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Abstract: Blade damage accounts for a substantial part of all failure events occurring at
gas-turbine-engine power plants. Current operation and maintenance (O&M) practices typically use
preventive maintenance approaches with fixed intervals, which involve high costs for repair and
replacement activities, and substantial revenue losses. The recent development and evolution of
condition-monitoring techniques and the fact that an increasing number of turbines in operation are
equipped with online monitoring systems offer the decision maker a large amount of information
on the blades’ structural health. So, predictive maintenance becomes feasible. It has the potential
to predict the blades’ remaining life in order to support O&M decisions for avoiding major failure
events. This paper presents a surrogate model and methodology for estimating the remaining life
of a turbine blade. The model can be used within a predictive maintenance decision framework to
optimize maintenance planning for the blades’ lifetime.

Keywords: life; remaining useful life; condition-based maintenance; real-time prognostics;
surrogate model

1. Introduction

Gas-turbine engines (GTE) operate in multiregime mode, and their parameters greatly depend
on the operating conditions. The actual operating conditions of a GTE may significantly differ from
adopted conditions in the design for a typical cycle.

The lifetime of engine components and a host of factors that limit it depend on the scatter of
the dimensions, the materials’ characteristics, and the working and operating conditions; therefore,
it can vary from operator to operator. A life assessment method as a part of condition-based
maintenance [1–5] is needed to assess a component’s life in order to avoid discarding components that
have significant useful life left.

Developing methods for calculating damage to GTE parts in real time is necessary for designing
effective prognostic systems. Currently, there are several types of such methods:

1. Methods based on the use of equations obtained using simplified models; for example, the simple
relation between rotor speed and part stress state can be used.

2. Methods based on big-data analysis and the formation of correlation dependencies between
measured parameters and failures [6].
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3. Methods based on nondestructive and destructive testing (service-based approach). In this
method, it is necessary to find correlation between microstructural degradation and temperature
exposure time, and/or service duration [7].

The methods of the first group have several disadvantages:

• The deterioration of engine parameters during operation, and the fact that individual
characteristics of both parts and engines are not considered.

• Damage assessment is usually performed for only one critical zone; however, during operation,
the critical zone may change.

• Numerical models are usually oversimplified and do not consider the plasticity, creep (stress
redistribution), and anisotropy of material characteristics.

• As calculations are performed on the most unfavorable design point, and a substantial safety
factor is used to ensure failure-free operation, this causes many components to be discarded
too early.

The purpose of this study was to enhance methods of predicting the level of stress and exhausted
durability in rotor turbine blades during operation using surrogate-assisted prediction. We propose a
machine-learning-based surrogate model that can be efficiently utilized in practice for the estimation
of gas-turbine-engine blades’ residual life, and thus for their preventive maintenance (Figure 1).

Figure 1. Proposed methodology for surrogate model: usage scenario of surrogate model in real
operation conditions. Tatm, atmospheric air temperature; Hatm, atmospheric air humidity; Q f uel ,
fuel consumption; twork, regime duration; WGTE, gas-turbine-engine power; COT, compressor-outlet
temperature; TIT, turbine-inlet temperature; Dzone, separately estimated damage for each critical zone.

2. Methods

2.1. GTE Model

Figure 2 shows the architecture of the primarily used gas-turbine-engine model. The physics-based
model of a gas turbine was separated into submodel blocks that were further sequentially connected.
Each submodel is described by equations that define its physics. The applied-physics-based model
uses a six-species gas model (oxygen, nitrogen, water vapor, carbon dioxide, argon, and fuel) and
requires real operation data to define initial working conditions, such as atmospheric air temperature,
pressure and humidity, and pressure in the chambers.
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Figure 2. Proposed gas-turbine-engine (GTE) model. LPC, low-pressure compressor;
HPC, high-pressure compressor; LPT, low-pressure turbine; HPT, high-pressure turbine; Cp volume,
chamber with constant volume.

The atmospheric source on its own represents a submodel with zero input and constant
thermodynamic conditions. The input parameters that it requires in order to calculate the specific
enthalpy and capacity ratio are pressure, temperature, gas-species fraction, and molar mass. Under
the first law of thermodynamics for an open system, a submodel of Cp volume (the chamber with
constant volume) is then used to solve the variation of internal energy on the basis of the assumption
that thermal losses to the environment are negligible [6,8]. Next, the compressor submodel with a
performance map that defines several steady-state regimes of the compressor performance was applied
to evaluate enthalpy and outlet temperature. The combustion chamber was characterized by the same
equations as those of the chamber submodel with a correction for some additional heat produced due
to the occurring chemical reaction.

2.2. Damage Prediction

Turbine blades operate for extended periods under heavy loads in conditions of nonuniform
heating and cyclic loading. Damage is a process that occurs in a material under stress and temperature,
and eventually leads to failure [6]. Damage is assumed to be zero (D = 0) when the material is
new and equal to one (D = 1) upon local stress rupture failure. The damage may be due to creep,
low-cycle fatigue (LCF), or thermomechanical and high-cycle fatigue, which are some key damage
modes. For high-temperature blades, other factors such as oxidation should also be considered [9–11].

By comparing the value of the accumulated damage with its experimentally defined maximal
allowable value, one can predict the residual life. Under conditions of the simultaneous action of
several damage modes, the linear damage-accumulation (LDA) rule [12,13]) can be used:

Dτ + Dc + Dv + . . . + Dj = a (1)

where Dτ , Dc, and Dv characterize the contribution of the effects of static, cyclic, and vibration loads
to the total damage, and a is the material parameter. Other damage modes (Dj) can also be considered.
Although the proposed method allows for us to consider various damage modes, because this study
considered a GTE power plant, only static damage was considered:

Dτ =
te

τr
(2)

where te is the actual time spent under conditions i (local values of temperature and von Mises stress),
and τr is the time to failure under condition i; τr can be determined using the Larson–Miller parameter
(LMP) (Equation (3)).

τr = 10
LMP

T −C (3)
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where T is absolute temperature (K) and C is the material constant. LMP is defined by the value of
von Mises stress. Using the LDA rule is less accurate, as the history of the damage is not considered.

During operation in a regime, stress redistribution and relaxation occur (Figure 3). If this process
is not considered during strength calculations, the damage value may be several times higher.

Figure 3. Typical relaxation curve.

To calculate the kinetics of blade stress state, strain-hardening theory was used in the
ANSYS® software.

ε̇cr = C1 · σC2 · εC3
cr · e−C4/T (4)

where ε̇cr is creep-strain rate, εcr is creep strain, and C1...C4 are parameters dependent upon
blade material.

To calculate damage-taking stress relaxation into consideration, the following equation can
be used:

Dτ =
∫ te

0

dt
τr(t)

(5)

where τr(t) is the time to failure at the current temperature (T) and stress (σ) in the blade at moment of
time t. To calculate the damage, the stress-relaxation curve is divided into a set of segments, at the
vertices of which time to failure is determined at the current stress level (σti).

2.3. Surrogate-Model Construction

To predict residual life, a machine-learning-assisted surrogate-modeling approach was
proposed [1]. This approach is based on a series of 3D stress-state calculations. The obtained surrogate
model, along with the GTE model (Figure 1) were used to evaluate the accumulated damage to the
turbine blades in real time using the measured parameters. The proposed approach may also be used
to determine the influence of operating conditions, such as air inlet parameters, on the engine parts’
life. The method consists of the following steps:

1. Selection of parameters and their range that determine the stress state of the blade.
2. Determination of material blade characteristics.
3. Construction of solid-state and finite-element (FE) models of the blade.
4. Calculation of strength with consideration of material anisotropy and nonlinearities.
5. Formation of blade surrogate model.

These steps are described in detail below, some information about the machine learning terms is
given in Appendix A.

Step 1: The choice of parameters determining the stress state of the blade is based on the GTE
model (Figure 1). For high-pressure turbines (HPT), such parameters are turbine inlet temperature
(TIT), RPM, and compressor outlet temperature (COT). The range of assigned parameters is based on
operation history (including engine prototypes) or on the results of the use of thermodynamic models
of the engine.
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Step 2: Experimental determination of material blade characteristics. The test regimes depend on
the type of material; for example, for single-crystal blades, it is necessary to test specimens with various
crystallographic orientations [14]. After the experiments, it is necessary to form a set of structural
strength characteristics of the material [14]. At this stage, the damage-accumulation rule should also
be checked.

Step 3: After constructing a solid model of the blade, the FE model is generated (Figure 4) using
second-order hexagonal elements consisting of 454,180 nodes and 138,542 elements. ANSYS® software
was used to generate mesh and perform calculations (see Appendix B).

After constructing a solid model of the blade, the FE model is generated (Figure 4). It is
recommended to use the second-order elements and check the quality of the FE model.

Figure 4. Finite-element (FE) model of the considered blade.

Step 4: At this stage, the blades’ stress–strain state is calculated considering plasticity, creep,
and geometric nonlinearity. Depending on the statement of the problem, the contact interaction
between blade and disk, and the anisotropy of the material blade characteristics can be considered.
For single-crystal turbine blades, the anisotropy of the material characteristics must be considered.
For this purpose, a material model is formed with the properties determined by a preliminary study
for various crystallographic directions [14]. First, at this stage, preliminary calculations of the blades’
strength in several regimes are performed. Using the results of these calculations, the critical locations
of the turbine blades are determined (Figure 5).

Figure 5. Critical zones (1–8) of considered blade.

For HPT blades, the complexity of the task (and execution time) can be reduced by using the
assumption of maintaining the cooling effectiveness (Θ) when changing the cycle parameters. If the
blade’s temperature (Tm) and the parameters of the cycle on any mode i are known, in each of the
nodes of the FE model, the cooling effectiveness parameter (Θ) can be calculated as follows:

Θ =
TIT − Tm

TIT − COT
(6)

where TIT is the turbine-inlet temperature, Tm is the metal temperature, and COT is the
compressor-outlet temperature. Calculation of the accumulated damage must take place in real
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time; this can be achieved by different methods, including surrogate modeling [15,16]. To form the
dependence of the damage on the engine parameters, surrogate modeling can be used, the purpose of
which is to build an approximation model to predict the values of the output parameters on the basis
of the input parameters from the range of permissible values.

Step 5: The surrogate model of the blade is a nonlinear-regression model that is constructed using
a combination of ensemble machine-learning methods such as model stacking and boosting. The main
steps to construct the proposed surrogate model (Figure 6) were:

1. Data normalization: Each variable was individually scaled, such that it was in the given range
between 0 and 1. The transformation was calculated as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(7)

2. Regime split and sampling: Since the original target distribution was biased towards near-zero
values, which is explained by damage accumulation under usual working conditions, regime split
was performed. The data points were split into two groups: working and extreme conditions.
Then, the input dataset for the model was obtained by uniform sampling from these two
distributions using the bootstrapping technique (random sampling with replacement) to
compensate for imbalance between the regimes.

3. Validation scheme: The resampled dataset from the previous step was divided into training and
test sets with partitioning ratios of 80% and 20%, respectively. The training set was then randomly
divided into ten subsets in order to perform k-fold cross-validation (CV) during model training.

4. Model training: Each so-called “weak” submodel included in the ensemble was first trained on
(k − 1) folds of the training data, while the remaining fold was used to make predictions, as well
as an evaluation set for early stopping to prevent the submodel from overfitting. The following
procedure was repeated k times for each fold. Further, this submodel was fitted on the whole
training set, and predictions were then made on the test set. The submodel’s predictions from the
training set were then used as features to build the master (stacked) model, which in turn was
used to make final target predictions on the test set. For each of the models, the root-mean-square
error (RMSE) was chosen as an objective function, as well as an accuracy metric during validation.

5. Model selection: Hyperparameters such as learning rate, maximal tree depth, and number of
leaves were optimized for each model using randomized search with independent threefold
cross-validation, which showed relatively better performance than that of grid search in finding a
global minimum [17].

Code availability: The source code, pretrained ensemble submodels, and full surrogate model
were deposited in a GitHub repository (https://github.com/raevskymichail/ciam_ml_model) [18].

The advantages of the proposed approach are:

1. Several critical zones are tracked.
2. The life counter can be adapted to a specific part or GTE.
3. Results of 3D calculations with consideration of plasticity, creep, and material anisotropy can

be used.
4. Loading history can be considered.
5. It is possible to account for various damage modes and residual stress in parts.
6. The surrogate model is part of a comprehensive diagnostic solution.

https://github.com/raevskymichail/ciam_ml_model
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Figure 6. Overview of machine-learning-based surrogate model.

3. Results and Discussion

Machine-learning-assisted surrogate modeling was successfully applied to a number of
engineering problems [19–22]. This encourages its use in optimization and inference methods suited
for complex models. Such surrogates can mimic comprehensive physical models while remaining
computationally inexpensive, which is often a prerequisite for many engineering applications where
available computing resources and maintenance are limited.

In that paper, the HPT rotor blade was considered. Figure 4 shows the FE model of the considered
blade. Figure 7 shows the temperature field for one of the regimes.

Figure 7. Blade-temperature field.

Furthermore, by varying parameters TIT, COT, and RPM for critical zones using the methods
described above, surrogate models for different critical zones were constructed. The constructed
surrogate models of the turbine blade, based on boosting and stacking ensemble machine-learning
methods, showed satisfactory accuracy, which remained stable for both typical and extreme working
conditions (Figure 8).
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(a)

(b)

(c)

Figure 8. Validation results of surrogate model on hold-out test set: (a) true vs predicted plot for used
submodels; (b) true vs predicted plot for master model; (c) true minus predicted plot for master model.

To demonstrate the relevance of the approach, we simulated the operation of the considered GTE
power plant in two Russian cities. For this purpose, information about the weather over the last five
years was used [23]. Figure 9a shows the average temperature values for daily segments. Figure 9b
shows a comparison of the accumulation of total damage in one of the critical zones (Zone 6 in Figure 5)
of the considered blade. Analysis of the results showed the following:

1. Significant impact of the place of operation. For the considered zone, the total damage value over
five years was more than four times higher in the Krasnodar area compared to the Moscow area.

2. A significant increase in damage during the summer period.
3. An increase in the rate of damage accumulation from year to year. For example, the damage rate

for 2017 was almost twice as high as that for 2015.

We also considered how linear damage accumulation depends on sampling rate (Figure 10)
relative to the damage accumulation obtained on 1 h resolution data using a relative-error (RE) formula:

RE =
Di − D1h

D1h
∗ 100% (8)

where Di and D1hare damage accumulation calculated on data with a given sampling rate and on 1 h
resolution regime data, respectively.

Result showed that, for the considered GTE data, averaging on a given time step up to
1 month, values had little impact on the resulting linear damage accumulation in comparison with
damage accumulation calculated on regime data with a 1 h resolution (RE < 0.12% for 5 years of
turbine operation).
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(a)

(b)
Figure 9. Linear damage accumulation from surrogate model for blades working under different
temperature conditions: (a) average month temperatures in Moscow and Krasnodar areas for
2015–2020 [23]; (b) linear damage accumulation in critical Zone 5 (5) over 5 year period of operation.

Figure 10. Impact of sampling rate on linear damage accumulation. Relative error (RE) between
damage accumulation calculated on 1 h data and averaged on a given period.



Appl. Sci. 2020, 10, 8541 10 of 13

4. Conclusions

In this paper, we proposed a surrogate model based on ensemble machine-learning algorithms
that can be utilized in practice for the preventive maintenance of GTE blades via the estimation
and monitoring of their residual life. Even though many tasks must be solved for the successful
implementation of the proposed algorithm, our method shows the prospects and feasibility of work
in this direction. Implementation of the developed approach as part of a comprehensive diagnostic
system can help operators make wise maintenance decisions and reduce the likelihood of failure.

5. Future Work

The influence of the following phenomena on damage accumulation was not considered:

1. shutdowns, including emergencies;
2. transient modes;
3. scatter in blade dimensions;
4. the influence of creep and fatigue on each other;
5. fuel and air quality;
6. contamination of the turbine gas path.

Each of these phenomena can significantly contribute to the nature of damage accumulation and
should be investigated in the future.

Future work is planned:

1. computational studies of heat-stress state of the unit in transient modes;
2. increasing the complexity of the used mathematical gas-engine models;
3. improving the material models; and
4. Correction factors to consider the acceleration of the damage-accumulation process.

6. Grant Information

This work was supported by federal program “Research and development in priority areas
for the development of the scientific and technological complex of Russia for 2014–2020” via grant
RFMEFI60619X0008.

Author Contributions: Methodology, B.V. and S.N.; Software, M.R. and S.B.; Supervision, I.U. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the federal program “Research and development in priority areas for the
development of the scientific and technological complex of Russia for 2014–2020” via grant RFMEFI60619X0008.

Acknowledgments: The authors would like to express their gratitude to colleagues Artem Semenov and Nikita
Losyakov for their help with numerical calculations.

Conflicts of Interest: Authors declare no conflict of interest.

Abbreviations

COT Compressor outlet temperature
FEM Finite-element model
GTE Gas-turbine engine
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Appendix A. Terminology

Hyperparameter: In machine learning, a parameter of which the value is used to control the learning
process. By contrast, the values of other parameters (typically node weights) are derived via training.
K-fold cross-validation: A method for evaluating the analytical model and its behavior on independent
data. Available data are divided into k parts. Then, the model is trained on k − 1 parts of the data,
and the rest of the data are used for testing. The procedure is repeated k times; in the end, each k piece
of data is used for testing. The result is an assessment of the effectiveness of the selected model with
the most uniform use of available data.
Ensemble learning: In statistics and machine learning, ensemble methods use multiple learning
algorithms to obtain better predictive performance than that which could be obtained from any of the
constituent learning algorithms alone.
Model stacking: An ensemble-learning method that involves training a learning algorithm to combine
the predictions of several other learning algorithms. First, all other algorithms are trained using
available data, and a combiner (master) algorithm is then trained to make a final prediction using all
predictions of the other algorithms as additional inputs.
Random search: a family of numerical optimization methods that do not require the gradient of
the problem to be optimized, and randomized search can hence be used on functions that are not
continuous or differentiable.

Appendix B. Information about FE Models

Building a good FE model is a long and time-consuming process in which one needs to maintain
a balance between calculation time (i.e., attempting to use a small number of elements) and the quality
of the calculation results. At the first stage, it is necessary to refine possible flaws in the geometric
model and divide it into simple volumes. In the process of numerous refinements, stress-concentration
zones are defined, and simple volumes are allocated for building a high-quality mesh. An example of
improving the mesh in the air zone at the output edge is shown in Figure A1. Selected volumes for
improving the mesh are shown in red.

Figure A1. Example of mesh refinement in stress-concentration area.

To assess the quality of an FE model, in addition to evaluating the geometric shape of finite
elements, which is performed automatically by the ANSYS preprocessor, a special quality criterion was
used. The criterion is the ratio of the maximal von Mises stress difference between nodes adjacent to
the node under consideration to the average von Mises stress at this node. This criterion is determined
for each node on the basis of calculation results (in linear formulation) of the part under consideration
with all external loads acting on it. To achieve correct results, the value of this criterion should be less
than 5–10%. In zones of contact pairs and in obviously “noncritical” zones, the value of the criterion
may exceed this value. Figure A2 shows in the colored areas where the quality criterion exceeded 10%.
Analysis of the results presented in Figure A2 showed that the quality of the FE model in the most
loaded zones met the requirements.
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Figure A2. Mesh quality.
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