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Featured Application: Non-destructive dielectric and semiconductor material characterization
using dielectric resonator.

Abstract: This article reports recent developments in modelling based on Finite Difference Time
Domain (FDTD) and Finite Element Method (FEM) for dielectric resonator material measurement
setups. In contrast to the methods of the dielectric resonator design, where analytical expansion
into Bessel functions is used to solve the Maxwell equations, here the analytical information is
used only to ensure the fixed angular variation of the fields, while in the longitudinal and radial
direction space discretization is applied, that reduced the problem to 2D. Moreover, when the
discretization is performed in time domain, full-wave electromagnetic solvers can be directly coupled
to semiconductor drift-diffusion solvers to better understand and predict the behavior of the resonator
with semiconductor-based samples. Herein, FDTD and frequency domain FEM approaches are
applied to the modelling of dielectric samples and validated against the measurements within the 0.3%
margin dictated by the IEC norm. Then a coupled in-house developed multiphysics time-domain FEM
solver is employed in order to take the local conductivity changes under electromagnetic illumination
into account. New methodologies are thereby demonstrated that open the way to new applications
of the dielectric resonator measurements.

Keywords: materials modelling; materials characterization; scanning microwave microscopy;
dielectric resonators; electromagnetic modelling; semiconductor modelling; multiphysics modelling;
frequency and time-domain methods; FEM; FDTD

1. Introduction

With rapid progress in developing organic and inorganic materials, it becomes more important
to determine the quality and performance of the manufactured products alongside with their
reproducibility and repeatability in terms of characteristic parameters. These strongly depend
on materials’ chemical composition, which often reveals itself directly in electromagnetic properties.
The electromagnetic waves have been used for material characterization under various settings.
Whereas the scanning microwave microscopy (SMM) techniques make it possible to quantitatively
characterize, analyze, and categorize materials at microwave frequencies [1–6], in parallel, microwave
resonator techniques are developed, which also focus on pure electromagnetic characterization at bulk
level. The resonator based techniques also come with a much better ease-of-use and applicability in
different industrial sectors. In particular, the split-post dielectric resonator (SPDR) has been accepted
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as a standard for characterizing low loss laminar dielectric materials accurately, conveniently, and in a
non-destructive way [7–10].

This work constitutes a part of our research activities performed within the framework of
the European Horizon 2020 MMAMA project [11], which focuses on the development of various
electromagnetic materials characterization techniques including SMM and dielectric resonator setups
and their modelling. The modelling of SMM tips and generic dielectric resonators with low loss
dielectric samples has already been reported [5,6], and an extension of dielectric resonator modelling
to scanning setups has been presented in [12]. In this paper, we focus on modelling and analyzing a
real-life, industrially popular, and commercially available [13] split-post dielectric resonator (SPDR).
Its outstanding accuracy for microwave material measurements is acknowledged by the IEC norm [14]
and typically attributed to its rigorous design based on electromagnetic field expansion into Bessel
functions [7,10], with the expansion coefficients obtained by dedicated solvers, assuming planar
boundaries between the different materials. Our approach is to utilize the general-purpose finite-element
(FEM) and finite-difference time-domain (FDTD) methods in cylindrical coordinates. We enforce zero
angular dependence of the fields for the considered modes and conduct a numerical solution in the 2D
long-section of the resonator. Hence, while the axial symmetry as in [7,10] is assumed, the boundaries
between the materials do not need to be planar, allowing analysis of deformed samples. For the
pure electromagnetic modelling of SPDR loaded with a dielectric sample, both FEM and FDTD are
applied and quantitatively compared to the measurements. The measurement method and material
parameters extraction are based on measuring changes in SPDR’s resonant frequency in case of an
empty resonator and in the presence of sample under test (SUT). Then, theoretical analysis is conducted
to investigate and understand behavior of semiconductor samples under different modes of the SPDR.
A time-domain finite element method (TD-FEM) coupled multiphysics solver is adopted from [15] and
applied in order to model the nonlinear charge transport in semiconductor samples and to observe
their effects in the resonance behavior. The focus has been on combining the two fields, that is, on
reformulating the numerical algorithms for a computationally efficient solution of an industrially
relevant problem of semiconductor measurements in popular SPDRs.

The paper is organized as follows. Section 2 presents the geometry and materials of the SPDR
and defines the modelling techniques used to perform eigenvalue analysis for dielectric samples.
In Section 3, simulation results have been given and verified with measurements of test samples in
two SPDR units. Section 4 describes the multiphysics analysis in order to account for measurement
scenarios with homogeneously doped semiconductor samples. Section 5 discusses the results and
further steps required to improve the methods, and Section 6 concludes the paper.

2. Eigenvalue Analysis of Dielectric Resonator

The electromagnetic analysis, aiming at determining resonant frequency of SPDR test-fixture,
without and with dielectric sample inserted, has been conducted for the structure following [9]. The
SPDR is composed of two ceramic disks that are separated with a gap, supported with dielectric rods and
surrounded with a metal enclosure. The benchmark is depicted in Figure 1 and considered with relative
permittivity values ε1 = 2.06, ε2 = 4.43, ε3 = 30.15 and dimensions r1 = 1 mm, r2 = 4 mm, r3 =

8.41mm, r4 = 13 mm, r5 = 23 mm, h1 = 4.26mm, h2 = 2 mm, h3 = 6.36 mm, tgap = 1.6 mm. Such
a resonator configuration has a nominal frequency of ca. 4.8 GHz. The conducted electromagnetic
analysis benefits from axial symmetry of SPDR; therefore, the modelling scenario is reduced to the
computational 2D problem. In the considered problem, the sample thickness is denoted by tsample and
has relative electric permittivity εsample. Metallic enclosure outside the resonator is taken as perfect
electric conductor (PEC) for the numerical purposes.



Appl. Sci. 2020, 10, 8533 3 of 9
Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 9 

Dielectric resonator

Sample
Sample

ε1 

ε1 

 r1 

ε2 ε2 

ε2 ε2 

ε3 

ε3 ε3 

ε3 

r2 r3 r4 
r5 

h1 

 h2 

h3 

tsample tgap 

ε0 

r

z

εsample

(a) (b) (c)

Symmetry 
axis

Symmetry 
axis

metal 
box

metal 
box

 

Figure 1. Visualization of the considered SPDR: (a) in 3D; (b) materials used and geometry with 

details; (c) 2D representation using axial symmetry. 
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Figure 1. Visualization of the considered SPDR: (a) in 3D; (b) materials used and geometry with details;
(c) 2D representation using axial symmetry.

Firstly, a resource efficient vector 2D (V2D) formulation of the FDTD method for axisymmetric
structures has been employed to extract the fundamental resonant frequency of the resonator without
a sample (i.e., εsample = 1). The aforementioned formulation allows for a problem size reduction by
three orders of magnitude compared to standard 3D modelling, from 19,000,000 of FDTD cells and
1.8 GB of RAM memory occupation required for 3D model, to 17,000 of FDTD cells and 2 MB of RAM
occupation for V2D. The computation of the resonant frequency takes ca. 30 s when run on nVidia
GeForce GTX Titan.

For the same problem, an analogous axisymmetric formulation of frequency domain FEM
(FD-FEM) [5,16] is also used to determine the fundamental frequency. Since it is physically known that
the fundamental mode will only have φ independent Eφ component, the discretization is also done
only for the φ-component of E-field using scalar nodal shape functions. An in-house developed C + +

solver is used with a mesh consisting of nearly 100,000 triangular elements, and it takes just under 2 s
to determine the resonant frequency on an Intel-i7 processor, and it occupies 150 MB of RAM.

As expected, for a deterministic resonator problem, a frequency domain approach is capable of
providing faster solutions than a time-domain approach. The obtained resonant frequencies with
varying sample thicknesses and permittivities are given in the following section and verified with
respect to own measurements performed for the purpose of this paper.

3. Results for SPDR with Dielectric Samples

Having defined the problem geometry and parameters, the next step was to determine resonant
frequencies of the SPDR. Firstly, we have focused on the fundamental mode without any sample to
cross verify and compare our FD-FEM and FDTD approaches. The E-field profile of the considered
TE01 δ measurement mode at 4.95 GHz and its E-field profile is given in Figure 2.
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In addition to the no sample case, we have also obtained several resonant frequencies for different
sample thicknesses and different sample permittivities, including analysis of real-life material samples,
namely quartz (εsample = 3.82) and sapphire (εsample = 9.40). Additionally, a non-planar (cone-shaped)
sample (to represent realistic deformation), which is not perfectly horizontal in the sample slot but bent
upwards in the middle, is considered. The results of performed calculations are given in the Table 1,
and the discrepancies in the resonant frequency extraction between the two simulation methods do not
exceed 4.2 MHz.

Table 1. Resonant frequency of the fundamental mode of SPDR loaded with dielectric samples varying
in thickness and permittivity: simulations and measurements performed by the authors.

Thickness tsample [mm] Permittivity εsample
Fundamental Mode Frequency [GHz]

FD-FEM FDTD Measurement 1 Measurement 2

No sample 1.0 4.9502 4.9466 5.1588 5.1117
0.5 2.0 4.9384 4.9347 X X
0.5 5.0 4.9027 4.8990 X X
0.5 10.0 4.8434 4.8396 X X
1.0 2.0 4.9268 4.9232 X X
1.0 5.0 4.8567 4.8529 X X
1.0 10.0 4.7411 4.7371 X X
1.5 2.0 4.9151 4.9114 X X
1.5 5.0 4.8108 4.8069 X X
1.5 10.0 4.6415 4.6373 X X

0.542-deformed 3.82 4.9148 4.9111 X X
0.542 3.82 4.9140 4.9103 5.1223 5.0770
0.475 9.40 4.8554 4.8516 5.0629 5.0200

The comparison of simulated and measured frequency values reveals the differences of ca.
200 MHz. The observed higher difference is understandable, as the physical device may differ from its
design due to being a subject to manufacturing modifications and tolerances, making each unit unique
in terms of geometry and resulting resonant frequency, which is confirmed with two different resonant
frequencies obtained for the two adopted commercial units (Table 1).

The extraction method for permittivity is based on measuring the shifts in the resonant frequency of
an empty and sample-loaded SPDR; therefore, the frequency shift (and not the frequency itself) directly
determines the permittivity value. These frequency shifts have been calculated for the considered
simulation scenarios and experiments, and results have been visualized in Figure 3.
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Figure 3. Resonant frequency shifts with respect to the case without inserting a sample for FEM and
FDTD simulations for the samples (a) with 0.5 mm thickness, (b) with 1.0 mm thickness, and (c) with
1.5 mm thickness. (d) Resonant frequency shifts for the quartz sample; (e): resonant frequency shifts
for the sapphire sample.
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The obtained values of the frequency shifts are consistent between FDTD and FEM simulations
performed for arbitrary samples’ thicknesses and permittivities, not exceeding 0.5 MHz reported
for thick high-permittivity samples. Similar observation is made for frequency shifts under the
presence of real material samples of quartz and sapphire, obtained from EM simulations and
measurements, proving applicability of both FDTD and FD-FEM methods in their formulation
dedicated to axisymmetric structures, to accurate analysis and design of dielectric resonator-based
test-fixtures for material characterization.

4. Multiphysics Analysis for SPDR with Semiconductor Samples

SPDR have already been used for semiconductor (SC) characterization as in [9]; however,
modelling of such measurement scenarios were always limited to bulk semiconductor parameters. In
this section, we analyze such a scenario by taking semiconductor physics into account as well, so that
the local conductivity changes due to charge movements are also considered. The charge transport
in semiconductors can be modelled with the well-known drift-diffusion equations. These transport
equations are usually solved together with Poisson equation to give a complete picture of the charges
in semiconductor regions [17]:

∇
2ϕ = −

q
ε

(
p− n + N+

d −N−a
)
, (1)

∇·Jp = −q
(
R +

∂p
∂t

)
, (2)

∇·Jn = q
(
R +

∂n
∂t

)
, (3)

Jp = qpµp(−∇ϕ) − qDp∇p, (4)

Jn = qnµn(−∇ϕ) + qDn∇n, (5)

where ϕ is the electric potential, n (p) is the electron (hole) concentration, R is the net
generation-recombination rate of carriers, Jn

(
Jp

)
is the electron (hole) current density, N+

d and
N−a are the ionized donor and acceptor charge densities due to doping, µn (µp) is the electron (hole)
mobility (1450 cm2(V·s)−1 and 500 cm2(V·s)−1, respectively), Dn

(
Dp

)
is the electron (hole) diffusion

coefficient (37.49 cm2s−1 and 12.93 cm2s−1 respectively), ε is the electric permittivity of semiconductor
material respectively, and q (= 1.602·10−19 C) is the elementary charge. Equation (1) is the Poisson
equation for electric potential; (2) and (3) are the continuity equations for the charge carriers. This set
of equations is supplemented by carrier transport Equations (4) and (5), which take both drift and
diffusion of charges into account. For the net generation–recombination rate of the charges, the widely
used Read–Hall–Shockley recombination mechanism (R =

np
τn(p+ni)+τp(n+ni)

), where average life times

for the carriers are taken as τn = τp = 10 µs, and ni = 9·109 cm−3 is the intrinsic carrier concentration),
is assumed. This set of Equations (1)–(5) is valid when the semiconductors are modelled themselves
without external E-field (Eext) illumination, if they are also illuminated through external field, the
transport equations take the following form:

Jn = qnµnEext + qnµn(−∇ϕ) + qDn∇n, (6)

Jp = qpµpEext + qpµp(−∇ϕ) − qDp∇p. (7)

Hence, the transport is not only affected due to curl-free internal built-in potential, but also
divergence free wave part of the E-field. In addition, the movement of the carriers (depletion and
accumulation) creates position dependent conductivity as σ = qpµp + qnµn, which will be taken into
account by the electromagnetic solver, affecting the resonance.

We initially considered the scenario where a homogeneously doped silicon wafer is inserted into
our SPDR. For the fundamental mode that has been used to characterize materials in the previous
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Section, it is known that the external E field will have the form Eext = aφEφ(r, z), which will cause
azimuthal closed loop current flow on the silicon sample. Therefore, there is not any local carrier
distribution in the r–z plane of the axisymmetric structure, and no change in resonance frequency will
be observed.

However, if we consider a higher order mode, which has electric field in the form of
Eext = arEr(r, z) + azEz(r, z), it is expected to observe effects due to local conductivity changes that
occur when the mode is present.

In order to be able to couple electromagnetics solver with highly nonlinear semiconductor physics,
we have employed time–domain (TD) FEM, as it offers flexible capabilities for multiphysics modelling.
We have first developed a TD-FEM electromagnetic solver in which a point source and a few probing
locations are defined. After exciting with a Gaussian burst time-domain signal centered at 5 GHz, and
taking the Fourier Transform of the time-domain signals observed at different probing locations, we
were able to distinguish the modes supported by the structure. The resonance frequencies have been
determined by analyzing field spectrum at the probe locations, and in all the cases, these peaks in the
spectrum were clearly distinguishable and the maxima points correspond to the resonance frequencies.
Additionally, the spectrum obtained from the probe locations show clear frequency shifts with respect
to the source spectrum, providing information regarding the resonant behavior of the structure. The
first higher mode (named as TM01δ) with φ independent Er and Ez components, without any sample
is observed at 5.33 GHz, and the FDTD solver also verifies the existence of the same mode at 5.31 GHz.

Verification of our coupled electromagnetic (EM) and Poisson–Drift–Diffusion (PDD) algorithm
and solver was performed with the aid of TD-FEM electromagnetic analysis performed for material
samples characterized also with bulk conductivity values. Table 2 gathers the values of TM01δ
frequencies obtained from simulations conducted for different material sample parameters and
solvers’ configurations.

Table 2. Resonant frequencies of SPDR for TM01δ mode for different sample types and simulated by
different solver configurations.

Permittivity
εsample

Thickness
tsample [mm]

Bulk Conductivity
[S/m]

n-Type Doping
[cm−3]

Used TD-FEM
Solver

TM01δ Frequency
[GHz]

1.0 0.5 0.0 0.0 EM 5.33
11.7 0.5 0.0 0.0 EM 5.10
11.7 0.5 23.2316 (corresponds to 1015) EM 5.05
11.7 0.5 232.316 (corresponds to 1016) EM 5.03
11.7 0.5 bulk value not used 1015 EM-PDD 5.06
11.7 0.5 bulk value not used 1016 EM-PDD 5.03

Traditional semiconductor simulation tools employ the Poisson equation together with the
transport equations for the modelling of semiconductor devices. For the high frequency excitation
where the wavelength becomes as small as device dimensions, the Poisson equation is replaced
with the Maxwell’s equations, as in [18], to be computed with the transport equations. Replacing
Poisson’s equation also means that the traditional potential-based boundary conditions would have to
be changed, making it challenging to apply classical semiconductor boundary conditions, i.e., ohmic,
Schottky, etc. In [15], another method is developed to simulate the semiconductor devices where
the Poisson equation is also solved in addition to the wave equation. This method provides flexible
semiconductor modeling, making it possible to use terminal potentials for the semiconductor boundary
conditions (AC or DC excitation) together with external electromagnetic illumination. Additionally,
this method ensures the full coupling of the divergence-free electric field that is the outcome of the
wave equation and curl-free electric field component that is coming from the Poisson equation for the
charges as in the Equations (5) and (6). Unlike the popular commercial tools where the drift diffusion
equations only include the curl-free part of the electric field, the proposed method contribution of both
electric field components (divergence-free and curl-free) are taken into account for the calculation of
the semiconductor current equations. Consequently, the position dependent electrical conductivity
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used in the wave equation is updated at every time step using the local charge distribution obtained
from the modified carrier transport.

Among the previously reported algorithms [15,18], the coupled multiphysics FEM based algorithm
described in [15] is adopted to simulate SPDR. The scenario with homogeneously doped silicon sample
has been tested with the time-domain coupled solver with 200,000 time steps of size 0.5 ps in order to
simulate a time-domain Gaussian burst, and the signals analyzed at probing locations. The frequency
spectrum with resolution of 10 MHz is obtained from the observed waveforms, and the peak locations
show the resonant frequencies. In Figure 4, the spectrum comparison between the bulk conductivity
case (EM solver only) and the multiphysics case (EM - PDD) for two different n-type doping levels,
1015 cm−3 and 1016 cm−3, is presented. As the doping of the semiconductor increases, its electrical
conductivity also increases, and the sample starts to show behavior that is more metallic. For the highly
conductive samples, it is observed that the EM-PDD coupled solver predicts resonant frequencies very
close to the ones that are obtained by the EM solver with the bulk parameters. For shallow doping,
however, the nonlinear effects of the semiconductor domain might shift the resonance slightly. This
change can also be observed in Figure 4b for n-type doping of 1015 cm−3.
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Figure 4. (a) Source and probe locations shown on the axisymmetric representation of the resonator;
(b) spectrum obtained through EM solver and EM-PDD coupled solvers for a Si sample with n-type
doping 1015 cm−3; (c) spectrum obtained through EM solver and EM-PDD coupled solvers for a Si
sample with n-type doping of 1016 cm−3.

5. Discussion of the Modelling of SPDR Loaded with Semiconductor Samples

It is possible to claim the effects due to nonlinearities of the semiconductors on the resonant peak
are minimal for the homogeneously doped silicon wafer. However, this developed coupled solver
would also enable us to simulate non-homogeneous doping on the wafer (possible junctions, devices,
etc.). In order to improve the resolution of TD-FEM based solvers, one can run even longer simulations
that might require more computational power.

For the accurate simulation of the SPDR with semiconductor samples, it is important to consider
the possible effects due to nonlinearities of the semiconductors, and one needs to consider PDD
equations set for accurate modelling. Especially for the lower conductivity of the samples, the effects
due to nonlinear nature of the semiconductors start to affect the analysis. These effects are still not
so big, and one could avoid costly EM-PDD coupled simulations if the doping of the semiconductor
sample is homogeneous. However, if the doping changes from region to region, in order to be able
to model the depletion regions that are formed between the junctions of different doping levels, it is
mandatory to employ a PDD solver. Here in this work, our focus was to analyze the possible effects
of the semiconductor samples with homogeneous doping, and it is shown that for the fundamental
mode with the φ-oriented electric field fundamental mode, the semiconductor can easily be modelled
without the coupled solver as a bulk lossy dielectric, and for the higher order modes with r- and
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z-oriented electric field components, one should be careful about the doping of the sample, and the
physical model can be chosen based on the required accuracy of the simulation.

6. Conclusions

This work has responded to the need for accurate and flexible modelling of resonator type
microwave test-fixture used for material measurements, as identified and pursued in the H2020
MMAMA project [11]. We have focused on the SPDR test-fixture, which is representative due to
its broad use in different industrial applications [8,9] combined with reference accuracy [14]. While
the original design methods were based on analytical field expansions and dedicated solvers, we
have demonstrated that general-purpose FEM and FDTD methods when formulated in 2D cylindrical
coordinates ensure the required solution accuracy while opening new horizons for the modelling
of multiphysics phenomena. Specifically, for the SPDR setup after [9], our electromagnetic FDTD
and FD-FEM simulations are in excellent agreement with each other and with the measurements of
dielectric samples.

The analysis in Section 3 also reveals that the nonlinear effects of the charge transport in
semiconductors affect the resonance in certain cases. Whereas the fundamental mode of the SPDR is
not affected from homogeneously doped semiconductors, higher order modes or nonhomogeneous
semiconductor structures would require multiphysics modeling in order to model the nonlinear charge
transport accurately. While coupled electromagnetic-semiconductor modelling has been previously
reported for SMM setups [15] and for semiconductor devices [18], here we have applied it to the
modelling of dielectric resonator material test-fixtures. We have adapted the essentially deterministic
time-domain simulation to the solving of a generalized eigenvalue problem and formulated a 3D
problem to cylindrical 2D, making it computationally feasible. Thereby, for the first time in the open
literature, we have demonstrated the sensitivity of the SPDR resonant frequencies to nonlinear effects
occurring in semiconductors under microwave irradiation.
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