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Abstract: A systematic review and meta-analysis were performed to determine if heart rate
variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further
improvement of endurance physiological and performance markers in healthy individuals. This analysis
included randomized controlled trials assessing the effects of HRV-g vs. PT on endurance physiological
and performance markers in untrained, physically active, and well-trained subjects. Eight articles
qualified for inclusion. HRV-g training significantly improved maximum oxygen uptake (VO2max)
(MD = 2.84, CI: 1.41, 4.27; p < 0.0001), maximum aerobic power or speed (WMax) (SMD = 0.66, 95% CI
0.33, 0.98; p < 0.0001), aerobic performance (SMD = 0.71, CI 0.16, 1.25; p = 0.01) and power or speed at
ventilatory thresholds (VT) VT1 (SMD = 0.62, CI 0.04, 1.20; p = 0.04) and VT2 (SMD = 0.81, CI 0.41, 1.22;
p < 0.0001). However, HRV-g did not show significant differences in VO2max (MD = 0.96, CI −1.11,
3.03; p = 0.36), WMax (SMD = 0.06, CI −0.26, 0.38; p = 0.72), or aerobic performance (SMD = 0.14,
CI −0.22, 0.51; p = 0.45) in power or speed at VT1 (SMD = 0.27, 95% CI −0.16, 0.70; p = 0.22) or VT2
(SMD = 0.18, 95% CI −0.20, 0.57; p = 0.35), when compared to PT. Although HRV-based training
periodization improved both physiological variables and aerobic performance, this method did not
provide significant benefit over PT.

Keywords: autonomic nervous system; cardiac autonomic regulation; cardiorespiratory fitness; daily
training; endurance

1. Introduction

To maximize the physical fitness of athletes, correct management of training program variables
(i.e., volume, intensity, frequency, density, etc.) is needed [1]. The optimal training dosage promotes
physiological adaptations and reduces the risk of injury and overtraining syndrome, finally improving
athletic performance [2]. The rational distribution of training sessions would be the pillar to obtain the
correct physiological modifications in athletes [3]. Therefore, several training periodization strategies
have been applied to manage the training load and obtain performance enhancement [4]. However,
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the relationship between training stimulus and physiological responses depends on the individual
and varies widely [5]. Thus, to provide correct feedback to the training process and its optimization,
the physiological monitoring of the athlete’s individual response to the training program plays an
essential role [6]. This way, the physiological monitorization allows the correct management of the
training load, according to the athlete’s individual response [6].

Recently, the autonomic nervous system analysis has been commonly used to manage the training
load [7,8] and the endurance training prescription [9–14]. Heart rate variability (HRV) has been widely
used, since it reflects the balance between sympathetic and parasympathetic modulation, showing
autonomic nervous system (ANS) regulation [15–19]. After physical exercise, the ANS decreases the
sympathetic activity and produces a rapid restoration of vagal tone (parasympathetic component)
that allows performance improvements [20]. However, due to the misbalance between intensity,
volume, and density of training, nonfunctional training loads produce a nonfunctional overreach,
promoting a reduction in vagal indices of HRV and impairing the recovery process [21]. Consequently,
changes in ANS regulation, assessed by HRV, can identify the relationship between training (stress)
and recovery status. Thus, HRV can support the training process as an internal load marker or a
long-term monitoring indicator [2].

Lately, a systematic literature review (five randomized controlled trials) critically discussed the
potential of heart rate variability-guided training (HRV-g) as an intervention to improve aerobic
performance in athletes [2]. Limitations of this previous work include the analysis of the effect of
HRV-g only on runners. Only in 2018 and 2019, three additional randomized controlled trials [10,11,22]
using cyclists or skiers were published, representing almost half of the total number of studies that
were available until then. A potential limitation of a systematic review is that it does not include a data
synthesis and statistical analysis to determine the summary effect of the intervention on the outcome’s
measures; it implies that results obtained in the literature review [2] could be oversized without a
specific statistical analysis that offers a more accurate and general picture of the HRV-guided effects on
aerobic performance. This highlighted the growing interest in the HRV-guided potential and the need
to conduct a large meta-analysis; hence, it is necessary to systematically analyze the effect of this type
of training as an intervention to improve aerobic performance in trained and untrained participants.

The aim of this study was to perform a systematic review and meta-analysis to determine if
endurance HRV-g maximizes aerobic performance and/or aerobic physiological adaptation, compared
to a predefined training (PT) program.

2. Materials and Methods

2.1. Study Design

The methodological process was based on the recommendations indicated by the PRISMA
(preferred reporting items for systematic review and meta-analysis) statement [23]. All phases of the
meta-analysis were conducted in duplicate. For the meta-analysis, only randomized controlled trials
that investigated the effects of training prescription guided by HRV on any physiological (i.e., maximum
oxygen uptake—VO2max) or aerobic performance variables (performance at VO2max, performance
at VT1 and VT2, or performance test) were considered. The study was registered in PROSPERO
(International Prospective Register of Systematic Reviews) (www.crd.york.ac.uk/prospero/index.asp,
identifier CRD42020204461).

2.2. Data Sources and Search Profile

A comprehensive literature search was performed using PubMed–Medline, Web of Science,
and the Cochrane Library databases. The search was performed without date restriction and was
completed on 15 August 2020. The following combination of terms was used: “HRV or heart rate
variability”, “autonomic nervous system”, “parasympathetic nervous system”, “cardiac autonomic
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regulation”, and “vagal activity”. The Boolean operator “AND” was used to combine these descriptors
with “training guided”, “training periodization”, or “exercise prescription”.

2.3. Data Extraction and Selection Criteria

The following inclusion criteria were considered: randomized clinical trials, studies examining the
effects of endurance training prescription guided by HRV on physiological or performance variables,
studies that include a control group with a PT program, studies published in English, and studies that
should report information on variables in one baseline and one post-treatment measure. Conversely,
studies were excluded if they were not an original fully published work, if they did not specify the
tests utilized or detailed the training program, and if they did not provide numerical data.

The articles analyzed were reviewed separately by two authors (J.P.M.R. and D.J.R.C.). Studies
that fulfilled the inclusion criteria were coded and recorded on an Excel spreadsheet. In addition,
the substantive aspects were extracted for Table 1: authors, country, methodology, number of
participants per group, age, gender, level of physical activity, and methodological aspects; similarly,
for Table 2: HRV variable, decision-making algorithm, volume, intensity distribution, frequency, load,
and duration of the experiment. Finally, pre- and post-intervention means and the standard deviation
of the studies included in the quantitative analysis were recorded.

2.4. Outcomes

The primary outcome was VO2max. The secondary outcomes analyzed were (1) maximum aerobic
power or speed (WMax) as a performance indicator in the VO2max, (2) aerobic performance as an
extrapolated value from a field test (i.e., 40 km time trial, 3 and 5 km running test), and (3) power or
velocity at VT1 (WVT1) and VT2 (WVT2) as the performance variables at those points.

2.5. Evaluation of the Methodology of the Studies Selected

The methodological quality of the selected studies was assessed with the Cochrane risk-of-bias
tool [24] that includes the following parameters: (1) random sequence generation (selection bias),
(2) allocation concealment (selection bias), (3) blinding of participants and personnel (performance
bias), (4) blinding of outcome assessment (detection bias), (5) incomplete outcome data (attrition bias),
(6) selective reporting (reporting bias), and (7) other bias. For each study, each item was described as
having either a low, an unclear, or a high risk of bias. In addition, the Egger’s test was used to assess
publication bias.

2.6. Data Synthesis and Statistical Analysis

The meta-analysis and the statistical analysis were conducted using the Review Manager software
(RevMan 5.2; Cochrane Collaboration, Oxford, UK). A random-effects model was applied to determine
the effect of endurance training prescription guided by HRV on physiological or performance
variables. The effects of training on these outcomes between HRV-g and PT groups were expressed as
mean differences (MD) or standard mean differences (SMD) and their 95% confidence intervals (CI).
The inverse of variance model was used for the analysis. The heterogeneity between the studies was
evaluated through the I2 statistic and between-study variance, using the tau-square (τ2) [25]. The I2

values between 30 and 60% were considered as moderate levels of heterogeneity. Additionally, a value
of τ2 more than one suggests the presence of substantial statistical heterogeneity. The publication bias
was evaluated through an asymmetry test as estimated from a funnel plot. A p value of less than 0.05
was considered to be statistically significant.
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3. Results

3.1. General Characteristics of the Studies

A total of 849 studies were identified from the databases and no items were included from other
sources. After removing duplicated articles from the different databases, 605 titles and abstracts
were screened, 593 were excluded, and 12 were screened as full texts. Finally, statistical analysis was
performed on 8 studies [9–12,22,26–28] (Figure 1).
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Figure 1. PRISMA flow diagram for studies included.

Table 1 provides an overview of the participants’ characteristics of the studies included in the
quantitative analysis. The total participants was 190 (males and females), mostly trained or active
subjects. The mean age ranged from 20.5 ± 1.3 to 39.2 ± 5.3 years (men: 21.8 ± 0.3 to 39.2 ± 5.3;
women: from 20.5 ± 1.3 to 35.0 ± 7.0). Training experience was reported in some articles and it
ranged from 11.3 ± 3 to 15.0 ± 8 years. In addition, VO2max values were between 35.0 ± 5.0 and
66.7 ± 5.9 mL/kg/min.
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Table 1. Characteristics of the studies included in the meta-analysis.

Study, Year of
Publication

Country of
the Study Groups n Type of Athletes Sex Age (Years)

Da Silva et al. [28] Canada
HRV-g 15

Untrained Females
25.8 ± 3.1

PT 15 27.7 ± 3.6

Javaloyes et al.
[11]

Spain
HRV-g 9

Trained cyclist Males
39.2 ± 5.3

PT (TP) 8 37.6 ± 7.1

Javaloyes et al.
[10]

Spain
HRV-g 8

Trained cyclist Not
specified

28.1 ± 13.2

PT (BP) 7 30.8 ± 10.5

Kiviniemi et al.
[27] Finland

HRV-g-I 14

Actives

50% Males ♂35 ± 4 ♀33 ± 4

HRV-g-II 10 Females 35 ± 4.0

PT 14 50% Males ♂37 ± 3 ♀34 ± 4

Kiviniemi et al. [9] Finland
HRV-g 8 Recreational

endurance runners
Males

31 ± 6.0

PT (TP) 9 32 ± 5.0

Nuuttila et al. [12] Finland
HRV-g 13

Endurance trained Males
29.0 ± 4.0

PT (BP) 11 31.0 ± 5.0

Schmitt et al. [22] France
HRV-g +SH 9

Elite Nordic skiers
M = 7; W = 2 M = 22.9 ± 4.3;

W = 20.5 ± 0.7

PT+SH 9 M = 6; W = 3 M = 21.8 ± 1.3;
W = 24.3 ± 4.9

Vesterinen et al.
[26] Finland

HRV-g 13
Recreational

endurance runners *

M = 10;
W = 10 M = 34 ± 8.0

PT (TP) 18 M = 10;
W = 10 W = 35 ± 7.0

M = men; W = women; SH = sleeping in hypoxia; BP: block periodization; TP: training periodization. * There were
9 dropouts, gender is not specified.

The intervention programs were eight weeks long [10–12,26–28], except for Kiviniemi et al. [9]
(four weeks) and Schmitt et al. [22] (15 days); the frequency of training was between 3 to 6.3 sessions per
week. Regarding the distribution of time by intensity zones, the studies that reported these variables
ranged from 49 to 84% in zone 1, from 12 to 39% in zone 2, and from 3 to 13% in zone 3 [10–12,26].
The predominant method of analysis for HRV monitoring was time domain, followed by frequency
domain. Remarkably, only one study used nonlinear measures (Table 2).
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Table 2. Characteristics of the training intervention of studies included in the meta-analysis.

Group Type of HRV-g Duration
Training Distribution (% Time) Training Volume

(Hours)
Training

Volume (km)
Training

Frequency
Training Load

Z1 Z2 Z3

Da Silva
et al. [28]

HRV-g Ref: 10-day average rMSSD. If rMSSD
< mean rMSSD-1SD: MT; If not: HIT 8 weeks - - - - - 3 -

PT 3

Javaloyes
et al. [11]

HRV-g SWC of rMSSD7D: If rMSSD7D
outside the SWC: low intensity or rest 8 weeks

66 24 10 9.3 ± 2.8 - - -
PT (TP) 64 27 9 8.8 ± 2.8

Javaloyes
et al. [10]

HRV-g SWC of rMSSD7D: If rMSSD7D
outside the SWC: low intensity or rest 8 weeks

49 39 12 11.1 ± 3.1 - - 1033.3 ± 312.5 a.u.

PT (BP) 54 33 13 11.4 ± 3.1 1028.8 ± 214.5 a.u.

Kiviniemi
et al. [27]

HRV-g-I Ref: 10-day average SD1. HRV-I: If
SD1 ≥ SD1 ref:VG; SD1 ↓ SD SD1

ref:MD; If SD1 ↓ 2 consecutive days:
rest; HRV-II = HRV-I but only VT if

SD1 > SD1 ref.

8 weeks

♂5.8 ± 0.2
♀5.8 ± 0.3

♂515 ± 49 ♀390 ± 42
TRIMPS ×week

HRV-g-II 5.0 ± 0.3 314 ± 46 TRIMPS ×
week

PT ♂5.3 ± 0.6
♀5.0 ± 0.8

♂492 ± 91 ♀343 ± 107
TRIMPS ×week

Kiviniemi
et al. [9]

HRV-g Ref: 10-day average HF power. If HF >
HF ref ↓ load; If HF ↓ 2 consecutive

days: rest
4 weeks

- - - - 36 ± 4 -
463 ± 74 TRIMPS ×

week

PT (TP) 38 ± 6 529 ± 49 TRIMPS ×
week

Nuuttila
et al. [12]

HRV-g
LIT if QRT was higher than ref 8 weeks

82 ± 8 15 ± 6 3 ± 3 5.7 ± 2.1 - 6.3 ± 1.4 -
PT (BP) 84 ± 7 12 ± 5 4 ± 3 6.0 ± 1.9 6.1 ± 0.4

Schmitt et al.
[22]

HRV-g+SH If HF ↑ or→: ↑ load; If HF ↓ ≥30%: ↓
load; If HF ↓ 2 consecutive days: rest

15 days - - - - - - 3365 ± 425 a.u.

PT+SH 3481 ± 179 a.u.

Vesterinen
et al. [26]

HRV-g SWC of rMSSD7D: If rMSSD7D
outside the SWC: low intensity or rest 8 weeks

83 ± 27 14 ± 25 3 ± 5 6.5 ± 2.8 42 ± 22 6.1 ± 1.8

PT (TP) 84 ± 12 13 ± 10 3 ± 4 6.3 ± 2.5 41 ± 20 5.6 ± 1.6

a.u.: arbitrary units; HF: high frequencies; HIT: high-intensity training; MT: moderate training; Ref: reference; rMSSD: root of the mean squared differences of successive R-R-intervals;
rMSSD7D: 7-day rolling average of vagal-mediated square; QRT: quick recovery test using rMSSD; SWC: smallest worthwhile change; TRIMPS: training impact; VT: vigorous training.
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3.2. Heterogeneity and Risk of Bias Assessment

Risk of bias assessment is shown in Figure 2. The high risk of bias specified that none of the studies
blinded the participants (performance bias) or the evaluators (detection bias). Visual inspection of the
funnel plots showed an absence of asymmetry. Moreover, the Egger test demonstrated an absence of
significant asymmetry in PT and HRV-g in VO2max (PT: −0.369, p = 0.712; HRV-g: −0.752, p = 0.452),
WMax (PT: −0.539, p = 0.590; HRV-g: 0.103, p = 0.918), Performance (PT: −0.273, p = 0.785; HRV-g:
−0.07, p = 0.944), WVT1 (PT: 0.095, p = 0.924; HRV-g: 1.898, p = 0.058), and WVT2 (PT: 1.542, p = 0.123;
HRV-g: 1.598, p = 0.110) (Figure 3).
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3.3. Meta-Analyses

Regarding cardiorespiratory fitness, a significant improvement in VO2max in participants who
trained using HRV-g (MD = 2.84, 95% CI 1.41, 4.27; p < 0.0001) and PT (MD = 1.80, 95% CI 0.24, 3.36;
p = 0.02) was found after training (Figure 4a). Thus, HRV-g and PT led to a significant increase in
maximum aerobic power or speed (HRV-g: SMD = 0.66, 95% CI 0.33, 0.98; p < 0.0001; PT: SMD = 0.48,
95% CI 0.12, 0.83; p = 0.009) (Figure 5a) after training. Moreover, aerobic performance increased
after HRV-g (SMD = 0.71, 95% CI 0.16, 1.25; p = 0.01) and PT programs (SMD = 0.47, 95% CI 0.07,
0.86; p = 0.02) (Figure 6a); however, no significant differences in training were observed for VO2max
(MD = 0.96, 95% CI −1.11, 3.03; p = 0.36), maximum aerobic power or speed (SMD=0.06, 95% CI −0.26,
0.38; p = 0.72), or aerobic performance (SMD = 0.14, 95% CI −0.22, 0.51; p = 0.45) (Figure 4b, Figure 5b,
and Figure 6b, respectively).

Concerning power or speed at VT1 and VT2, performance at VT1 increased significantly after
HRV-g programs (SMD = 0.62, 95% CI 0.04, 1.20; p = 0.04) but not after PT (SMD = 0.17, 95% CI
−0.25, 0.59; p = 0.42) (Figure 7a). In addition, performance at VT2 improved significantly after HRV-g
(SMD = 0.81, 95% CI 0.41, 1.22; p < 0.0001) and PT (SMD = 0.53, 95% CI 0.13, 0.93; p = 0.009) training
programs (Figure 8a). Nevertheless, no significant differences were observed between both training
methods in performance at VT1 (SMD = 0.27, 95% CI −0.16, 0.70; p = 0.22) and VT2 (SMD = 0.18, 95%
CI −0.20, 0.57; p = 0.35) (Figures 7b and 8b, respectively).
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4. Discussion

This systematic review with meta-analysis aimed to determine if endurance HRV-g maximizes
aerobic performance and/or aerobic physiological adaptation, compared to a PT program. The major
findings indicate that HRV-g significantly improves VO2max, maximum aerobic power or speed,
performance at VT1 and VT2, and aerobic performance in running or cycling field test; however, these
adaptations were not significantly greater than PT programs. Although these findings do not appear
to support the use of HRV-g over PT programs, this study also highlights notable differences in the
methodologies used between studies, which may impact the potential efficacy of HRV-g. Despite that
both forms of training promote physiological adaptations and improve performance, most parameters
related to aerobic performance and aerobic physiological indexes were improved further following
HRV-based training.

One of the key physiological variables that determines endurance performance is VO2max [29],
showing that high-level endurance athletes can achieve a large VO2max [10]. Therefore, a common
aim of endurance training programs is to improve VO2max. This way, it was found how both training
programs significantly increase cardiorespiratory fitness (VO2max) (HRV-g: MD = 2.84, p < 0.0001;
~5%) and PT (MD = 1.80, p = 0.02; ~3%). It could be assumed that both types of training models
led to improvements in VO2max, because there were no significant differences between PT and
HRV-g (p = 0.36); but some factors could modulate the results obtained. Hence, the intensity training
distribution and the fitness level of participants could play a key role in the VO2max improvements.
Although VO2max has been improved in untrained [30], recreational [9,26], and trained athletes [10,22],
the trainability and the increase of this parameter are limited in trained athletes [11]; specifically,
only one study did not find an increase in VO2max [11] and, remarkably, it used a trained cyclist
sample. In addition, the intensity training distribution used by Javaloyes et al. [11] was a pyramidal
distribution (~60% VT1, 30% VT2, 10% VO2max).

In another study [26] with low fitness level (recreational athletes), participants spent much more
time in zone 1 (below VT1) (~80% of total training program) and less time in zone 3 (VO2max or
higher) (~3% of total training program). While only one study found an improvement in VO2max
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with trained athletes [10], that study applied an intensity distribution with a pyramidal distribution
(~52% VT1, 35% VT2, 13% VO2max). Thus, it seems that high intensity training (Z3) has to be higher
in trained athletes than in untrained or recreational athletes; it is a fact that new periodization models
are highlighted and defined as a crucial factor to increase athletes’ performance [3,4]. For this reason,
the use of HRV-g training could optimize the improvement in VO2max (as the trend to higher increases
in this training condition have shown; p = 0.36), because if the high-intensity training is individualized
and it is performed when the athlete is in optimal autonomic homeostasis, it could lead to an improved
adaptive response to training [11].

Regarding aerobic performance measured by field test and maximum aerobic power or speed,
both training programs led to a similar increase. Nevertheless, one of the characteristics of the HRV-g
is the individualization of the training, making this strategy less variable, with fewer nonresponders
than PT programs. For example, Vesterinen et al. [26] found that the HRV-g had lower dispersion of
results in a 3000 m test (−1 to +6%) than the PT group (−4 to +8%). Similarly, Javaloyes et al. [10,11]
reported less variation in their two studies of 40 km time trial following HRV-based training, compared
to PT program. Therefore, participants have a greater probability to increase their aerobic performance
and reduce the risk of injury and overtraining by following a day-to-day training based on HRV-g.
Additionally, in some of the studies included in the present review, the number of high-intensity
training sessions of the participants in HRV-g programs varied according to the individual’s recovery
response of HRV. For example, the number of high-intensity training (HIT) sessions ranged from 11 to
21 in PT and from 5 to 24 sessions in the HRV-g program of Vesterinen et al. [26]. Although previous
research reported a nonsignificant correlation between the training adaptation and the number of HIT
sessions [26], this finding suggests that the use of HRV-g to manage the inclusion of a HIT session
in the program could increase the effectiveness of the training and could diminish the variation in
the adaptation.

Regarding performance (power or speed) at VT, results showed that WVT1 increased in the HRV-g
but not in the PT; hence, performance at VT2 improved significantly after HRV-g and PT programs.
Furthermore, the meta-analysis showed a trend towards higher WVT1 (p = 0.22; ∆ 13%) and WVT2
(p = 0.35; ∆ 10%) improvements after HRV-g than PT (∆ 2.2%; ∆ 7%, respectively). These statistical
trends that showed greater effects for HRV-g than PT were in line with the results reported by the
studies included in the present review [11,12,31,32]. Some possible reasons to explain these findings
could be related to the aforementioned training intensity distribution developed by each training
group, which could affect the results.

In some of the studies included, HRV-g led to a lower proportion of moderate and greater
intensity training (as did HIT), in comparison to PT [11]; while in another study, higher moderate
intensity training was performed by HRV-g, compared to the PT [10]. Besides, as it was explained
above, the individualization and adjustment of the training load by HRV-g reduced the number
of nonresponders to training, increasing the number of athletes that improved their VT1 and VT2.
Therefore, HRV, as a monitoring tool, would allow taking the principle of individualization of the load
a step further.

Notably, the main findings of the present meta-analysis reported that the aerobic performance and
aerobic physiological adaptations after HRV-g are not significantly greater than those observed after the
PT, and only some trends were found. It could be considered that the HRV-g program, in comparison
to the PT, may have a small impact, or some confounding variables may adjust its magnitude. This way,
the duration of the training program is one variable to emphasize. It seems that the length needed
to achieve meaningful increases in performance using the HRV-g training program could be shorter
than the PT, due to the individualized training and the greater training quality, but the duration of the
published studies (all of them with less than eight weeks) seems to be very short to obtain a significant
difference. Therefore, longitudinal randomized controlled trials, using programs with more duration,
are needed to obtain more conclusive results.
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The HRV measurement protocol applied in each study included in the present review is another
factor to highlight. Different variables to assess HRV were found: (a) time domain variables (root mean
square of successive differences of RR intervals—rMSSD) [10,11,26,28]; (b) frequency domain variables
(high frequency—HF, low frequency—LF) [9,22]; and (c) nonlinear variables (standard deviation of the
intervals to the transverse diameter (short axis) of the ellipse—SD1) [27]. Therefore, frequency domain
variables identify some types of fatigue [33], whereas rMSSD has been suggested as a global fatigue
measurement [34]. In addition, the HRV assessment ranged from ultrashort records of 90 s [10,11] to
15 min [22], depending on the HRV variables analyzed. Thus, recording time shorter than five minutes
was applied if the study used rMMSD as an indicator, while longer records were reported if the study
used a frequency-based or a nonlinear variable [35,36]. Moreover, frequency domain variables were
more influenced by breathing patterns than time-domain analysis [37]; there were divergencies in
the participants measurement postures that included sitting [28], supine lying [10–12,26], standing,
or a combination of some of them (lying + standing [22]; sitting + standing [9,27]). It seems that the
supine position measures showed lower daily coefficient of variation than standing measures [38],
but a standing position was recommended previously [2]. Therefore, the posture differences could also
affect the HRV results obtained in the studies and, consequently, to the present meta-analysis.

There are several limitations in this meta-analysis related to the available randomized controlled
trials (RCTs) and the divergent methodologies employed, including (i) the small number of studies;
(ii) the different intensity training distribution, training programs, and modalities applied in the
studies; (iii) the lack of systematic information about the training load performed in most of the study;
(iv) the different methodologies applied to assess HRV; (v) the small number of studies using trained
athletes to obtain a more specific picture about the effect of this type of training in this population;
and (vi) the lack of longer studies to analyze the chronic effect of HRV-g (the duration of the studies
was <8 weeks). Additionally, readers should take into consideration that the sport modality (running,
cycling, or skiing) can influence the aerobic enhancement and this fact could modify the results
obtained in the present review. In addition, it was found that the available evidence has high risk of
bias primarily due to the low quality of available RCTs. Therefore, to develop further studies with a
better-quality design, and before a more comprehensive training trend, trained athletes’ samples are
needed in order to analyze the effect of longer interventions (>8 weeks).

According to the results obtained in the present study, while no significant benefits were observed
for HRV-g compared with PT, small effects were evident in the larger increases in aerobic performance
and physiological adaptations following HRV-g. This suggests that some individuals may benefit more
from HRV-g compared with PT, which would be important in well-trained athletic cohorts, where small
changes in physical attributes are difficult to achieve and the individualization of the training plays a
key role. Further research is required to investigate these responses in more detail, but it appears that
the efficacy of HRV-g strategies have been affected by large variations in the structure of the training
program (intensity distribution, duration, volume, etc.) performed and the methodology used to
assess HRV. Hence, practitioners and coaches must use HRV with caution, due to the factors that affect
its measurement. In terms of practical applications, HRV assessment should be carried out daily in
the morning, standing or lying in a supine position, in a standardized condition (e.g., with an empty
urinary bladder and spontaneous breathing) and using a validated sensor to assess HRV. In addition,
it seems that the rMSSD should be the indicator of HRV, since it produces fewer disturbances in the
athlete’s daily routine and has several advantages, such as its quick and easy accessibility, and the
lower sensitivity for the breathing pattern in comparison with spectral variables.

5. Conclusions

The current systematic review with meta-analysis concludes that HRV-g produces significant
improvements in endurance performance and aerobic physiological adaptations. However, these
adaptations are not significantly higher than in PT. Nevertheless, the findings from this meta-analysis
are likely affected by the divergent methodologies employed in studies, specifically, in the HRV
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assessment, the training program, and the participant’s characteristics. Therefore, the results of this
meta-analysis reinforce the importance of additional detailed studies to analyze the effects of this novel
training method.
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