
applied  
sciences

Article

Estimating Slump Flow and Compressive Strength of
Self-Compacting Concrete Using Emotional
Neural Networks

Mosbeh R. Kaloop 1,2,3 , Pijush Samui 4, Mohamed Shafeek 5 and Jong Wan Hu 1,2,*
1 Department of Civil and Environmental Engineering, Incheon National University, Incheon 22012, Korea;

mosbeh@mans.edu.eg
2 Incheon Disaster Prevention Research Center, Incheon National University, Incheon 22012, Korea
3 Public Works and Civil Engineering Department, Mansoura University, Mansoura 35516, Egypt
4 Department of Civil Engineering, National Institute of Technology Patna, Bihar 800005, India;

pijush@nitp.ac.in
5 Aldana for General Contracting Co., Cairo 11865, Egypt; mshafeek123456789@gmail.com
* Correspondence: jongp24@inu.ac.kr

Received: 25 October 2020; Accepted: 26 November 2020; Published: 29 November 2020 ����������
�������

Abstract: The characteristics of fresh and hardened self-compacting concrete (SCC) are an essential
requirement for construction projects. Moreover, the sensitivity of admixture contents of SCC in
these properties is highly impacted by that cost. The current study investigates to estimate the
slump-flow (S) and compressive strength (CS), as fresh and hardened properties of SCC, respectively.
Four developed soft-computing approaches were proposed and compared, including the group
method of data handling (GMDH), Minimax Probability Machine Regression (MPMR), emotional
neural network (ENN), and hybrid artificial neural network-particle swarm optimization (ANN-PSO),
to estimate the S and 28-day CS of SCC, which comprises fly ash (FA), silica fume (SF), and limestone
powder (LP) as part of cement by mass in total powder content. In addition, the impact of eight
admixture components is investigated and evaluated to assess the sensitivity of admixture contents
for the modelling of S and CS of SCC. The results demonstrate that the performance prediction of
ENN model is more significant than other models in estimating S and CS characteristics of SCC.
The overall of Pearson correlation coefficient, r, and root mean square error (RMSE) of ENN model
are 97.80% and 20.16 mm, respectively, for the S. These are 96.07% and 2.59 MPa, respectively, for the
CS. Furthermore, the sensitivity of the powder content of fly ash is shown to have a high impact on
the estimated S and CS values of SCC.
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1. Introduction

Concrete workability and strength are essential characteristics that should be determined and
used widely in construction projects [1–3]. Compressive strength (CS) of concrete denotes the level
of uniaxial compressive stress, which refers to the concrete properties of concrete after hardening [1].
The workability of concrete is required for the handling and producing of concrete during the
construction. While it affects the cost of construction finalization [1]. Herein, the slump-flow (S) test
is one of the tests that almost uses to estimate the concrete workability. Herein, with increasing the
engineering applications of concrete, the self-compacting concrete (SCC) is developing to use with
easy replacement in a narrow spacing of steel of reinforcement concrete [2,4,5]. For that, both SCC
characteristics, CS and S, should be accurately estimated.
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Several studies have investigated the parameters that influence the CS and S values of conventional
concrete [6], SCC [4] and high strength concrete (HSC) [7]. Gholhaki et al. [5] summarized the impact
of admixture contents of SCC in that fresh and hardened properties. From their literature, it can be
concluded that fly ash (FA), silica fume (SF), limestone powder (LP), metakaolin (MK) and water/powder
(W/P) ratio are the main factors that can be impacted on the SCC properties. More explanation for the
impact of admixture contents in the SCC characteristics can be found in [8–10]. However, the modeling
approaches that can be used to estimate optimal admixture and SCC properties are still limited.
Experimental design and regression models are usually utilized to determine the CS and S values of
concrete [4,7].

Currently, different linear and nonlinear regression approaches have been utilized to estimate
the SC and/or S values of concrete, including group method of data handling (GMDH), Minimax
Probability Machine Regression (MPMR), emotional neural network (ENN), and artificial neural
network (ANN). For instance, Dutta et al. [11] applied MPMR to predict the CS of concrete, and the
results showed that the performance of it is acceptable, coefficient of correlation (R) = 93.5%, to use
for estimating the CS values. Belalia-Douma et al. [12] used ANN to predict the S and CS of SCC,
and authors concluded that the ANN is a useful method can be used into predicting SCC properties,
with R = 80% and 95% for the S and CS, respectively. Fuzzy logic was also applied to estimate the S and
CS of concrete and the results of it showed accurate with an acceptable rate of errors [6]. Deep learning
based on ANN was also applied to estimate the S value of SCC, and the results showed the performance
of the proposed model could be utilized routinely estimate SCC workability [13]. Biswas et al. [14]
used ENN to estimate the CS of hardened concrete and the results showed it is robust for predicting
of concrete behavior. GMDH was found a great tool can be applied to estimate the CS of hardened
concrete and CS based on a core test of concrete [15,16]. More studies can be found in [1–4,11,17–20]
for using advanced soft computing techniques into detecting the S and CS values of conventional
concrete, SCC and HSC.

Furthermore, hybrid algorithms have been used to estimate concrete properties.
Sadowski et al. [21] combined ANN with the imperialist competitive algorithm, and they found
that that model is applicable to estimate the CS of conventional concrete. Shariati et al. [22] compared
a hybrid artificial neural network–particle swarm optimization (ANN-PSO) with ANN to estimate the
behavior of channel connectors in normal and HSC, and the performance of ANN-PSO was seen better.
Optimization algorithm (WOA) was integrated with ANN to predict the CS of conventional concrete,
and the results showed that integration was improved the modeling for CS values [23]. A combination
between fuzzy radial basis based on ANN with biogeography-based optimization was proposed to
estimate the CS of SCC and good performance of CS was obtained from the proposed model [24].

This study aims to design a novel model to be used to estimate the S and 28-day CS of SCC
containing FA, SF, and LP based on its mix design, i.e., cement (C), FA, SF, LP, water (W), superplasticizer
(SP), coarse aggregate (CG), fine aggregate (FG). Four models are evaluated and compared in the
current study, including GMDH, MPMR, ENN, and ANN-PSO approaches. The proposed models
are evaluated and assessed using experimental data of 90 different concrete mix-designs of SCC were
obtained from Elemam et al. [4]. Based on our state-of-the-art research, the proposed models were
not previously evaluated to estimate the CS and/or S of SCC with a different admixture containing
FA, SF, and LP as part of cement by mass in total powder content. Furthermore, the sensitivity of the
admixture contents was evaluated based on the obtained results of optimum proposed models.

2. Material and Methods

2.1. Dataset Employed

The admixture properties, materials and the detail of obtained datasets were given from
Elemam et al. [4]. Here, a summary of the dataset used in this study was presented. The materials
used to conduct SCC are ordinary Portland cement (C) CEMI 52.5 N; class F FA, SF, and LP were used
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as cementing and filler materials. The physical and chemical properties of C, FA, LP, SF are presented
in Table 1. SP of polycarboxylate, ASTM C494 Type F, was utilized in the admixture contents. The CG
and FG were designed based on BS EN 12620, and that comprise a crushed dolomite size 12.5 mm and
natural sand with 2.975 fineness modulus for the CG and FG, respectively [4].

Table 1. Physical and chemical characteristics of (Cement)C, (fly ash) FA, (limestone powder) LP,
and (silica fume) SF [4].

Oxide Composition C FA LP SF

CaO (%) 62.70 4.18 96.40 0.54

SiO2 (%) 20.20 52.00 - 90.20

Al2O3 (%) 6.00 21.54 - 0.45

Fe2O3 (%) 3.30 5.96 0.10 0.37

MgO (%) 2.00 1.05 2.31 4.26

SO3 (%) 2.20 0.37 - 0.32

Specific surface area (m2/kg) 360 420 535 23,530

Specific gravity 3.15 2.38 2.80 2.22

The mix preparation was designed based on six independent variables that focused on the
percentage of total powder (P) content of the admixture. FA, SF, and LP were replaced the cement
by mass of total powered material. The percentage of FG/CG was selected constant for all cases.
The control sample of SCC admixture was designed to attain 680 mm and 44.3 MPa for slump flow
diameter and 28-day compressive strength, respectively; the mix ingredients of the control mixture is
presented in Table 2 [4]. The experimental preparation and tests were presented in Elemam et al. [4];
a cone (300 mm high, 100 mm and 200 mm of upper and lower diameters, respectively) was used to
measure the slump flow, and a hydraulic machine test (capacity and accuracy 200 tons and 0.5 ton,
respectively) was utilized to extract the compressive strength of 100 mm cubes after 28 days. The total
number of experiments was calculated using an equation and designed codes ranges, more details can
be found in Elemam et al. [4].

Table 2. Mixture contents of control (self-compacting concrete) SCC.

Item Powder (kg/m3) C (%) FA (%) LP (%) SF (%) W/P SP (%) Sand: Dolomite

content 500 65 20 10 5 0.38 1.15 1:1

In the current study, eight variables are considered as input variables to estimate S and CS of SCC.
Table 3 illustrates the input and output variables range. From the table, it can be seen that there is a
variety of range in the input variables; the maximum ranges were observed in the powered contents, C,
FA, LP, and SF. This means that the powdered contents are a significant function that could be affected
the SCC properties, S and CS, besides the main variables of concrete, W, CG, and FG.

Table 3. Input and output variables range.

Variable C
(kg/m3)

FA
(kg/m3)

LP
(kg/m3)

SF
(kg/m3)

W
(kg/m3)

SP
(kg/m3)

CG
(kg/m3)

FG
(kg/m3)

S
(mm)

CS
(MPa)

Average 325.00 100.00 50.00 25.00 190.01 6.25 816.66 816.66 708.28 41.31

Maximum 382.50 150.00 100.00 50.00 215.50 7.50 865.00 865.00 925.00 62.30

Minimum 270.60 50.00 0.00 0.00 165.00 5.00 768.30 768.30 400.00 20.90
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The datasets were randomly divided into three data phases to carry out the proposed models:

(a) Training phase: Included the required data for the design of the proposed models. Sixty-three
out of 90 (70%) datasets were used as the training phase.

(b) Testing phase: Included the remaining data (30%) to evaluate the performance of the proposed
models with an independent dataset.

(c) Validation phase: Here, all the data (90 datasets) was used to qualify a model’s performance with
a large amount of dataset.

2.2. Models Design and Evaluation

Four models were developed and evaluated in this study to estimate S and CS of SCC. The following
are the algorithm summary of each model and the design models for detecting S and CS of SCC.
The models were designed based on the multi-input single-output processing system.

2.2.1. GMDH Model

The GMDH is a self-organizing and complex approach through a complicated process by building
a feed-forward network (FFN) function [15,16,25]. Although the GMDH has the same processing of
ANN, it possesses some advantages compared by ANN, such as high speed and easier mathematical
functions [25]. The current study developed GMDH model for estimating S and CS of SCC using eight
input variables through a partial quadratic polynomials system.

In general, the relationship between inputs and output variables can be represented as follows [16]:

y = b0 +
n∑
1

bixi +
n∑
1

n∑
1

bi jxix j +
n∑
1

n∑
1

n∑
1

bi jkxix jxk + · · · (1)

where, y and x represent the output and input variables, respectively, n is the number of observations
for each variable, and b notes model coefficients.

Simply, a partial quadratic polynomials system for two inputs variables can be expressed as
follows [15,16]:

y
(
xi, x j

)
= b0 + b1xi + b2x j + b3xix j + b4x2

i + b5x2
j (2)

The least-square technique is used to calculate the model coefficients.
(

n
2

)
=

n(n−1)
2 neurons can

be generated in the first hidden layer of the FFN from the measurements
{(

yi, xip, xiq
)
(i = 1, 2, . . . , M

}
for different p, q ∈ {1, 2, . . . , n} [1,15,16,25]. As a step for finding the unknown coefficients of the model,
the inputs and output variables can be reconstructed in the following form.

x1p x1q
x2p

...
xMp

x2q
...

xMq

. . .

. . .
...
. . .

y1

y2
...

yM


The quadratic sub-expression in Equation (2) use for each row of M to express the following

matrix equation:
Y = Ab (3)
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where, b is the vector of model coefficients of quadratic polynomial and Y is the output vector. While
matrix A can be expressed as follows, in the state of Equation (2), as an example:

A =


1 x1p x1q x1px1q x2

1p x2
1q

1 x2p x2q x2px2q x2
2p x2

2q
. . . . . . . . . . . . . . . . . .
1 xMp xMq xMpxMq x2

Mp x2
Mq

 (4)

Therefore, based on the least-square method, the unknown coefficients can be obtained as follows:

b =
(
ATA

)−1
ATY (5)

In this method, the connectivity topology of the network design based on three parameters, that
are maximum neuron numbers (Nn), the maximum number of layers (Ln), and selection-pressure

criteria (α) [25]. The Nn can be calculated using
(

n
2

)
=

n(n−1)
2 formula. While, the Ln and α can be

estimated based on the best determination of root mean square error (RMSE) and Pearson correlation
coefficient (r) for the neurons; meanwhile, the network scheme was also designed based on the RMSE
values, based on the best or worst RMSE, the neurons can be removed or accepted using RMSE and r
values. More details for the estimating of these parameters can be found in et al. [25]. In this study, the
best models for S and CS of SCC were generated and concluded in Table 4.

Table 4. GMDH model parameters for S and CS of CSS.

Model Parameters Nn Ln α

S 15 5 0.3

CS 10 4 0.3

2.2.2. MPMR Model

The MPMR theory was presented and applied in [11,26–28]. In general, MPMR is a kernel
regression algorithm can be expressed as follows to estimate the desired value (y).

y =
n∑

i=1

βiK(xi, x) + b (6)

where, K(.) is kernel function; x and y are the input and output variables; βi are unknown coefficients
(or weight) and b is a bias, and n is the dataset number.

MPMR recreates the x and y datasets using a distribution of both datasets with a given mean and
covariance of them as follows:

ui = (yi+1, xi1, xi2, . . . , xin) (7)

vi = (yi−1, xi1, xi2, . . . , xin) (8)

The statistical-classification boundary between ui and vi can be classified as a regression surface [27].
Based on the training dataset (nx,ny) of input and output variables, the coefficients in Equation (6) can
be calculated based on a kernel width of the kernel function and insensitive error zone required. In the

current study, the Radial basis function (RBF) was applied (K(xi, x) = exp[− (xi−x)(xi−x)T

2σ2 ]) where σ is the
kernel width. For developed MPMR model for S of SCC, the design values of σ and error insensitive
zone were 0.6 and 0.003 respectively; whereas, that for CS of SCC were 1.7 and 0.003, respectively.
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2.2.3. ENN Model

The ENN is a learning algorithm of backpropagation ANN; it is summarized in Biswas et al. [14].
Figure 1 proposed ENN diagram and processing. ENN includes an artificial emotion unit that used
to improve the performance of network nodes, and the generated hormonal weights can be changed
using the learning algorithm of the feedback loop (Figure 1) [29]. From Figure 1, the dynamic hormones
of Hb, Hv, and Hg were given at each node. Hb, Hv, and Hg are produced and changed during
the training phase and learning process, respectively. The hormonal coefficients, such as activation
function, weights, and net function, can be determined and improved in the training stage. In Figure 1,
the solid and dotted lines represent the neural and hormonal paths, respectively. Thus, the output (y)
of the ith node of the ENN model with the three hormonal paths can be represented as [30]:

yi =

wi +
∑

h

δi,hHh

︸               ︷︷               ︸
1

× f (
∑
j
[

βi +
∑

h

εi,hHh

︸              ︷︷              ︸
2

×

γi, j +
∑

h

ϕi, j,kHh

︸                  ︷︷                  ︸
3

xi, j

+

µi +
∑

h

τi,hHh

︸              ︷︷              ︸
4

)

(9)

where,
H =

∑
i

Hi,h; h = (b, v, g) (10)
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Figure 1. The emotional neural network (ENN) structure network (A, B, and C are the weights to
input, net and activation functions, respectively; E is glandity; I represents the hormonal unit; D, M,
F, G, K, and L are weights applied on net output, hormones from input/output, activation function,
net function, and input static weights, respectively).

In Equation (9), part (1) represents the imposed weight to the activation function (f ). It includes
constant neural weight of wi as well as the dynamic hormonal weight of

∑
h δi,hHh. Section (2) consists

of applied weight to the summation (net) function, part (3) contains executed weight to the input
variables (xi, j), and term (4) shows the bias of the summation function, both neural and hormonal
weights of µi and

∑
h τi,hHh, respectively, were comprised.
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The effect of systems hormonal level (Hh) in each hormonal weight is adjusted through
δi,h, εi,h, ϕi, j,k, and τi,h parameters and in turn, the model output of ith neuron (yi) gives hormonal
feedback of Hi,h to the system as:

Hi,h = glandityi,h × yi (11)

where, the glandity factor should be improved in the training stage of ENN. Herein, the anxiety
factor is prepared based on the change of input data of each training sample. However, at the first
stage, the confidence factor is applied to connect the anxiety factor and the network output. For that,
to set the hormonal values of Hh, some schemes can be considered, e.g., average of input variables
of learning sample [31,32]. Here, the learning process is utilized to update the hormonal values
to achieve the estimated values. Consequently, anxiety and confidence coefficients (glandity factor)
are significant parameters in ENN model. In this study, both parameters were used throughout
the generalization and learning process. These parameters were supposed lies between 0 and 1.
Furthermore, the trial-and-error method was used to determine ENN structure, neurons and layers
numbers, to estimate the optimum S and CS estimation value.

2.2.4. ANN-PSO Model

A hybrid ANN-PSO is integration technique in-between ANN and PSO for the architecture of the
ANN [33]. The details of ANN, PSO and ANN-PSO can be found in [22,33,34]. Herein, the output
neuron (y) of ANN can be expressed as follows [33]:

y = max
(
0,

∑
i
wixi + b

)
(12)

where, w, x, and b are the weight, input neuron, and bias, respectively.
The mapping between ANN layers can be presented as follows [33]:

hi = max(0, Mihi−1 + bi) f or 1 ≤ i ≤ L, and h0 = x (13)

y = max(0, VhL) (14)

where, L is the layers numbers, matrices M and V, and vector b are the learned parameters of ANN.
In ANN-PSO, the learned parameters of ANN can be estimated using PSO to minimize the classic

ANN algorithm errors. Here, the mean square error (MSE) was defined as a fitness cost function
into estimating the ANN parameters. The best model was achieved based on a lower value of MSE.
The PSO started with generating a random swarm of particles for each parameter of ANN. Next,
the swarm was updated based on the position update of particles. The updated circulated up to obtain
the optimum position of particles. The position update can be expressed as follows [33]:

vt+1
i = wvt

i + c1r1
(
pt

best,i −Xt
i

)
+ c2r2

(
gt

best,i −Xt
i

)
(15)

Xt+1
i = Xt

i + vt+1
i (16)

where, X and v denote the position and velocity of the particle, respectively; w is the inertia parameter;
c1 and c2 represent the cognitive and social component parameters, respectively. r1 and r2 are randomly
assumed in between 0 and 1. pt

best,i and gt
best,i are the best positions of the particle at individual and

global positions, respectively.
In this study, the PSO was used to estimate the best parameters of ANN, number of hidden layers

and neurons in each layer. Based on our trails, the best architecture of the ANN was achieved with
3 layers and 20 neurons, respectively, for estimating S of SCC; whereas, for CS, the 3 layers with
10 neurons were found the best performance. The w, c1 and c2 were selected to be 1+rand

2 , 1.0, and
2.0, respectively.
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2.2.5. Models Processing and Performance Evaluation

The processing steps of the proposed models were implemented through five stages as presented
in Figure 2. MATLAB software was used to design and evaluate all models. Herein, eight variables are
used as inputs for modeling S and CS of SCC. First, the whole data was normalized using Equation (17)
for modeling, and output of models was inversed to original data for evaluation. Then, the data was
divided into three categories, the training phase for designing the proposed models, testing phase
for evaluating the models, and validation phase for qualify the models. The data was divided into
70% and 30% for the training and testing stages, respectively; whereas, the whole data was used in
the validation phase. After that, the models were designed and evaluated in the training stage and
compared in the testing stage. The models were evaluated and compared using a large number of data
in the validation stage. Here, four statistical criteria, Equations (18)–(21), were applied to assess the
performance of the proposed models; these are r (Equation (18)), RMSE (Equation (19)), mean absolute
error (MAE) (Equation (20)), and percentage of RMSE (PE) (Equation (21)).

dn = (D−Dmin)/(Dmax −Dmin) (17)

where, dn is the normalized data; D, Dmax, and Dmin are the data value, maximum and minimum data
used, respectively.

r =

∑N
i=1(So − So)

(
Sp − Sp

)
√∑N

i=1(So − So)
2 ∑N

i=1

(
Sp − Sp

)2
× 100 (18)

RMSE =

√∑N
i=1

(
Sp − So

)2

N
(19)

MAE =
1
N

N∑
i=1

∣∣∣Sp − So
∣∣∣ (20)

PE =
RMSE

So_mx − So_mi
× 100 (21)

where Sp and So are the estimated and measured values of S or CS, respectively; N is the number of
samples; So and Sp are the mean values of the estimated and measured values of S or CS, respectively,
and So_mx and So_mi are maximum and minimum values of measured S or CS, respectively.
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data was divided into 70% and 30% for the training and testing stages, respectively; whereas, the 

whole data was used in the validation phase. After that, the models were designed and evaluated in 

the training stage and compared in the testing stage. The models were evaluated and compared using 

a large number of data in the validation stage. Here, four statistical criteria, Equations (18)–(21), were 

applied to assess the performance of the proposed models; these are r (Equation (18)), RMSE 

(Equation (19)), mean absolute error (MAE) (Equation (20)), and percentage of RMSE (PE) (Equation 

(21)). 

𝑑𝑛 = (𝐷 − 𝐷𝑚𝑖𝑛)/(𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛) (17) 

where, 𝑑𝑛 is the normalized data; D, Dmax, and Dmin are the data value, maximum and minimum data 

used, respectively. 

𝑟 =
∑ (𝑆𝑜 − 𝑆�̅�)(𝑆𝑝 − 𝑆�̅�)
𝑁
𝑖=1

√∑ (𝑆𝑜 − 𝑆�̅�)
2∑ (𝑆𝑝 − 𝑆�̅�)

2𝑁
𝑖=1

𝑁
𝑖=1

× 100 (18) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑆𝑝 − 𝑆𝑜)

2𝑁
𝑖=1

𝑁
 (19) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑆𝑝 − 𝑆𝑜|

𝑁

𝑖=1

 (20) 

𝑃𝐸 =
𝑅𝑀𝑆𝐸

𝑆𝑜_𝑚𝑥 − 𝑆𝑜_𝑚𝑖
× 100 (21) 

where 𝑆𝑝𝑎𝑛𝑑 𝑆𝑜 are the estimated and measured values of S or CS, respectively; N is the number of 

samples; 𝑆�̅� 𝑎𝑛𝑑 𝑆�̅�  are the mean values of the estimated and measured values of S or CS, 

respectively, and 𝑆𝑜_𝑚𝑥 𝑎𝑛𝑑 𝑆𝑜_𝑚𝑖  are maximum and minimum values of measured S or CS, 

respectively. 
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Figure 2. Flowchart of models processing and evaluation. Figure 2. Flowchart of models processing and evaluation.

2.3. Sensitivity Analysis

From the previous step, the optimum model for estimating S and CS of SCC can be obtained.
The sensitivity of the eight variables was then investigated and studied in the optimal model. The inputs
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impact on the concrete slump and compressive strength was assessed by calculating a sensitivity
index, which can be used to prove the significant input variables in the model. The sensitivity index
would decrease in the admixture contents, which leads to a cost reduction of SCC. In the current study,
a step-by-step method was implemented to detect the sensitivity of variables by varying each of the
input variables at a constant rate. The sensitivity (Sv) of each variable was calculated as follows [11,35]:

Sv(%) for each variable =
( 1

N

)∑N

j=1

(
(%change in output)
(%change in input)

)
j
× 100 (22)

where, N is the number of training data points. A constant rate of 20% was selected.

3. Results and Discussion

3.1. Slump Flow Modeling

The performance of the proposed models for estimating S of SCC are presented in Figures 3 and 4
and Table 5. Figure 3 presents the measured slump flow and estimated values by the proposed models
in the training and testing stages. Table 5 demonstrates the performance of models in the training,
testing and validation stages. The scatterplot of the proposed models’ results compared by measured
slump flow for the validation phase is presented in Figure 4. In the training stage, the performance of
MPMR model is shown better than other models with RMSE = 3.77 mm and r = 99.94%. While the
worst model for modeling S is the GMDH, with a percentage of model error is 8%. The performance
of ENN and ANN-PSO models are shown acceptable, with a percentage of model’s errors are 4.23%
and 5.77%, respectively. Meanwhile, the percentages of model’s errors in the testing stage are totally
changed, with values of 4.14%, 8.96%, 13.05%, and 13.54% for the ENN, ANN-PSO, GMDH and MPMR
models, respectively. The correlations between measured and estimated S are 98.67%, 91.99%, 86.76%,
and 82.8% for the ENN, ANN-PSO, GMDH and MPMR models, respectively. These results indicate
that the number of data affects the MPMR model performance. In addition, the performance of ENN
model is the best with low numbers of data for the slump of SCC. Thus, the ENN model outperforms
other models and can be used for modeling the slump behavior of SCC.
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Figure 3. The performance of the models compared by slump measured values in the training and
testing stages.

To validate the models’ performance, the entire data set was used to evaluate the quality of the
models with a significant amount of data. From Table 5 and Figure 4, it can be shown that the robust
model that can be used to estimate the slump flow of SCC is the ENN model. The percentage of the
estimation error of the ENN model approached 3.8%. In addition, the closest model to the ENN model
is the MPMR model; the performance of it is shown to be high with increasing the numbers of data.
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Table 5. Performance assessment of the models for S estimation.

Statistical Parameter GMDH MPMR ENN ANN-PSO

Training

RMSE (mm) 42.00 3.77 22.23 30.29

MAE (mm) 33.61 1.20 12.97 20.91

r (%) 91.63 99.94 97.73 95.76

PE (%) 8.00 0.72 4.23 5.77

Testing

RMSE (mm) 41.75 43.34 13.26 28.67

MAE (mm) 33.87 31.89 9.53 21.52

r (%) 82.80 86.76 98.67 91.99

PE (%) 13.05 13.54 4.14 8.96

Overall

RMSE (mm) 30.48 23.95 20.16 42.54

MAE (mm) 24.55 10.41 11.09 31.93

r (%) 94.89 97.15 97.80 90.17

PE (%) 5.81 4.56 3.84 8.10
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For further investigation into the performance of the proposed models with a low number of
data (testing phase) and a large number of data (validation stage), the Violin and Taylor diagrams are
presented in Figure 5a,b, respectively. The Violin plot was used to evaluate the model’s errors, and the
estimated and measured data were assessed in the Taylor plot. It is obviously shown from Figure 5a
that the ENN model is the best model that can be used to estimate the S of SCC. The distribution of
errors is approximately normal with low outliers since the mean and median of model error is nearly
same. Furthermore, summarize multiple statistical parameters were presented in Figure 5b for the
models in the validation stage. The standard deviation, root mean square difference (RMSD) and r
are presented in the diagram. From the figure, it can be clearly shown that the performance of ENN
is better than other models for estimating the slump flow since it has a close performance model to
the measured S values. From these results, it can be concluded that the ENN model can be used as a
significant machine learning technique for estimating precise S values for the S data of SCC.
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3.2. Compressive Strength Modeling

The four models with the eight input variables were used to estimate the compressive strength
of SCC. The model’s performance in training and testing stage are compared in Figure 6. A high
correlation between measured and estimated CS is observed with MPMR and ENN models in both
stages. While maximum error can be observed with models GMDH and MPMR at training and testing
stages, respectively. Table 6 summarizes the performance of proposed models at training, testing and
validation stages, and Figure 7 presents the performance of the four models in the validation stage.
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Figure 6. The performance of the models compared by compressive strength measured values in the
training and testing stages.

The performance of MPMR model is also seen the best in the training stage, as presented in Table 6.
The percentage error of the model is 4.21%; followed by the ENN model within 6.02% percentage error.
In contrast, the best model in the testing and validation stages is ENN model within 8.08% and 6.26%
percentage errors, respectively (see Table 6 and Figures 6 and 7); while, the worst models’ performance
in the testing and validation stages are the MPMR and GMDH models, respectively. Thus, the MPMR
model is also influenced by the data number when used to estimate the CS of SCC. Here, the ENN
model outperforms other models with RMSE = 2.59 MPa and r = 96.07% for the overall data. The MAE
of ENN model for predicting CS of SCC is 1.77 MPa (a lower value compared by other models). These
results reveal that the ENN model can be used as a soft computing model for detecting accurate CS of
SCC with the eight inputs.

Table 6. Performance assessment of the models for CS estimation.

Statistical Parameter GMDH MPMR ENN ANN-PSO

Training

RMSE (MPa) 3.41 1.74 2.49 3.20

MAE (MPa) 2.62 1.25 1.64 2.12

r (%) 93.76 98.40 96.70 94.56

PE (%) 8.24 4.21 6.02 7.73

Testing

RMSE (MPa) 3.65 4.08 2.78 2.88

MAE (MPa) 2.85 3.11 2.04 2.09

r (%) 89.79 86.97 94.36 93.54

PE (%) 10.62 11.86 8.08 8.37

Overall

RMSE (MPa) 3.47 2.67 2.59 3.09

MAE (MPa) 2.66 1.81 1.77 2.43

r (%) 92.78 95.84 96.07 94.47

PE (%) 8.39 6.45 6.26 7.46
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Figure 7. Scatterplot of proposed models with measured compressive strength in the validation stage.

For more investigation, the performance of the proposed models in testing and validation phases
were assessed. The Violin and Taylor diagrams for the testing and validation phases are presented in
Figure 8a,b, respectively. The Violin plot for CS estimation also assessed the model’s errors, and the
estimated and measured CS values were used in the Taylor plot. It is obviously shown from Figure 8a
that the ENN model is the best model that can be used to estimate the CS of SCC. The distribution of
errors is approximately normal with low outliers compared by other models, the average of maximum
variation of model’s errors are about ±12.88 MPa, ±15.49 MPa, ±10.62 MPa, ±11.27 MPa. Some shift
changes can be observed in the quartiles of Violin plot of ENN model, but it is still the best distribution
among the four models.

In addition, a summary of multiple statistical parameters was presented in Figure 8b for the
proposed models in the validation stage. From the figure, it can be clearly shown that the performance
of ENN is better than other models for estimating the compressive strength of SCC since it possesses
the close performance model to the measured CS values. Here, the performance of model MPMR is
shown closer to the performance of the ENN model; but the data numbers still influence it (see Table 6
and Figures 6 and 8a). From these results, it can also be concluded that the ENN model can be applied
as a significant machine learning technique for estimating accurate CS values for the CS data of SCC.
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3.3. The Sensitivity of Input Variables

The input and output variables of the ENN models are used in Equation (22) to detect the impact
of admixture contents on SCC characteristics. The calculated sensitivity of each variable in S and CS is
presented in Figure 9. From the figure, it can be shown that the main components of the admixture
affected SCC characteristics. The S and CS are influenced by the contents of the coarse and fine
aggregate; while the FG percentage higher affected CS, the S is affected by the contents of CG. The effect
of water content is shown to be high on S values compared to the effect on the CS values of SCC.
Here, the SP effect is shown to be low on the CS properties of SCC. Meanwhile, the effect of powdered
contents is shown to be high and has a different impact on S and CS values of SCC. The total effect of
powdered materials on CS and S is 57.54% and 40.87%, respectively. Thus, the impact of total powdered
content is high on the admixture content of SCC compared by other admixture materials. The minimal
effect on S and CS from the whole admixture content is the SP percentage. When comparing the
powder content, it can be seen that the FA affects the CS of SCC by 35.6%, followed by LP, SF, and C,
respectively by 12.36%, 5.34%, 4.34%. While the impact of FA, LP, SF, and C on S of SCC is 12.37%,
8.11%, 11.38%, 9.01%, respectively. These results indicate that the FA can be considered as the main
factor that affects the S and CS values of SCC, and the cement has a lower impact.

Thus, it can be concluded that the sensitivity of powder content of fly ash has a significant impact
on the estimated S and CS values of SCC that contains FA, SF, and LP based on its mix design i.e., C, FA,
SF, LP, W, SP, CG, FG. Herein, these results are shown coinciding with Elemam et al. [4], who concluded
that the fresh and hardened characteristics of SCC are affected by the FA percentage. Aiyer et al. [36]
also shown that the FA is the high impact factor for estimating CS of SCC containing C, FA, W, SP, CG,
and FG. FA is also seen improved the mechanical performance of SCC that includes C, marble cutting
slurry waste, FA, SF, W, SP, FG, and CG [37].
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4. Conclusions

This study investigates to develop a novel machine learning method can be used to estimate the
fresh and hardened characteristics of SCC. Four models, including GMDH, MPMR, ENN and hybrid
ANN-PSO algorithms, are evaluated and compared to detect the slump flow and 28-day compressive
strength of SCC. Laboratory data obtained from Elemam et al. [4] was used in this study. The data
comprises FA, SF, and LP as part of the cement by mass in the total powder content. In addition,
the impact of admixture contents is investigated for studying the effect of powder content of admixture,
which would decrease the admixture cost of the SCC. Results of the model’s performance demonstrated
that the developed ENN model was significantly trained, tested and validated for estimating the slump
flow and compressive strength of SCC. In addition, it can be used as a machine learning technique
for estimating the accurate slump flow and compressive strength values of SCC. The performance of
MPMR was successfully trained to estimate the slump flow and compressive strength of SCC, but its
performance with a low amount of an available data of SCC is shown to be lower than other models.
The sensitivity analysis of input variables for estimating slump flow and compressive strength of
SCC through ENN model shows that the impact of fly ash for detecting slump flow and compressive
strength is 12.37% and 35.6%, respectively. Thus, the sensitivity of the powder content of fly ash is has
a significant impact on the estimated SCC characteristics.
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