW
∣∣

2
−

log
∣∣W>ΣmbW

∣∣
2

D(Snb, Smb) = log
∣∣∣W>

∣∣∣+ log
∣∣∣∣Σnb + Σmb

2

∣∣∣∣+ log |W |

−
log
∣∣W>∣∣
2

− log |Σnb|
2

− log |W |
2

−
log
∣∣W>∣∣
2

− log |Σmb|
2

− log |W |
2

D(Snb, Smb) = log
∣∣∣∣Σnb + Σmb

2

∣∣∣∣− log |ΣnbΣmb|
2

D(Snb, Smb) = D(Σnb, Σmb) (10)

Thanks to the distance property in Equation (6), the LogDet divergence parameterizes a radial
basis function to build a similarity measure between two trials in XW through their corresponding
covariances in the component space, that is:

k(xnb(t), xmb(t)|Wb) = e−γbD(Snb ,Smb |Wb) (11)
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being γb ∈ R+ the scale parameter for the kernel from the b-th frequency band. Equation (11) is known
as the Stein kernel for PSD matrices. Since the linear mapping Wb determines the component space
and the Stein kernel is affine-invariant, tuning of Wb demands an optimization procedure for Q < C to
enhance class separability at each band.

2.3. Spatial Filter Optimization Using Centered Kernel Alignment

Given the kernel function in Equation (11) and the vector of target labels y = {yn}N
n=1,

optimization of Wb is carried out by minimizing the negative logarithm of the Centered Kernel
Alignment (CKA) cost function, assessing the similarity between two random variables through the
inner product of their representing kernel matrices as defined by Equation (12).

L(Xb, y|Wb) = − log

〈
Kb(Wb), Ky

〉
F

||Kb(Wb)||F||Ky||F
(12)

where kernel matrices Kb ∈ RN×N , with elements knm = k(xnb(t), xmb(t)|Wb), and Ky = {δ(yn, ym) :
n, m = [1, N]} ∈ {0, 1}N×N hold every pair-wise trial similarity in the component Riemmanian
manifold and in the label space, respectively. ||A||F =

√
〈A, A〉F corresponds to the Frobenius norm

and δ(·, ·) denotes the delta Dirac function. K stands for the centered kernel matrix asociated to K
and computed as in Equation (13), being UN the centering matrix, IN the N-order identity matrix,
and 1N an all ones column vector. The centering operation translates all samples in the Hilbert space
reproduced by the kernel k(·, ·) near the convex hull of the samples, so coping with ill-conditioning
due to biased pair-wise inner products [23].

K = UNKUN (13)

UN = IN −
1
N

1N1>N (14)

Aiming at minimizing the negative logarithm CKA between Kb and the label matrix Ky,
we consider a stochastic gradient descent approach with respect to spatial filter matrix Wb. Using the
chain rule, the gradient of the cost function w.r.t. Wb is expressed as:

∇L(Wb) =
N

∑
n=1

N

∑
m=1

∂L
∂knm

∂knm

∂Dnm

∂Dnm

∂Wb
(15)

∂L
∂Kb

= −
Ky〈

Kb, Ky
〉

F
+ 2

Kb〈
Kb, Kb

〉
F

(16)

∂knm

∂Dnm
= −βe−γbD(Snb ,Smb |Wb) = −γbknm (17)

∂Dnm

∂Wb
= ΣnbWb[2(W

>
b (Σnb + Σmb)Wb)

−1 − (W>
b ΣnbWb)

−1] (18)

+ ΣmbWb[2(W
>
b (Σnb + Σmb)Wb)

−1 − (W>
b ΣmbWb)

−1]

Therefore, maximizing the alignment between samples and their label kernels yields a matrix Wb
rotating the channel data so that the Riemmanian space of component covariances better discriminates
the given classes in the frequency band b.

2.4. Assembling of Multiple Kernel Representations

Given the kernel function in Equation (11) providing a metric for a frequency band, the knowledge
from each band can be merged into a single metric using a multiple kernel learning (MKL) approach.
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For the set of matrices {Kb ∈ RN×N}B
b=1, the linear combination in Equation (19) corresponds to a

weighted concatenation of the Hilbert space features reproduced by each kernel [24].

Kµ =
B

∑
b=1

µbKb (19)

kµ(xn(t), xm(t)) =
B

∑
b=1

µbk(xnb(t), xmb(t)|Wb) (20)

Aiming to preserve the positive definiteness of a kernel function, the vector of weights
µ = {µb}B

b=1 must belong to subset of positive one-valued norm vectors, that is, µ ∈ {µ ∈ RB :
||µ||2 = 1, µ ≥ 0}. Finding the optimal µ is posed as the maximization of the CKA cost between the
kernel matrices Kµ = {kµ(xn(t), xm(t))}N

nm=1 and Ky while constraining the weight values as follows:

max
µ∈RB

〈
Kµ, Ky

〉
F

||Kµ||F||Ky||F
(21)

s.t.||µ||2 = 1

µ ≥ 0

The optimization problem in Equation (21) is rewritten as a straightforward quadratic optimization
problem with linear constraints [24]:

min
ν∈RB

ν>Mν− 2ν>a (22)

s.t.ν ≥ 0

where vector a =
{〈

Kb, Ky
〉

F

}B
b=1 ∈ RB and matrix M =

{〈
Kb, Kb′

〉
F

}B
bb′=1 ∈ RB×B account for

the alignment with the supervised information and between the input kernels, respectively. Lastly,
the solution weighting vector is achieved by normalizing ν as:

µ =
ν

||ν||2
(23)

Therefore, the weights given by Equation (23) rank each frequency band according its similarity
with the provided labels, so that the smaller the value, the leaser the contribution to build the kernel in
Equation (19). Further, the introduced MKL gathers the band-wise covariance matrices from different
Riemannian manifolds into a single supervised reproduced kernel Hilbert space favoring separability
of mental states.

3. Experimental Setup

3.1. Dataset IIa from BCI Competition IV (BCICIV2a)

To test our proposal, we use the dataset IIa of the BCI Competition IV, provided by the BCI
Laboratory at the Graz University of Technology (http://www.bbci.de/competition/iv/). The dataset
BCICIV2a comprises EEG trials from nine subjects while executing four motor imagery tasks, namely,
left hand, right hand, foot, and tongue. The participants imagined each movement 72 times following
a visual cue, resulting in N = 288 trials. For each trial, twenty-two EEG electrodes (C = 22) distributed
over the scalp (as seen in Figure 1a) recorded the brain activity at a sampling frequency of 250 Hz
during six seconds. The trial started with an auditory signal, followed by a black fixation cross,
that warned the subject for the upcoming cue. An arrow pointing towards the movement during 1.25 s
indicated the task to perform. The trial ended four seconds after the fixation cross disappeared as
Figure 1b shows. A break period of about 1.5 s allows the participant to rest before starting the next

http://www.bbci.de/competition/iv/
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trial. Taking into account the cue onset and the short-lasting imagined movement, the methodology
classifies each recording only using the period between 2.5 and 4.5 s, that is, T = 500 samples.

Fz

FC3 FC1 FCz FC2 FC4

C5
C3 C1 Cz C2 C4 C6

CPz CP2 CP4CP1
CP3

P1 Pz P2

POz

(a) (b)

Figure 1. BCI competition IV acquisition setup. (a) EEG montage. (b) Paradigm time scheme.

3.2. Proposed BCI Methodology

Figure 2 illustrates the five stages of the proposed EEG classification methodology for BCI. Firstly,
B = 17 band-pass filters decompose each trial using five-ordered Butterworth filters of 4 Hz bandwidth
and overlapping 2 Hz within [4,40] Hz [25]. Secondly, the spatial filters, optimized in Section 2.3,
project the band-wise covariance matrix into the lower-dimensional Riemannian manifold PQ. Thirdly,
the Stein kernel assesses the similarity between the projected test and training covariances, relying on
Equation (11). Further, the multikernel linearly combines the 17 similarities for a test trial into a single
kernel value. Lastly, a support vector machine, fed by the learned kernel, labels the recordings into
one of the four classes according to a one-vs-one scheme.

EEG

1

B

Covariance Matrices

1

B

EEG decomposition

N1

11

NB

1B

MKL

SVM

K1

KB

Figure 2. Proposed EEG classification methodology based on filter-banked Stein-kernel trial similarities.

The proposed methodology contains three sets of parameters, namely, the band-wise spatial
filters, the kernel bandwidth, and the kernel mixing weights. For the former two, the gradient descent
algorithm, updating the parameter according to Equation (18), finds the channel-to-component space
projections and gamma values enhancing class separability at each band. For the latter, the solution
to the quadratic programming problem in Equation (22) defines the contribution of each spectral
component to the supervised discrimination task. Besides, the single hyperparameter of the proposal
corresponds to Q, defining the number of columns for matrices Wb, that is, the number of spatial
filters. A cross-validated grid-search approach fixes the optimal Q by maximizing the classification
performance within the range [2, 10]. Specifically, we assess the performance through Cohen’s kappa
score defined in Equation (24), where po corresponds to the empirical probability of agreement on
the label assigned to any sample (the observed agreement ratio), and pe determines the expected
agreement at classification by chance.

κ =
po − pe

1− pe
(24)
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4. Results

4.1. Performance Results

Figure 3 presents the subject-wise grid search results for tuning the number of spatial filters.
Tuning curves evidence that performance decreases for either a very low or very high number of
components. In the first case, the resulting model misses class separability patterns, due to the low
flexibility in the lowest dimensional manifolds. In the second case, the methodology overfits the
training data, since the component space becomes sparse, then drops the validation performance.
Since four to eight components improve the classification performance in comparison to the input
channel space, the proposed methodology reduces Riemmannian manifold dimension while enhancing
MI discrimination.

2 4 6 8 Q

0.6

0.7

0.8

0.9

C
oh

en
’s

ka
pp

a
(κ

)

S07 S01 S03
S08 S09 S05
S04 S06 S02

Figure 3. Cross-validated classification performance along the number of components.

Table 1 presents the mean kappa value using different methods tested in the BCICIV2a dataset,
with the highest kappa value in bold for each subject. The last column holds the p-value for a paired
t-test between the proposed and each compared approaches. Subjects are sorted according the score
attained by the challenge winner. Note that MKSSP outperforms other approaches at the worst
performing subjects (namely S06, S05, S02, and S01). Specifically, the proposal favors the most the
subject S05, as the kappa score raises between 5% and 57%. Despite MKSSP performs at subjects
S09, S03, S08, and S07, the best approach on such subjects are considerably biased towards them.
Furthermore, MKSSP reaches the highest average kappa score of 0.82, with significant differences in
most of the comparisons. Hence, the proposed methodology collects and combines discriminative
features from different spaces in a single representation, enhancing the separability of different
mental tasks.

Table 1. Mean kappa scores attained by compared approaches at each subject from the BCICIV2a
dataset. The last two columns present the average kappa and the t-test p-value between Multi-Kernel
Stein Spatial Patterns (MKSSP) and the corresponding approach. In bold highest kappa values, in italic
p-values < 5%.

Approach S06 S05 S02 S04 S01 S09 S03 S08 S07 κ p-Value

Challenge winner [26] 0.27 0.40 0.42 0.48 0.68 0.61 0.75 0.75 0.77 0.57 ± 0.17 0.0002
SUSS-SRKDA [27] 0.35 0.56 0.51 0.68 0.83 0.75 0.88 0.84 0.90 0.70 ± 0.18 0.0179
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Table 1. Cont.

Approach S06 S05 S02 S04 S01 S09 S03 S08 S07 κ p-Value

CBN [28] 0.42 0.78 0.51 0.85 0.69 0.45 0.87 0.97 0.54 0.68 ± 0.19 0.0577
KPCA with CILK [29] 0.37 0.26 0.46 0.44 0.71 0.61 0.76 0.75 0.79 0.57 ± 0.18 0.0009

PSO [30] 0.53 0.62 0.62 0.77 0.87 0.76 0.90 0.82 0.80 0.74 ± 0.12 0.0282
CSP-FLS [31] 0.37 0.35 0.54 0.52 0.74 0.80 0.90 0.86 0.82 0.66 ± 0.20 0.0146

EMD+Riemann [32] 0.34 0.36 0.24 0.68 0.86 0.82 0.70 0.75 0.66 0.60 ± 0.21 0.0050
CSP/AM-BA-SVM [33] 0.41 0.58 0.55 0.60 0.87 0.80 0.89 0.84 0.88 0.71 ± 0.17 0.0147
Dempster–Shafer [34] 0.57 0.67 0.59 0.72 0.78 0.88 0.85 0.86 0.81 0.75 ± 0.11 0.0084
Functional brain [35] 0.61 0.63 0.54 0.70 0.77 0.86 0.84 0.84 0.77 0.73 ± 0.11 0.0036

CNN-LSTM [36] 0.66 0.77 0.54 0.78 0.85 0.90 0.87 0.83 0.95 0.80 ± 0.12 0.3313
sDPLM [15] 0.36 0.34 0.49 0.49 0.75 0.76 0.76 0.76 0.68 0.60 ± 0.17 0.0008
uDPLM [15] 0.36 0.30 0.49 0.47 0.76 0.76 0.76 0.76 0.69 0.59 ± 0.18 0.0012

Proposed MKSSP 0.68 0.83 0.66 0.72 0.90 0.87 0.89 0.89 0.90 0.82 ± 0.09 –

To evaluate the proposal sensitivity to noise, we performed a nested cross-validation test by adding
several noise levels to the EEG signals. For each subject, 70% of the trials were considered to learn the
model parameters at the optimal number of components using a five fold inner cross-validation.
The remaining 30% was firstly contaminated with additive Gaussian noise from 0 dB to 40 dB
Signal-to-Noise Ratios (SNR). Then, the class-wise performance was computed from the contaminated
trials while varying the SNR. Figure 4 illustrates the resulting class-wise true positive ratio (TPR) with
the subjects ordered from best to worst performance, as in Figure 3.

Overall, the proposed MKSSP reaches a stable performance from 30 dB. Within 20 to 30 dB,
most of the subjects and classes increase their TPR to reach the optimal behavior. However, the overall
performance drops for SNR worse than 20 dB. At the subject level, the best performing ones yield the
same behavior for all classes, that is, a low TPR for SNR < 20 dB and the optimal TPR for SNR > 30 dB.
On the contrary, the worse performing subjects exhibit a TPR biased towards Foot and Tongue when
the SNR < 20 dB. For SNR > 30 dB, the hand-related classes evidenced higher TPR values for the best
performing subjects than for the worse ones. Such findings suggest that the additive noise mostly
hinders the discriminative patterns related to Left and Right. In turn, the Foot class presents a similar
performance for SNR > 30 dB among all the subjects, implying patterns that are harder to reveal.
Therefore, the proposed classification methodology reliably operates at SNR levels better than 30 dB
with less biased results.
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Figure 4. Noise sensitivity test per class for additive Gaussian noise using the optimal parameter set.
(a) Left class. (b) Right class. (c) Foot class. (d) Tongue class.

4.2. Model Interpretability

We evaluate the model interpretability from three points of view: the data, spectral,
and spatial representations. For analyzing the data representation, Figures 5 and 6 illustrate the
three-dimensional mapping of Kµ using Kernel Principal Component Analysis (KPCA) for the best-
(S07) and worst-performing (S02) subjects, respectively. At the first two KPCA components of S07,
MKSSP discriminated Left and Right from Foot and Tongue classes. Those two components also allow
classifying between Left and Right, whereas the third one separated Foot and Tongue. Despite being
less evident, MKSSP identified three trial groups from Subject S02, namely Foot, Tongue, and hands.
The first two KPCA components better separated Foot from the remaining classes, while the first and
third ones enhanced Tongue discrimination.

As Table 1 presented, subject S05 benefited the most from the proposed MKSSP, in comparison
with the challenge winner. For such a subject, Figure 7 compares the trial data distribution resulting
from four approaches: CSP, with a single 8-to-30 Hz band-pass filter, and Filter-Banked CSP (FBCSP),
with filters as in Section 3.2, representing the baseline spatial-filtering and spectro-spatial-filtering
techniques. MKSSP without spatial filtering (i.e., W is the C × C identity matrix IC) and with the
optimal number of components Q∗ = 4 contrast the former approaches as spectral and spectro-spatial
representations. For the sake of visualization, PCA and KPCA map trial features to two dimensions
for CSP-bases and MKSSP-based representations, respectively. It is worth noting that CSP features
without spectral filtering (top-left) and MKSSP without spatial filtering (bottom left) lacked any class
separability. In turn, FBCSP separated Left and Right but mixed Foot and Tongue within the four
classes. Lastly, optimal MKSSP not only increased Left and Right distance but also unraveled Foot
and Tongue.

Regarding the spectral representation, Figure 8 illustrates the MKL weights of each band per
subject, descending-ordered on the Y-axis (from best to worst based on the kappa score). A visual
inspection of spectral weights segment subjects into two groups: Subjects S07, S01, S03, S08, and S09;
and subjects S05, S04, S06, and S02. The first group, holding the best performing subjects, concentrates
weights at frequencies lower than 26Hz. Besides, the reduced number of highlighted spectral bands
translates into a computational burden reduction. The second group, with kappa lower than 0.83,
widely spreads all over the signal bandwidth, without accentuating any spectral filter. Accordingly,
the weight distribution marks the MKSSP performance on the subject.
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Figure 5. Resulting MKSSP kernel projected into three Kernel Principal Component Analysis (KPCA)
components for the best performing subject (S07).
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Figure 7. Projections of subject S05 trials using four spatial patterns approaches. Either PCA or KPCA
maps to a 2D space features from (FB) CSP or MKSSP, respectively. (a) CSP. (b) FBCSP. (c) MKSSP
(W = IC). (d) MKSSP (Q∗ = 4).
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Figure 8. Multiple kernel learning (MKL) kernel weights per frequency band. Subjects are sorted
according to the kappa score from the best (top) to the worst (bottom) in Y-axis. X-axis indexes each
band-pass filter in the bank.

For the spatial representation, Figure 9 depicts the spatial patterns of the best and worst
performing subjects for MKSSP (S07 and S02, respectively) and the most favored one (S05), since such
topographic maps represent the projection of estimated brain activity sources to electrodes [7]. For each
subject, the top and bottom row hold the least and most weighted frequency band, respectively,
while columns sort the first four components. For subject S07, the first two columns highlight a
contralateral activity localized over the motor cortex region at the most relevant frequency band,
which may be associated with the Right and Left classes [37]. On the contrary, the subject S02 lacks
any activity over such cortex, yielding patterns without MI interpretation. In addition, the bottom
frequency band of subject S05 relates the more to imagined movements than the top one, since the
first two components better localize brain activity over hand movement regions. Lastly, the activity
concentrated over the center vertex stands out in the third component and bottom band of all the
subjects and explains Foot movement imagination [37].
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Figure 9. First four spatial patterns of the best performing (S07), worst performing (S02), and most
improved (S05) subjects computed from MKSSP. For each subject, the top and bottom row hold the
least and most weighted frequency band, respectively.

5. Discussion and Concluding Remarks

This work presents a methodology for the classification of SPD matrices, termed MKSSP and
outlined in Figure 2. MKSSP performs a supervised nonlinear dimension reduction with the following
benefits for the discrimination of multichannel EEG trials: firstly, the projection of PSD matrices into
a smaller-dimensional Riemannian manifold allows preserving the geometry of the channel space.
Secondly, the introduced CKA-based supervised learning optimizes the linear mapping between
Riemannian manifolds to exploit the nonlinear relationships that discriminate classes. In this regard,
we benefit from the Stein kernel parameterized by the Jensen-Bregman LogDet divergence, which is
devoted to comparing SPD matrices. Thirdly, the spectral decomposition highlights discriminative
patterns hidden by large-power frequencies. Since each band yields a single kernel, the MKL scheme
gathering several kernel representations augmented the class separability.

Regarding the performance evaluation, we considered the four-class EEG signals from the
Dataset IIa of the BCI Competition IV. According to Figure 3, illustrating the kappa score across
the number of components, the dimension reduction carried out by MKSSP outperforms the kappa
score of the input channel-space at all subjects, so avoiding the curse of dimensionality. Moreover,
Table 1 evidences a significant improvement in class discrimination in comparison with state-of-the-art
approaches. Specifically, MKSSP considerably increases the kappa score of usually low-performing
subjects, such as S05, indicating that nonlinear relationships between channels hold discriminant MI
information. While spatial filtering approaches, that map into euclidean spaces, hinder the nonlinearity,
MKSSP takes decode it into a single kernel to enhance class separability.

Concerning the noise sensitivity, the classification results in Figure 4 guarantee reliable
performances for SNR levels better than 30 dB. SNR level within 20 to 30 dB compromises the class-wise
TPR. In fact, the proposed MKSSP reaches the best TPR on Right and Left-hand classes, possibly due
to their contralateral nature. Despite the performance of around 80% TPR, the identification of the Feet
movement remains challenging compared to other movements.

For the model interpretability, Figures 5 and 6 illustrate the kernel resulting from Equation (19) in
a 2D KPCA-based projection for subjects S07 and S02 (the best and worst-performing, respectively).
Note that MKSSP finds a space suitably separating classes for the subject S07. Despite the lowest
performance of subject S02 and mixed Left and Right trials, the proposed methodology enhances
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the discrimination of three groups, namely, Foot, Tongue, and both hands. Such a result proves
the capability of MKSSP to distinguish mental tasks despite the spatially close activity sources.
Furthermore, Figure 7, comparing four feature sets for subject S05, indicates that CSP-based approaches
lack separability as they miss geometric nonlinear channel relationships. Although including spectral
decomposition, MKSSP without dimension reduction tangles the trials, due to the high dimension in the
covariance matrices hinders discriminative patterns. On the contrary, MKSSP with the optimal number
of components enhances class separation, agreeing with the test classification results, because the
manifold information benefits the MI task identification.

In the spectral relevance, Figure 8 depicts the band-wise MKL weights per subject. The weight
distribution highlights the between-subject variability in terms of spectral relevance. For the best
performing subjects, MKSSP concentrates the kernel weights in fewer bands than for the worst ones.
Therefore, the proposed methodology avoids the computation of unnecessary frequency components
for discriminating MI tasks. Further, the weight distribution may predict the subject BCI performance.

Regarding the spatial representation, Figure 9 presents the resulting Stein spatial patterns for
subjects S07, S05, and S02. Only the patterns corresponding to the least (top) and most (bottom)
weighted bands are displayed. On the one hand, the least weighted bands yield wider activity sources
without neurophysiological interpretability. On the other hand, MKSSP mostly highlights bands with
spatial patterns physiologically related to MI tasks. For instance, the contralateral activities, typical of
left and right-hand movement, emerge from the first two patterns of subjects S07 and S05. In addition,
the third pattern for all subjects finds activity close to the central vertex related to the foot movement.
Consequently, MKSSP correctly decodes spatially interpretable patterns while spectrally highlighting
the bands containing them.

Future work considers two research directions. Firstly, we will work on the development of a BCI
ability estimator based on the MKSSP methodology to evaluate the subject efficiency, since up to 30%
of people underdevelop the coordination skills after training, hampering the spreading of this kind
of system [38]. Secondly, we will consider a transfer learning scheme for training the MKSSP-based
representation to achieve subject-independent BCI systems with reduced training times.
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