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Abstract: This research addresses the problem of the optimal location and sizing distributed
generators (DGs) in direct current (DC) distribution networks from the combinatorial optimization.
It is proposed a master–slave optimization approach in order to solve the problems of placement
and location of DGs, respectively. The master stage applies to the classical Chu & Beasley genetic
algorithm (GA), while the slave stage resolves a second-order cone programming reformulation
of the optimal power flow problem for DC grids. This master–slave approach generates a hybrid
optimization approach, named GA-SOCP. The main advantage of optimal dimensioning of DGs via
SOCP is that this method makes part of the exact mathematical optimization that guarantees the
possibility of finding the global optimal solution due to the solution space’s convex structure, which is
a clear improvement regarding classical metaheuristic optimization methodologies. Numerical
comparisons with hybrid and exact optimization approaches reported in the literature demonstrate
the proposed hybrid GA-SOCP approach’s effectiveness and robustness to achieve the global optimal
solution. Two test feeders compose of 21 and 69 nodes that can locate three distributed generators are
considered. All of the computational validations have been carried out in the MATLAB software and
the CVX tool for convex optimization.

Keywords: direct current networks; optimal power flow analysis; metaheuristic optimization;
master-slave optimization; genetic algorithms; second-order cone programming

1. Introduction

Recently, the study and analysis of direct current (DC) networks have increased, due to the
development of power electronics, advances in renewable generation, and the advantages over
alternative current (AC) networks [1,2]. Initially, the DC networks began to operate at high-level
voltages in the power transmission for long-distance between systems, since it allows for reducing
transmission power losses, enhancing grid stability systems, easily incorporating off-shore wind
systems, and managing power flow both direction simply [3–5]. Consecutively, the integration of the
DC networks has been widened to medium- and low-voltage level applications, generating concepts,
such as the microgrids [6,7].

The main advantages of DC systems as compared to conventional AC systems can be summarized,
as follows: (i) fewer power converter devices, (ii) no requirement of synchronizing generators,
(iii) better voltage profiles, (iv) less power losses, and (v) do not require frequency and reactive
power analysis and controls [8–10].
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Two kinds of analysis are used to study DC networks. The first analysis is dynamic, being performed
under the time domain, and integrates concepts as primary and secondary controllers [11,12]. The second
analysis is static, which computes all of the state variables under stationary conditions. This analysis is
known as tertiary control [13], which addresses power flow analysis [2,14], optimal power flow [15],
economic dispatch strategies [16], and voltage stability analysis [17,18]. Furthermore, these analyses
are integrated with other problems, such as the placement and sizing of multiple distributed generators
(DGs) [19], as well as placement and operation of battery energy storage systems in DC networks [20].

In this study, we focus on the problem of the optimal placement and sizing of DGs in DC
networks. Although, in the specialized literature, there are few approaches in this area. In [21],
an analytical methodology for sizing energy storage systems in DC networks was proposed. This
methodology evaluated the profiles of currents that were injected by energy storage systems in
order to minimize power losses. In [22], a feasibility study for the integration of photovoltaic
systems in a standalone building was carried out. This study considered strong weather scenarios for
off-grid systems and variable electricity prices for the grid-connected system. In [23], a probabilistic
optimization methodology for estimating uncertainties in loads, plug-in electric vehicles, and
renewable generation in DC distribution networks was analyzed. In [19], a hybrid strategy for optimal
location and dimensioning of DGs in DC grids was provided, which mixed a hyperplanes search method
(HSM) with semidefinite programming (SDP) model. The HSM relaxed the binary variables, while
the SDP computed the optimal power flow. In [24], a similar strategy using a sequential quadratic
optimal power flow was presented. Both of the techniques ensure the optimal global solution only
for a relaxed problem, where the complexity lies in the number of candidate solutions to recover
the binary variables. In [25], a tutorial in the general algebraic modeling system (GAMS) for the
optimal placement and dimensioning of DGs in DC grids were presented. In [26], the optimal
placement and sizing of photovoltaic generators in DC networks were carried out, when considering
an environmental-economic dispatch as an objective function. However, the approach presented in [26]
was solved in GAMS, which does not guarantee the optimal global solution, since the problem is
nonlinear non-convex mixed-integer. In [27], three metaheuristic methods for optimal location and
dimensioning of DGs in DC systems were studied. A classical genetic algorithm was employed in
the locations stage, which assigns the location of the DGs. While the black-hole, continuous genetic
algorithm, and particle swarm metaheuristic methods were used to dimension the DGs. The main
problem with these methods is that they have multiple tuning parameters that significantly affect their
performance. Additionally, they do not ensure the optimal global solution to the problem. In [28],
a methodology for optimal sizing of multiple devices, such as wind turbines, photovoltaic sources,
and batteries in hybrid AC/DC grids was provided, which considered the life cycle cost and the life
span of the renewable energy resources in the objective function.

After the revision mentioned above of the state-of-the-art, this research’s main contributions can
be summarized, as follows:

X The reformulation of the problem of the optimal placement and sizing of DGs in DC networks
that allows transforming the original mixed-integer nonlinear programming (MINLP) model
into a mixed-integer second-order cone programming (MI-SOCP) one.

X The solution of the proposed MI-SOCP model with a hybrid master-slave optimization
methodology, where the master stage is guided by a genetic algorithm to determine the best
locations for the DGs, while the slave stage allows for solving the optimal power flow problem
by using the SOCP formulation via interior point methods to determine the best sizes of the DGs.

X The computational results demonstrate that the hybrid GA-SOCP approach has an efficiency
higher than 70% to find the global optimal solution in both test feeders analyzed. In addition,
the proposed approach presents better solutions than commercial solvers available in
GAMS and classical metaheuristics such as genetic algorithms and particle swarm optimizer,
and derived approaches
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It is worth mentioning that the master–slave hybrid GA-SOCP approach has not previously been
proposed in specialized literature for addressing the problem of the optimal placement and sizing of
DGs in electrical networks, even if these are under AC or DC paradigms of operation. This situation
was identified as a gap in the scientific literature that this research tries to fill.

The remainder of this document is organized, as follows: Section 2 presents the original MINLP
formulation of the problem of the optimal placement and dimensioning of DGs in DC networks
by highlighting its nonlinearities and non-convexities. Section 3 presents the proposed hybrid
optimization method, which is composed of a conic reformulation problem of the optimal power
flow problem in DC networks and the classical GA. Section 4 exposes the main characteristics of the
test feeders, which are composed of 21 and 69 nodes with radial structures, where the possibility
of installing three DGs is considered. Section 5 presents all of the computational validations of the
proposed hybrid GA-SOCP approach and their comparisons with nonlinear solvers available in GAMS
and master–slave optimization approaches that are based on genetic algorithms and particle swarm
optimization methods and its variants. Section 6 shows the concluding remarks derived from this
work and some possible future researches in the area of distribution system optimization.

2. MINLP Model

The problem of the optimal placement and sizing of DGs in DC networks corresponds to an
MINLP model since: (i) the problem of sizing of these power sources is modeled with binary variables,
and (ii) the problem of the location of these DGs is modeled with continuous variables (power
generation and voltage profiles). The optimization objective in this MINLP formulation corresponds
to the minimization of the grid power losses produced by the current circulation in all the networks’
branches. The mathematical structure of this objective function is presented in Equation (1).

min ploss = ∑
i∈N

∑
j∈N

Gijvivj, (1)

where ploss is the value of the objective function regarding power losses in all of the branches of the
network, vi and vj are the voltage values at nodes i and j, respectively, and Gij is the conductance value
taken from the admittance nodal matrix that defines the physical interconnection among all the nodes
of the DC network. Observe that N is the set that contains all of the nodes of the network.

Regarding model constraints, these are related with operational conditions of the DC distribution
networks. These constraints are presented below:

ps
i + pgd

i − pd
i = ∑

j∈N
Gijvivj, ∀i ∈ N (2)

pij = gijvi
(
vi − vj

)
, ∀ (i, j) ∈ L (3)

∑
i∈N

pgd
i ≤ α ∑

i∈N
pd

i , (4)

∑
i∈N

yi ≤ Nava
dg , (5)

yi pgd,min ≤ pgd
i ≤ yi pgd,max ∀i ∈ N (6)

pmin
ij ≤ pij ≤ pmax

ij ∀ (i, j) ∈ L (7)

vmin ≤ vi ≤ vmax ∀i ∈ N (8)

yi ∈ {0, 1} ∀i ∈ N (9)

where ps
i pgd

i , pd
i , and pij represent the power generation in the voltage controlled source (slack nodes),

power generation in distributed sources, power consumption in demand nodes, and power flow in
distribution lines, respectively. α is a parameter that defines the percentage of power penetration
of renewable generation as function of the total demand; yi is the binary variable associate with the
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location (yi = 1) or no (yi = 0) of a distributed generator at node i; Nava
dg is the maximum number of

distributed generators available for location in the DC network, pgd,min and pgd,max are the minimum
and maximum power generation capabilities allowed for each distributed generator connected at node
i. pmin

ij and pmax
ij are the lower and upper bounds for the power flow in line that connects nodes i and j,

respectively; and, vmin and vmax are the minimum and maximum voltage bounds in all nodes of the
DC distribution network, respectively.

The complete interpretation of the MINLP model defined from (1) to (9) is as follows: Equation (1)
defines the objective function of the problem regarding the minimization of the total grid power
losses in the whole DC network; Equation (2) is the set of power balance equations applied at each
node of the network; Equation (3) defines the amount of power that flows at each line of the DC
grid. Expression (4) determines the maximum penetration of the distributed generation in the whole
DC distribution network; Inequality constraint (5) bounds the number of generators available for
location in the DC grid; inequalities (6), (7), and (8) present the upper and lower bounds for distributed
generators, power flow in branches, and voltage variables, respectively. Finally, Expression (9) shows
the binary nature of the decision variable regarding the location of distributed generators.

Remark 1. In the problem of the optimal placement and sizing of distributed generators in DC distribution
networks is complex due to two main reasons: (i) the binary nature of the location problem makes necessary integer
programming methods to define the best possible location of the distributed generators (master optimization
problem); and (ii) the optimal sizing of the distributed generators for each possible location provided by the
master stage is a nonlinear non-convex optimization problem due to the product between voltage variables in
Expressions (1) to (3).

To solve the MINLP model (1)–(9), this research proposes a hybrid optimization approach based
on genetic algorithms to address the problem of the optimal location of distributed generators and the
second-order cone programming model to solve the problem of the optimal sizing of these devices.
The main advantage of using SCOP instead of metaheuristics for optimal power flow analysis is that
for each possible combination of distributed generator locations, the solution is the global optima [29],
which is not possible with any particle swarm derived method that corresponds to the most classical
approach for solving this kind of problems in literature [27].

3. Proposed Hybrid GA-SOCP Optimization Approach

We proposed a hybrid GA-SOCP approach, which works by using a master–slave optimization
strategy, where the master stage guides the discrete part of the problem (i.e., defines the location of
the DGs), and the slave stage deals with their optimal sizing, in order to address the problem of the
optimal location of distributed generators in DC networks in this research.

3.1. Slave Stage: Second-Order Cone Programming

The SOCP is a branch of the convex optimization that allows transforming some nonlinear
non-convex optimization problems into conic convex equivalents that guarantee the global optimum
of the equivalent model [30]. In the case of the optimal power flow problem, the SOCP equivalent
model has the same global optimum that the original nonlinear model, which is the main advantage of
this technique in power system analysis [29]. Here, we present the SOCP version of the optimal power
flow problem that addresses distributed generators’ optimal sizing. For this purpose, let us suppose
that all of the binary variables regarding the distributed generators’ location, i.e., yi has been fixed by
the master stage, which will be presented in this study. In this sense, the SOCP deals with the Equality
constraints (2) and (3), which are the only continuous nonlinear non-convex constraints.
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The convexification of the optimal power flow problem is made using the following
auxiliary variable:

zij = vivj, (10)

note that, from (10), we know that zii = v2
i and zjj = vj, which implies that if we elevate both sides of

(10) at the square, then we have:

z2
ij = ziizjj. (11)

Now, in order to obtain an equivalent representation of (11), we use the hyperbolic relation of the
product between two variables as follows:

z2
ij = ziizjj,

=
1
4
(
zii + zjj

)2 − 1
4
(
zii − zjj

)2 ,

(2zij)
2 +

(
zii − zjj

)2
=
(
zii + zjj

)2 ,∥∥∥∥∥ 2zij
zii − zjj

∥∥∥∥∥ = zii + zjj. (12)

Note that Equation (12) is the conic equivalent of (11), since, to reach this result, only algebraic
manipulations have been made; in addition, it is still non-convex due to the equality symbol;
nevertheless, it can be relaxed with a lower-equal symbol as recommended in [13,31,32], which becomes
(12) into a conic convex constraint, as presented below:∥∥∥∥∥ 2zij

zii − zjj

∥∥∥∥∥ ≤ zii + zjj. (13)

Remark 2. To obtain a SOCP equivalent of the optimal power flow problem, we can recur to substitute
(11) into Expressions (1) to (3), which produce equivalent mixed-integer second-order cone programming
(i.e., MISOCP) model to address the problem of the optimal placement and sizing of distributed generators in
DC distribution networks.

The complete MISOCP model is presented below:

min ploss = ∑
i∈N

∑
j∈N

Gijzij, (14)

ps
i + pgd

i − pd
i = ∑

j∈N
Gijzij, ∀i ∈ N (15)

pij = gij
(
zii − zij

)
, ∀ (i, j) ∈ L (16)∥∥∥∥∥ 2zij

zii − zjj

∥∥∥∥∥ ≤ zii + zjj, ∀ (i, j) ∈ N (17)

Expressions (4) to (9), (18)

Remark 3. Observe that the slave optimization stage solves the proposed MI-SOCP model once all the binary
variables have been assigned on the master stage with the main advantage that the SOCP structure of the power
flow model guarantees the global optimum finding [30].
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3.2. Master Stage: Genetic Algorithm

The genetic algorithm is one of the most classical optimization methodologies from the family
of combinatorial nature-inspired optimization methods [33]. The GA algorithm deals with complex
optimization problems that involve integer (binary) variables, using three evolution rules: selection,
recombination, and mutation [34]. Here, we select the GA optimizer to deal with the problem of
the location of the distributed sources in DC networks using an integer combination that allows
for minimizing the infeasibilities caused by classical binary codifications as recommended in [34].
The complete optimization structure of the proposed GA is presented below.

3.2.1. Initial Population

The most of nature-inspired optimization algorithms work with a list of potential solutions named
“population”. This list has the complete information regarding the solution of the problem under
study. Here, we consider an integer population to determine the location of the DGs in the Dc network.
This population Wt (being t the iterative counter) takes the following form:

Wt =


w11 w12 · · · w1a
w21 w22 · · · w2a

...
...

. . .
...

wb1 wb2 · · · wba


where a is the number of variables of interest and b is the number of the individuals in the population.

Note that the component wkm in the initial population matrix is calculated, as follows:

wkm = round (1 + rand(· (n− 1)) , ∀k = 1, 2, . . . , b, ∀m = 1, 2, . . . , n. (19)

where round(·) determines the integer part of the argument and rand(·) is a random number generated
with a normal Gaussian distribution in the interval [0, 1]. It is worth remembering that n is the number
of nodes and it corresponds to the cardinality of the set N , i.e., n = |N |.

Remark 4. An essential stage during the creation of the initial population is that it is mandatory to guarantee
that each potential individual Wt

i is different from each other Wt
j ; ∀j 6= i. This condition is known in genetic

algorithms terminology as the diversity verification.

3.2.2. Fitness Function Evaluation

It is needed to define the fitness function in order to evaluate the initial population. The fitness
function in metaheuristic optimization is the “adaptation” of the objective function to deal with possible
infeasibilities in the solution space [35,36]. However, in the proposed MI-SOCP model, we guarantee
that each individual is feasible, since the SOCP model is correctly constrained by the optimization
model (14)–(18). In this sense, our proposed methodology’s fitness function is equal to the objective
function that is defined in Equation (14).

3.2.3. Selection

The selection (tournament) is the procedure where a subset of parents is chosen from the initial
population to obtain a set of potential solutions (offsprings). Here, we select the most straightforward
selection method that consists of selecting two individuals (a different one to each other) from the
population, named as the parents.
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3.2.4. Recombination

The recombination is a heuristic procedure where the genetic information of the parents is crossed
to generate offsprings. To present this procedure, let us consider two parents that are provided by the
selection stage as follows:

Wt
i = [1 0 1 1 0 1 1 0 0 0] (20)

Wt
j = [0 0 1 0 0 0 1 0 1 1] . (21)

Note that, in this example, the each parent has 10 genes (n = 10). To make the recombination it is
generate a random number between 1 and n− 1. Consider that this number is 6. With this number
is make the recombination procedure by adding the first 6 genes of the individual Wt

i with the last
4 genes of Wt

j ; in addition, the first 6 genes of the individual Wt
j are added to the last 4 genes of Wt

i .

The resulting offsprings (Ost
i and Ost

j) are presented below.

Ost
i = [1 0 1 1 0 1 1 0 1 1] , (22)

Ost
j = [0 0 1 0 0 0 1 0 0 0] . (23)

3.2.5. Mutation

The mutation is a procedure in which a subset of genes is changed. This procedure modifies the
initial information of the parents after the recombination procedure. To make this procedure, we use
the mutation with a unique point for each offspring, which implies that two random number between
1 and n− 1 is generated. Suppose that, for Ost

i , the random number is 3 and for Ost
j this number is 9,

which produces the following mutations in both offsprings.

Ost
i = [1 0 0 1 0 1 1 0 1 1] , (24)

Ost
j = [0 0 1 0 0 0 1 0 1 0] . (25)

Note that both of the offsprings are different from their parents, since both have new information
added by the mutation procedure.

3.2.6. Fitness Function Evaluations and Replacement of the Population

Once the offsprings have been created by the selection, recombination, and mutation stages,
these are evaluated in the fitness function, i.e., optimization model (14)–(18). Let us suppose that the
fitness function of the offspring Ost

i is z
(
Ost

i
)

and the fitness function of the offspring Ost
j is z

(
Ost

j

)
.

Subsequently, the potential offspring that will be part of the population is selected as the minimum of
both fitness function values: (i) select Ost

i if z
(
Ost

i
)
≥ z

(
Ost

j

)
, or (ii) select Ost

j otherwise.
In order to decide whether the winner offspring is added to the population, two aspects must

be verified: (i) is the fitness function of the winner offspring better than the worst individual in the
population? If the answer is positive, then, (ii) is the winner offspring different from each of the
individuals in the population? If the answer is also positive, then the winner offspring replace the
worst individual in the population.

Note that, if one of the previous questions has a negative response, then a new iteration is started
without modification in the population.

3.2.7. Stopping Criteria

In order to finalize the searching procedure of the proposed genetic algorithm, the following
aspects are considered:



Appl. Sci. 2020, 10, 8616 8 of 18

X If the maximum number of iteration tmax is reached, the optimization procedure ends by reporting
the best solution obtained in the current population.

X If during τmax consecutive iterations, the best objective function has not improved, then the
optimization procedure ends by reporting the best solution obtained in the current population.

Remark 5. The genetic algorithm that is presented in the subsections mentioned above is known in the
specialized literature as the Chu & Beasley genetic algorithm [34]. It does not replace all the population
individuals in the same iteration, as is made by the classical genetic algorithm.

3.3. Pseudocode of the Proposed Hybrid Optimization Algorithm

Algorithm 1 summarized the main aspects of the proposed hybrid GA-SOCP method for optimal
placement and sizing of distributed generators in DC distribution networks.

Algorithm 1: Proposed master-slave optimization approach for the optimal location and sizing
of distributed generators (DGs) in DC distribution networks

1: Inputs:
2: Read the data of the DC network;
3: Define the number of generators available, i.e., Nava

dg ;
4: Define the percentage of penetration of distributed generation i.e., α;
5: Generate the initial population W0;
6: Evaluate the fitness function for each individual in the population (see the slave stage);
7: Make t = 0;
8: while t ≤ tmax do

9: Select two parents from the population;
10: Make recombinations for generating two offspring individuals;

11: Apply the mutation operator for each offspring population;
12: Evaluate the fitness function of the offspring individuals, i.e., slave stage (see optimization

model (14)–(18));

13: Select the offspring with the minimum fitness function;
14: Replace the worst individual in the population with the selected offspring if the offspring

has the best objective function and fulfills the diversity criterion;

15: if τ ≥ τmax then

16: Select as the solution of the problem, the individual with the best objective function in
the current population Wt;

17: Return the optimal solution concerning the location and sizing of DGs (see the slave stage);
18: break;
19: end if
20: t = t + 1;
21: end while
22: Output:
23: The best solution is found for the MINLP model;

4. Test Systems

In this section, the main characteristics of the 21- and 69-node test feeders are presented.
These grids are mainly used in power system analysis for DC networks, including voltage stability,
power flow analysis, and distributed generators’ optimal location [37]. Both of the test feeders are
described below.
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4.1. 21-Node Test Feeder

The 21-node test feeder is a DC distribution network that is composed of 21 nodes and 20 branches
that generates a radial configuration where the voltage-controlled source is connected at node 1.
This source supports a voltage profile of 1.00 pu [19]. The complete information regarding constant
power consumption and branches are presented in Figure 1 and Table 1, respectively [19].

1
2

3

45

6

7

8

9

10
11

12

13

14

15
16

17

18

19

20

21

ac
dc slack (v)

Figure 1. Electrical connection between nodes in the 21-node test feeder.

Table 1. Parametric information of the 21-node test system.

Node i Node j Rij [p.u] Pj [p.u] Node i Node j Rij [p.u] Pj [p.u]

1 2 0.0053 0.70 11 12 0.0079 0.68
1 3 0.0054 0.00 11 13 0.0078 0.10
3 4 0.0054 0.36 10 14 0.0083 0.00
4 5 0.0063 0.04 14 15 0.0065 0.22
4 6 0.0051 0.36 15 16 0.0064 0.23
3 7 0.0037 0.00 16 17 0.0074 0.43
7 8 0.0079 0.32 16 18 0.0081 0.34
7 9 0.0072 0.80 14 19 0.0078 0.09
3 10 0.0053 0.00 19 20 0.0084 0.21

10 11 0.0038 0.45 19 21 0.0082 0.21

Note that all of the values in Table 1 are calculated when considering 1 kV and 100 kW as the
voltage and power bases, respectively.

4.2. 69-Node Test Feeder

This test feeder is a classical AC distribution network that is employed in the literature, such as
shunt devices’ optimal location for power losses minimization [37]. Notwithstanding, in this study,
we used its DC adaptation reported in [37]. Figure 2 depicts the 69-node test feeder configuration and
Table 2 reports the branch parameters and load information. Furthermore, for simulation purposes,
12.66 kV and 100 kVA are used as the test system’s voltage and power bases.
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slack

- +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51
52

28 29 30 31 32 33 34 35

Figure 2. Schematic connection among nodes for the 69-node test feeder.

Table 2. Parametric information of the 69-node test system.

Node i Node j Rij [Ω] Pj [kW] Node i Node j Rij [Ω] Pj [kW]

1 2 0.0005 0 3 36 0.0044 26
2 3 0.0005 0 36 37 0.0640 26
3 4 0.0015 0 37 38 0.1053 0
4 5 0.0215 0 38 39 0.0304 24
5 6 0.3660 2.6 39 40 0.0018 24
6 7 0.3810 40.4 40 41 0.7283 102
7 8 0.0922 75 41 42 0.3100 0
8 9 0.0493 30 42 43 0.0410 6
9 10 0.8190 28 43 44 0.0092 0

10 11 0.1872 145 44 45 0.1089 39.22
11 12 0.7114 145 45 46 0.0009 39.22
12 13 1.0300 8 4 47 0.0034 0
13 14 1.0440 8 47 48 0.0851 79
14 15 1.0580 0 48 49 0.2898 384.7
15 16 0.1966 45 49 50 0.0822 384.7
16 17 0.3744 60 8 51 0.0928 40.5
17 18 0.0047 60 51 52 0.3319 3.6
18 19 0.3276 0 9 53 0.1740 4.35
19 20 0.2106 1 53 54 0.2030 26.4
20 21 0.3416 114 54 55 0.2842 24
21 22 0.0140 5 55 56 0.2813 0
22 23 0.1591 0 56 57 1.5900 0
23 24 0.3463 28 57 58 0.7837 0
24 25 0.7488 0 58 59 0.3042 100
25 26 0.3089 14 59 60 0.3861 0
26 27 0.1732 14 60 61 0.5075 1244
3 28 0.0044 26 61 62 0.0974 32

28 29 0.0640 26 62 63 0.1450 0
29 30 0.3978 0 63 64 0.7105 227
30 31 0.0702 0 64 65 1.0410 59
31 32 0.3510 0 65 66 0.2012 18
32 33 0.8390 10 66 67 0.0047 18
33 34 1.7080 14 67 68 0.7394 28
34 35 1.4740 4 68 69 0.0047 28

5. Computational Implementation

The proposed hybrid optimization model, i.e., the GA-SOCP method, has been implemented
in the MATLAB software version 2019b on a desktop computer with an INTEL(R) Core(TM) i7-7700
2.8-GHz processor and 16.0 GB of RAM running on a 64-bit version of Microsoft Windows 10 Home.
To validate our proposed MI-SOCP formulation solved with the proposed hybrid GA-SOCP approach,
we employed different MINLP solvers that were available in the GAMS software (i.e., SBB and
CONOPT solvers), and some metaheuristic approaches reported in [37]. In [37], the genetic algorithm
has been combined with three continuous methods, as follows: black-hole optimizer (GA-BHO),
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particle swarm optimization (GA-PSO), and continuous genetic algorithm (GA-CGA). In addition,
the following simulating conditions are considered:

X Three distributed generators are available for installation in the DC test feeder; wherein, the case
of the 21-node test system, their maximum individual allowed size is 1.5 pu and, in the case of
the 69-node test feeder, this bound is 12 pu.

X The maximum power penetration in the 21-node test feeder is 40% and, in the case of the
69-node test feeder, the maximum penetration is 40% regarding the total power demand of each
one of the DC networks.

Remark 6. All the genetic algorithms employed as the master stage in the proposed and comparison methods
have adjusted using a trial and error procedure, which have been produced as parameters: 10 individuals in
the population, 100 iterations, recombination, and mutation rates 50%. In addition, to evaluate statistically
speaking these methods, 100 consecutive iterations were made for each method.

5.1. 21-Node Test Feeder

Table 3 reports the numerical comparisons between the proposed hybrid optimization method
and the literature approaches for the 21-node test feeder. Note that this problem’s optimal
solution corresponds to nodes 9, 12, and 16, with power injections of 0.8350 pu, 1.0258 pu,
and 1.4632 pu, respectively.

Table 3. Comparison of different approaches in the 21-node test feeder.

Method Nodes σ [p.u.] µ [p.u.] min [p.u.] tave [s]

GA-BHO {9,12,16} 2.2761× 10−03 0.0368 0.0318 111.9440
GA-CGA {9,12,16} 1.3537× 10−03 0.0329 0.0311 33.1974
GA-PSO {9,12,16} 1.8437× 10−03 0.0319 0.0306 58.0934

MIQP {9,12,16} −−− 0.0306 0.0306 8.9688
SSB {9,12,16} −−− 0.0306 0.0306 5.3653

GA-SOCP {9,12,16} 1.1050× 10−03 0.0309 0.0306 52.146

From Table 3, we can observe that:

X All of the comparison methods, as well as the proposed approach, identifies the best optimal
location in nodes 9, 12, and 16. However, due to the aleatory nature of the continuous
metaheuristics (i.e., BHO, PSO, and CGA), both of them are stuck local optimums, and only the
GA-PSO approach can deal with the global optimal solution.

X The mixed-integer quadratic programming (MIQP) model and the SBB solver (for the exact
MINLP model) reach the global optimal solution with the lowest computational effort, which is
attributable to the efficiency of the GAMS interface.

X The standard deviation of the proposed GA-SOCP programming is the lowest when compared
with metaheuristics; this situation occurs because the proposed approach works with an exact
optimization method based on second-order cone programming that has a unique solution for
each combination of DGs provided by the GA in the master stage.

Figure 3 presents the histogram after the 100 consecutive evaluations of the proposed methodology
for optimal placement and sizing distributed generators in DC distribution networks in order to present
the efficiency of the proposed GA-SOCP approach.



Appl. Sci. 2020, 10, 8616 12 of 18

3 3.1 3.2 3.3 3.4 3.5 3.6

·10−2

0

10

20

30

40

50

60

70

80

90

100

Power losses [pu]

N
um

be
r

of
re

pe
ti

ti
on

s

Figure 3. Behavior of the proposed hybrid GA-PSO after 100 consecutive evaluations in the 21-node
test feeder.

Note that the histogram presented in Figure 3 shows that more than 90 solutions (93 exactly)
reached by the proposed hybrid GA-SOCP method has the capability of finding the global optimal
solution (i.e., 0.0306 pu) regarding power losses, which confirms the efficiency and robustness of the
studied methodology for optimal placement and sizing DGs in DC distribution networks.

Remark 7. We can ensure that the solution finds by the proposed GA-SOCP approach is the optimal one, since
all the possibilities (i.e., 1140 options) for the location of DGs in the 21-node test feeder have been evaluated
comprehensively via nested loops, which have confirmed that nodes 9, 12 and 16 are the best possible location for
these DGs reaching a final power losses of 0.0306 pu. It is worth mentioning that this exhaustive evaluation
takes about 800 s.

Figure 4, which presents the percentage of improvement reached by the comparative methods in
contrast to the proposed hybrid optimization approach, shows the total grid improvement about the
power losses minimization.
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Figure 4. Percentage of improvement regarding power losses minimization in the 21-node test feeder.

Figure 4 shows the positive impact that has the inclusion of distributed generation in DC
distribution networks, since all of the comparative methods and the proposed hybrid approach present
improvements that are higher than 88% with a total penetration of 60% in a distributed generation
regarding total power consumption. In addition, these results confirm the global capabilities of the
proposed hybrid GA-SOCP method for dealing with the problem of the optimal location and sizing
DGs in DC feeders.
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5.2. 69-Node Test Feeder

Table 4 presents the numerical results of the proposed and comparative methods. These results
allow observing that:

X All of the comparative methods are stuck in locally optimal solutions, including the MIQP
approach and the MINLP model solved in GAMS through the SBB solver since these finds final
power losses about 0.1660 pu and 0.1574 pu, respectively. However, the best optimal solution is
reached by the GA-SOCP method with 0.1573 pu.

X Some of the metaheuristic approaches (i.e., GA-CGA and GA-PSO) find the best positions for
installing the GDs being these nodes 21, 61, and 64; nevertheless, due to the random procedures
in the slave stages, these find local solutions.

X Even if standard deviations of the GA-PSO and GA-CGA are lower than the proposed GA-SOCP,
these values imply that these methods are always trapped in the local solutions, and they do
not have the capacity of scape from these solutions to explore other promissory regions of the
solution space.

Table 4. Comparison of different approaches in the 69-node test feeder.

Method Nodes σ [p.u.] µ [p.u.] min [p.u.] tave [s]

GA-BHO {23,61 67} 2.5207×10−03 0.1633 0.1593 713.7193
GA-CGA {21,61,64} 3.4801×10−04 0.1648 0.1603 218.0169
GA-PSO {21,61,64} 5.4023×10−04 0.1689 0.1588 378.4731

MIQP {22,61,64} −−− 0.1660 0.1660 24.1868
SBB {22,61,65} −−− 0.1574 0.1574 12.4270

GA-SOCP {21,61,64} 3.1295× 10−03 0.1591 0.1573 66.9100

Note that the best optimal solution reported by the GA-SOCP proposed approach connects
DGs in nodes 21, 61, and 64 with generation capabilities of about 1.4140 pu, 10.2630 pu, and 3.8803,
respectively. Once again, we can confirm that this solution is the global optimum, since, after the
exhaustive evaluation of the solution space (i.e., 50116 possible locations) via nested loops, the same
set of nodes and power generations have been identified as the best global solution. It is important
to highlight that this exhaustive evaluation takes about 7000 s to revise the whole solution space,
which implies that 66.91 s reported by the proposed GA-SOCP approach demonstrates its efficiency
and robustness global finding capabilities.

Figure 5 presents the histogram with the optimization behavior of the proposed GA-SOCP method
for locating and sizing DGs in DC distribution networks.

From Figure 5, it can be noted that more than 70% of the solutions that were found by the proposed
GA-SOCP method find the global optimal solution, and 24% of the additional solutions are better than
the mean solutions reported in Table 4 (see µ column). These results confirm the proposed GA-SOCP
optimization approach’s efficiency and robustness for solving the optimal placement and sizing of
DGs in DC distribution networks with global optimum finding capabilities.

Figure 6 presents the percentage of power losses improvement reached by the comparative and
the proposed optimization approaches.

Note that the percentage of reduction of power losses reported in plot 6 confirms the global
optimization capabilities of the proposed GA-SOCP approach, since it is the only one methodology
that reports the highest percentage of reduction with 89.78%, only followed by the SBB methodology
with 89.77% of reduction.
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Figure 5. Behavior of the proposed hybrid GA-PSO after 100 consecutive evaluations in the 69-node
test feeder.
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Figure 6. Percentage of improvement regarding power losses minimization in the 69-node test feeder.

5.3. General Commentaries

After applying the comparative and the proposed optimization methodology for optimal locating
and sizing DGs in DC distribution networks, we can affirm that:

X The processing times in both test systems have been lower than 70 s, which implies that for
planning purposes, our approach is perfectly applicable since, with a fraction of the time taken
by the exhaustive search method, this can deal with the global optimal solution. In addition,
the processing times of the comparative metaheuristic methods increase rapidly as a function of
the test feeder size (see the last columns of Tables 3 and 4) with the main disadvantage that due
to the random behavior of the slave stages, i.e., BHO, CGA, and PSO, it is not possible to find
the optimal solution of the studied optimization problem.

X The methodologies implemented in GAMS, i.e., the MIQP and the MINLP model, both solved
with the SBB tool available in GAMS, have speedy processing times. However, the linearization
of the power flow equations in the MIQP approach and the nonlinear and non-convex structure
of the exact MINLP model make that these get stuck in optimal locations as the solution
space grows.

X The main advantages of the proposed hybrid GA-SOCP master-slave optimization method are:
(i) the possibility of using a compact codification with integer numbers (nodes) that allows
for guaranteeing feasibility in all the stages of the genetic algorithm procedures, and (ii) the
guarantee of the global optimal solution for each combination of distributed generators thanks
to the second-order cone structure of the optimal power flow problem in the slave stage.
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6. Conclusions and Future Works

A hybrid master-slave optimization approach for optimal placement and sizing distributed
generators in DC distribution networks while using a combination of the classical Chu & Beasley
genetic algorithm in the master stage and a second-order cone programming model in the slave
stage, i.e., GA-SOCP. This algorithm has an important advantage regarding classical metaheuristics,
since solving the optimal power flow problem for optimal dimensioning the distributed generators
provided by the master stage with a SCOP model guarantees the existence and uniqueness of the
optimal solution, which is not possible with combination methods, such as BHO, CGA, and PSO,
where random procedures affect the optimization process. Numerical comparisons with classical
metaheuristics and exact methodologies demonstrate that, for the studied test feeders, the proposed
GA-SOCP approach deals with the global optimal solution. Simultaneously, it is not the case of the
comparative methods in the 69-node test feeder scenario. The effectiveness of the proposed GA-SOCP
method to find the optimal solution after 100 consecutive evaluations is about 73% for the 21-node test
feeder, and 93% in the case of the 69-node test system, which implies the high efficiency of the studied
hybrid optimization approach to deal with MINLP problems.

Regarding future works, it will be possible to make the following researches: (i) extend the
proposed optimization methodology to the optimal location and sizing of distributed generators and
capacitor banks in AC distribution networks, (ii) to apply the proposed GA-SOCP approach to the
problem of the optimal placement and sizing battery energy storage systems in AC and DC networks,
and (iii) to develop an economic dispatch approach to optimal locating renewable generation at isolated
distribution networks when considering variations in the load curve and the primary energy resources.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronyms
AC Alternating Current
DG Distributed Generator
GA Chu & Beasley genetic algorithm
HSM Hyperplanes search method
NLP Nonlinear Programming
CVX Matlab Software for Disciplined Convex Programming
GAMS General Algebraic Modeling System
MI Mixed-integer
MINLP Mixed-integer nonlinear programming
SOCP Second-order cone programming
SDP Semidefinite programming
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Sets and subscripts
L Set of lines
N Set of nodes
d Demand
gd Distributed generator
s Slack node
i or j Node
Parameters
G Conductance matrix
Gij Component of the conductance matrix that relates nodes i and j
Nava

dg Maximum number of distributed generators available
gkm Conductance between nodes k and m
pd Power demanded by loads
ps Power generated by generators
pgd Power generated by distributed source
round(·) Integer part of the argument
rand(·) Random number
Ost

i Offsprings of population i in period t
Variables
vi Voltage profile at node i
zij cross-product of voltage i with voltage j
wkm Population position k and m
yi binary variable associate with the location at node i
W Population matrix
Control variables
ps Power generated by conventional generator
pgd Power generated by renewable energies
pkm Power flow between nodes k and m
yi Binary variable for location of DG
Ps Power generated vector by conventional generator
Pgd Power generated vector by renewable energies
Limits
Nmax

gd Maximum number of DG
vmin, vmax Minimum and maximum voltage profile
Vmin, Vmax Minimum and maximum voltage profile squared
ps,min, ps,max Minimum and maximum by conventional generator
pgd,min, pgd,max Minimum and maximum by generated source
pmin

km , pmax
km Minimum and maximum power flow between nodes k and m
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