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Abstract: Meristem cells are irregularly shaped and appear in confocal images as dark areas 
surrounded by bright ones. Images are characterized by regions of very low contrast and absolute 
loss of edges deeper into the meristem. Edges are blurred, discontinuous, sometimes 
indistinguishable, and the intensity level inside the cells is similar to the background of the image. 
Recently, a technique called Parametric Segmentation Tuning was introduced for the optimization 
of segmentation parameters in diatom images. This paper presents a PST-tuned automatic 
segmentation method of meristem cells in microscopy images based on mathematical morphology. 
The optimal parameters of the algorithm are found by means of an iterative process that compares 
the segmented images obtained by successive variations of the parameters. Then, an optimization 
function is used to determine which pair of successive images allows for the best segmentation. The 
technique was validated by comparing its results with those obtained by a level set algorithm and 
a balloon segmentation technique. The outcomes show that our methodology offers better results 
than two free available state-of-the-art alternatives, being superior in all cases studied, losing 9.09% 
of the cells in the worst situation, against 75.81 and 25.45 obtained in the level set and the balloon 
segmentation techniques, respectively. The optimization method can be employed to tune the 
parameters of other meristem segmentation methods. 

Keywords: meristem cells; morphology; segmentation; receiver-operating characteristic 
 

1. Introduction 

The Shoot Apical Meristem (SAM) is a structure located at the end of each shoot, responsible for 
generating almost all the surface tissue of the plant. The outer cells are organized into two layers, 
epidermal and subepidermal, with very few cells moving between them. The identification of cells 
through their boundaries is a particularly important task because it allows for the analysis of their 
behavior, both as individuals and in groups. 

Some regularity is observed in the walls in the pattern of cell shapes during cell division in the 
Arabidopsis Shoot Apical Meristem. The placement of new walls shows regular cell size and number 
of neighbors. However, a major problem appears when cells are clustered and have an irregular 
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shape, particularly in intact tissue, due to the difficulty to distinguish each cell individually and the 
impossibility of using shape descriptors to recognize them. 

The cells found in the SAM are an example of irregularly shaped, clustered cells (Figure 1). The 
shapes of the cells are determined by semi-rigid cell walls that surround and join tightly to their 
neighbors. Cells join to a varying number of neighbors with their common boundary to define 
individual wall segments. Therefore, these individual wall segments can contribute in different 
proportions to the total perimeter of a cell, that is, there is no consistent geometrical description of a 
cell shape. Additionally, the SAM consists of hundreds of overlapped cells, which makes manual 
segmentation a time-consuming solution. Confocal images of the SAM are characterized by regions 
of very low contrast and absolute loss of edges when deeper into the meristem. Edges are blurred, 
discontinuous, sometimes indistinguishable, and the intensity level inside the cells is similar to the 
image background. 

 

 
Figure 1. Sample images of the meristem stacks. 

Recent technical advances in microscopy have fostered the development of new image 
processing techniques. These methods provide useful tools to extract quantitative information from 
images of biological samples, especially when large data sets must be collected. Several methods have 
been developed to automate the process of cell identification and segmentation, but most of them 
assume either that cells have a regular shape or are developed to detect their nuclei. 

Molnar et al. [1] discussed the detection of the cell nuclei and their morphology even in high 
confluence cell cultures with many overlapping cell nuclei. They combined the active contour model 
“gas of close circles”, which favors circular shapes but also allows slight variations around them, with 
a new data model. This captures a common property of many microscopic imaging techniques: the 
intensities of the overlapping nuclei are additive. 

Wienert et al. [2] presented a novel contour-based ‘‘minimum-model’’ cell detection and 
segmentation approach that uses minimal a priori information and detects independent contours of 
their shape. This approach avoids a segmentation bias with respect to shape features and allows an 
accurate segmentation (precision 50.908; recall 50.859; validation based on 8000 manually-labeled 
cells) of a broad spectrum of normal and disease-related morphological features without the 
requirement of prior training. 
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Dima et al. [3] found cell edges from fluorescent microscopy images using edge detection and 
k-means clustering methods. Parvati et al. [4] applied mathematical morphology techniques to derive 
an edge detection algorithm, including an edge function and a marker-controlled watershed 
segmentation. This method was applied in medical Magnetic Resonance Imaging (MRI) for brain cell 
analysis and also in satellite images. The authors reported that the watershed transformation 
produces good segmentation when markers are used on masks, even if they contain irregularities. 

Jung et al. [5] proposed a fully automated watershed-based nuclei segmentation technique. 
Using the h-minima transformation to identify each candidate nucleus, they found the optimal h 
value by comparing the distortion between the segmented image and the proposed synthetic model. 
Dorini et al. [6] proposed a novel method to segment the nucleus and cytoplasm of white blood cells 
(WBC). They employed simple morphological operators and explore the scale and space properties 
of a switching operator to improve the accuracy of the segmentation. 

Dimopoulos et al. [7] developed a graph cut segmentation that takes into account cell boundary 
information by means of directional cross-correlation, and automatically incorporates spatial 
constraints. Cheng et al. [8] suggested an automatic technique to segment cell nuclei in fluorescence 
microscopy images, using shape markers and marking functions. The method begins with an initial 
segmentation of nuclei, using active contours without edges. Then, a marker-controlled watershed 
algorithm is applied with a new marking function capable of accurately separating clustered nuclei. 
An adaptive h-minima transformation is applied iteratively; then, images are binarized, and a 
distance transformation is used before the watershed transformation. Singh et al. [9] presented a 
survey of all the actual division approaches used to divide a picture into non-convergent premises 
with the ultimate goal that each area is homogeneous, as well as the union of two not nearby districts. 

Several techniques can be applied for the automatic or semi-automatic segmentation of Shoot 
Apical Meristem cells in confocal microscopy images, including a level set algorithm by Liu et al. [10], 
watershed by Fernandez et al. [11] and Jung et al. [5], and balloons by Federici et al. [12]. However, 
their methods are not fully automatic, given that several parameters must be fixed beforehand. 
Stegmaier et al. [13] proposed a development that consists of a conservative super-voxel generation 
method followed by super voxel agglomeration based on local signal properties and a post-
processing step to fix under-segmentation errors using a Convolutional Neural Network. 

Several attempts have been made to provide optimal segmentation procedures, but the problem 
has not been completely solved yet, as image segmentation is, most of the time, an ill-posed problem 
without a clear unique solution. Most automated-cell segmentation methods need several parameter 
values to be fixed beforehand in order to get the best results. This process is time-consuming because 
segmentation must be repeated with each new value, and variations in the image quality must be 
tackled. Liu et al. [10] are the only authors who propose an automated method to tune a segmentation 
procedure, but this optimization is based on an approximation between the expected area of the cells 
and the area of the resulting objects. Thus, it requires previous knowledge. 

Rojas et al. [14] introduced a meristem segmentation method based on mathematical morphology, 
which requires three parameters to be tuned. This segmentation algorithm produces as output a binary 
image as a function of the variation of three parameters, where a grey level represents the object of 
interest and another one the background. The automated optimization procedure, proposed by Rojas 
et al. [15], is employed to tune the segmentation. The technique, called Parametric Segmentation Tuning 
(PST), is an iterative process that finds the best parameters by comparing the segmented images 
obtained by successive variations of the parameters. The meristem segmentation technique is extended 
here and compared with the methods of Liu et al. [10] and Federici et al. [12]. The comparison showed 
that our procedure led to a significant improvement of the segmentation results. 

2. Materials and Methods 

2.1. Technical Specifications of the Image Stack 

Ten stems wild-type Arabidopsis inflorescence stems (Col0 ecotype) were dissected to expose 
the SAM, which is normally concealed by the developing floral buds. Field work was not involved, 
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and all samples grew under cabinets with controlled environment in the laboratory, using seeds 
collected from laboratory-grown plants, obtained originally from the Nottingham Arabidopsis Stock 
Center (http://arabidopsis.info). 

All the work involving plant growth and genetic modification was carried out under the 
regulations and inspection of the UK Health and Safety Executive. Cell membranes were stained by 
submerging the structure in a 66 ng/mL aqueous solution of FM4-64 (Life Technologies) for one 
minute. SAM was imaged using a Zeiss 710 confocal system with an Observer Z1 microscope stand 
and an Achroplan 40×/0.8 W long working distance water-dipping objective. 

Excitation was provided at 488 nm (3% power) and emission collected between 605 and 695 nm 
using a pinhole of 54 µm (1 Airy unit). Ten stacks of 102 images on average were acquired with a xy 
resolution of 512 × 512 pixels (pixel size 0.52 µm2) and z-spacing of 0.52 µm. Gain and offset were 
optimized to give the best contrast between stained cell walls and unstained cytoplasm as assessed 
by eye. 

Each stack is sufficiently representative to make an analysis and generalize the segmentation 
process as it contains most of the characteristic issues that affect this type of images (blurriness, 
diffuse contours). Figure 1 shows three images from two of the stacks, randomly chosen at different 
depths. From each one of these images, a subsection of size 322 × 320 pixels was chosen to test the 
methods and segmented by hand to obtain six manually annotated ground truth images. 

2.2. Segmentation Algorithm 

Rojas et al. [14,15] introduced an automatic tuning technique for segmenting diatom images, 
which is used here to find the best values of the proposed segmentation technique. As shown in 
Figure 2, three parameters �⃗� = [𝐵, ℎ, 𝑑] must be set to find the best segmentation. For each variation 
of one of the parameters, a segmented image is obtained. For the sake of simplicity, we call �⃗�  to the 
image obtained with a certain set of parameter values and �⃗�  to a neighboring image in the 
parameter space, obtained by the variation of one of the parameters. 

To segment the meristem stacks, a method of seven steps is proposed, as shown in Figures 2 and 3. 
First, a white top-hat transform (e.g., Beucher [16] and Vincent [17]) is employed to highlight the edges of 
the cells, in particular those in low contrast regions (Figure 3—Step 2). By applying this transform, the 
bright details of the image are highlighted on a dark background. To get a good result, the appropriate 
size of the structuring element B, i.e., the first parameter of the method, is fixed as explained in Section 2.3. 
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Basins detection
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transformation
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h
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Figure 2. Flowchart of the proposed segmentation algorithm. As can be seen, three parameters 𝐵, ℎ, 𝑑 
must be tuned to obtain the best possible result. 

Then, to identify each candidate cell, a seed or mark must be placed in each of them. In the images, 
the cells are identified as black regions surrounded by bright walls. If the image is seen as an orographic 
system, where the altitude of each point is given by the intensity of the pixel, then, each cell can be 
identified by finding its local minimum. In this way, seeds are found across the basins in the images, as 
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defined by Vincent [18] (Figures 2 and 3—Step 3). The depth of the basin is given by d and ideally, a single 
seed should be found for each cell. However, depending on the chosen value of depth d, one seed can be 
shared amongst several cells (if d is too big), or one cell may contain several seeds (if d is too small). To 
solve this problem, the optimal depth d is found, as explained in Section 2.3. Since more than one basin 
can still appear inside a cell, a steerable Gaussian filter is used to remove the false seeds, as shown in Step 
4 of Figures 2 and 3. In Step 5 (Figures 2 and 3), seeds are finally determined by computing iteratively the 
extended-minima transform of height h. As cells have irregular shapes and their edges are not detectable 
by classical geometry, they are identified by the region of minimum intensity. Thus, by varying h, it is 
possible to find the regions that contain the local minima of the image. In the ideal case, a single local 
minimum contained within each cell is obtained. 

 
Figure 3. Result images from the steps of the proposed segmentation algorithm. 

Then, the distance transform by Vincent et al. [19] is used as a model of probability distribution 
and applied in Step 6 (Figures 2 and 3). The distribution around the minimum determines the zone 
of influence of each cell, which corresponds to the internal region bordered by the cell edges. Once 
the zone of influence is identified, the watershed transform is applied, and the area of each cell is 
found in Step 7 (Figures 2 and 3). 

As shown in Figure 4, varying a parameter within a range of values in the segmentation method 
produces a move from under-segmented images to over-segmented ones that passes through an 
intermediate value, where the best possible result is obtained. Changes between under-segmented 
and over-segmented images are more abrupt compared to those produced between the images closer 
to the optimal result. This behavior is expected because the optimal result seeks to get closer to what 
is actually seen in the original image. In other words, if two consecutive under-segmented images are 
compared, the second one will be more segmented than the first one. Thus, if two consecutive under-
segmented images are matched, the first will be less sub-segmented than the next. Assuming that the 
first image is the ground truth image, there will be zero false negatives and a high number of false 
positives. Similarly, if two consecutive over-segmented images are compared, the second one will be 
more over-segmented than the first one. In this case, if it is assumed again that the first image is the 
ground truth, the second one will have zero false negatives and a high number of false positives. If 
the segmented images are close to the optimal result, the variation between them will be minimal 
and the number of false positives will be low. This observation was used by Rojas et al. [15] to develop 
their tuning technique. Since the same observation is also true in the meristem images, the PST was 
used here to fine-tune the segmentation algorithm. The ground-truth images obtained by hand were 
only used to validate the results. To validate the method, the binary images obtained were compared 
with the ground truth using the Jaccard index. 
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Figure 4. Variation of the segmentation results by varying h in the proposed algorithm in the range. 
(A) Original image. (B,C) Under-segmented images. (D) Best-segmented image. (E,F) Over-
segmented images. The best segmented image, in this example, was chosen by visual evaluation and 
is the one in which a greater coincidence was observed between the edges of the original meristem 
image and those of the resulting image. 

2.3. Overview of the Parametric Segmenting Tuning Technique (PST) 

The PST technique is briefly described here and employed to tune the segmentation algorithm. 
An image 𝐼 of size 𝑁 × 𝑀, where 𝑁 and 𝑀 are the width and height of the image, respectively, 
may be represented as a vector 𝜶 of size 𝑢 = 𝑁 × 𝑀. Let 𝑇(𝐼, �⃗�) represent the transformation of an 
image I into a binary one as a result of a segmentation algorithm, given a certain number 𝑟 of 
parameters 𝑝, where a grey level represents the object of interest and another one the background. 

Therefore, an 𝑟-dimensional solution space 𝑃 ⊆ 𝑅  generated by the transformation 𝑇(𝐼, �⃗�) 
can be defined, where each coordinate is given by a parameter and each point of the space represents 
a binary image. Considering image segmentation as an optimization problem, the best solution can 
be found by maximising a similarity function 𝛹 in 𝑃 , or minimising a distance function. 

The object function is defined as: 𝛹: 𝑍 × 𝑍 ⟶ 𝑅, where 𝛹 is an indicator associated to each 
pair of neighbor images of 𝑍 × 𝑍 . Each binary image 𝐼  is an element, in the space of possible 
solutions 𝑃 ⊆ 𝑅 , generated by the transformation 𝑇(𝐼, �⃗� ), as shown in Figure 5. 

The decision criterion consists of finding the set of images with the highest associated index 
(maximization problem), or the lowest associated distance (minimization problem). Table 1 presents 
the four indices used here and explained in [15]: Sensitivity, Coverage, Minimum Distance and Co-
linearity. The sensitivity and Minimum Distance Index relate the True Positive Rate (TPR) and the 
False Positive Rate (FPR). The relation between the TPR and the FPR is known as ROC space (Receiver 
Operating Characteristic). 

Let the binary set 𝑍 = {0,1} be the binary space 𝑢-dimensional 𝑍 = 𝑍 × 𝑍 × … × 𝑍  𝑢-times. 
An element 𝜶 (image) of 𝑍  is an u-upla formed by 𝑍 elements. Thus, 𝛼 = (𝛼 , 𝛼 , … 𝛼 ), with 𝛼 ∈ 𝑍 , that is, 𝑍 = {𝛼 = (𝛼 , 𝛼 , … 𝛼 ),∨, 𝛼 ∈ 𝑍 × 𝑍 × … × 𝑍 ∧ 𝛼 ∈ 𝑍 }. 
In other words, the optimal segmentation parameters are obtained by finding the best index 

value between each pair of neighboring images, which can be expressed mathematically as follows: �⃗�∗  = arg{𝑜𝑝𝑡𝑖𝑚𝑢𝑚( 𝛹[∙](𝐼 , 𝐼 ))} Subject to: 𝐼 ∈ 𝑍  (1) 
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Table 1. Definition of the similarity and distance indices used for tuning the Parametric Segmentation 
Tuning (PST). 

Index Definition Mathematical expression 

Sensitivity 

It represents a relationship between the True Positive Rate 
(TPR) and the False Positive Rate (FPR). It varies between 

zero and one, being minimal when the FPR is zero and 
maximum when the TPR is one. 

 
 
 

Coverage 
It compares the reference and segmented sets α and β, 
measuring the one-to-one correspondence between the 

pixels of both sets. 
  

Minimum 
 Distance 

Minimum distance in the ROC space between the 
optimum segmentation point (0.1) and the one located in 

(FPR, TPR). 

 

  
 

Collinearity 

It measures how well two sets of points of the compared 
images α and β match each other. It varies between 0 and 
1, being zero if the sets of points are orthogonal and one if 

they coincide, i.e. they are collinear. 

  

Therefore, the best solution, noted by an asterisk �⃗�∗ = [𝐵∗, ℎ∗, 𝑑∗], can be found in Figures 5 and 
6, by sweeping the solution space and evaluating a similarity function between each pair of binary 
neighbor images 𝐼 = 𝑇(𝐼, �⃗� ) and 𝐼 = 𝑇(𝐼, �⃗� ). These images are the result of the segmentation 
algorithm 𝑇(𝐼, �⃗�) explained in Section 2.1. 

 
Figure 5. Space of solutions. The segmentation solutions space is three-dimensional, where each 
coordinate is a segmentation parameter (𝐵, ℎ, 𝑑) and each space element is a binary image of size 𝑢. 
Each triplet of coordinates is used to generate a 𝑢-size binary image. 

𝛹 (𝛼, 𝛽) = 0.5(1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅)
𝛹 (𝛼, 𝛽) = 2𝛼 ∙ 𝛽‖𝛼‖ + ‖𝛽‖ 

𝛹 (𝛼, 𝛽) = 𝜆 = 𝛼 ∙ 𝛽‖𝛼‖ ∙ ‖𝛽‖ 

𝛹 (𝛼, 𝛽) = 1 − 𝑇𝑃𝑅 + 𝐹𝑃𝑅  
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Figure 6. Flowchart of the tuning technique. 

Since there are three parameters to be tuned, the PST algorithm can be implemented with the 
following pseudo-code: 

Alogrithm: Parametric Segmenting Tuning Technique (PST)  
1: Input: I original image 
2: Output: optimal segmented image 
3: 𝐼 : Image segmented in step n  
4: 𝐵, ℎ, 𝑑 Parameters to be tuned 
5: 𝐵∗, ℎ∗, 𝑑∗ Optimal parameters 
6: 𝑛 = 1 
7: 𝐼 =  𝑊ℎ𝑖𝑡𝑒_𝐼𝑚𝑎𝑔𝑒 
8: 𝑓𝑜𝑟 (𝐵 = 𝐵  ; 𝐵  𝐵  𝐵 + +) 
9:          𝑓𝑜𝑟 (ℎ = ℎ  ; ℎ  ℎ  ℎ + +) 
10:                   𝑓𝑜𝑟 (𝑑 = 𝑑  ; 𝑑  𝑑  ℎ + +) 
11:                   {  
12:                              𝐼 =  𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝐵, ℎ, 𝑑) 
13:                              𝑖𝑓 (𝜓(𝐼 , 𝐼 ) 𝑖𝑠 𝑜𝑝𝑡𝑖𝑚𝑢𝑛) 𝑡ℎ𝑒𝑛 𝐵∗ = 𝐵, ℎ∗ = ℎ, 𝑑∗ = 𝑑 
14:                              𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐼 = 𝐼  
15:                     }  
16: 𝑂𝑝𝑡𝑖𝑚𝑎𝑙_𝐼𝑚𝑎𝑔𝑒 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝐵∗, ℎ∗, 𝑑∗) 

This algorithm is slow, but it allows finding the optimal segmentation parameters. It is possible 
to build more efficient algorithms to obtain the best parameters, although this objective is beyond the 
scope of this work. However, a faster method to get the approximate parameters consisted in 
sweeping one parameter (𝐵), while the other two remain fixed until finding the value (𝐵) that allows 
obtaining the best index. Then, another parameter (ℎ) is swept, while the other two remain fixed (𝐵 
with the best value found) looking also for the best value. This process is applied to all three 
parameters. This approach is much faster and was used to find the optimal values of the segmentation 
method. 

3. Experiments, Results, and Discussion 

Figure 7 shows the results of the segmentation. The four similarity indices shown in Table 1 were 
used to find the optimal parameters and determine the most efficient. Figure 8 shows the similarity 
curves obtained by each index, with ten different values of d, while modifying h and keeping B 
constant. Figure 8A shows the collinearity index, Figure 8B the minimum distance to the point index 
(0.1) and Figure 8C the coverage and sensitivity indices, where the maximum values of each iteration 
in d (horizontal axis) are the arguments of h. 
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Figure 7. The optimal parameters for segmentation are obtained with the PST. This image shows the 
results obtained with the proposed method in each of the six sub-images in Figure 1. 

  

 

Figure 8. Curves of the similarity indices obtained from the tuning of the segmentation technique on 
the image in Figure 7A. (A) Co-linearity indicator. (B) Minimum distance indicator. (C) Coverage and 
sensitivity indicators. All the curves vary in the range between 0 and 20, but to allow comparing and 
visualizing the minimum point. They were displaced in intervals of 20 between one and the other. 

From those iterations, the algorithm chooses the one with the lowest error and the highest match. 
Figure 9 shows the ROC curve and the trend towards the point (0,1) between the two neighbour 
segmented images. Points are located in the upper left part of the 45° line. The parameters vary from 
left to right, passing by a point in which high true positive and low false positive rates are found. 
This point is the minimum distance to (0,1) in the ROC curve, which means that the best pair of 
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segmented images has been found. Table 2 shows the indices and optimal values found for the 
parameters of the segmentation method, for each image in Figure 7. The same optimal parameters 
were found with each index. Therefore, the computational load was used as the only criterion to 
choose sensitivity as the best tuning index. 

 
Figure 9. ROC Analysis. Three regions are identified: over-segmentation, under-segmentation, and 
optimal segmentation. 

Table 2. Parameter values and optimal similarity indices obtained with the proposed method for each 
image in Figure 7. 

Images B d h 
Sensitivity 

Index 
Coverage 

Index 
Minimum 

Distance Index 
Co-linearity 

Index 
A 30 10 4 0.856 0.737 0.273 42.48 
B 30 10 3 0.852 0.736 0.279 42.52 
C 30 10 4 0.855 0.742 0.266 42.01 
D 30 20 6 0.846 0.729 0.331 44.78 
E 30 10 4 0.841 0.717 0.293 44.13 
F 30 10 4 0.835 0.673 0.342 45.68 

To validate the method, the binary images obtained were compared with the ground truth using 
the Jaccard index. As shown in Table 3, the Jaccard index is higher than 90, which shows the quality 
of the obtained segmentation. 

Table 3. Jaccard index obtained between the results of the proposed method and the ground truth 
images. 

Images/Ground-Truth B d h Jaccard Index % 
A 30 10 4 94.00 
B 30 10 3 90.09 
C 30 10 4 93.44 
D 30 20 6 96.51 
E 30 10 4 96.77 
F 30 10 4 96.20 

3.1. Comparison with Level Set Algorithm and Balloon Segmentation Technique 

Six sub-images from the stacks were randomly selected and segmented using all the three 
methods. The results obtained with the available free methods depend on the value of a parameter 
chosen by the user, in addition to delivering no binary segmented image itself, but rather the 
highlighted contours of the cells at grey levels. Therefore, the cells found were marked and numbered 
for different values of the input parameters. The true and false positive percentages were then 
obtained. Figure 10A illustrates an example of the result obtained with the proposed method in a 



Appl. Sci. 2020, 10, 8523 11 of 16 

sub-image from Figure 1. Figure 10B shows the fifty cells identified by hand. Figure 10C shows the 
ground-truth, and Figure 10D presents the ground-truth overlapping the original image. Figure 10E,F 
expose the result obtained with the proposed method: 47 cells were identified with a non-success 
error of 6% compared with the ground-truth. 

 
Figure 10. Cells found with the proposed method in a sub-image of Figure 1. (A) Sub-image. (B) Cells 
identified by hand. (C) Ground-truth image. (D) Ground-truth overlapping the original image. (E,F) 
Results obtained with the proposed technique. 

3.2. Comparison with the Level Set Algorithm Technique 

The algorithm proposed by Liu et a1. (Liu, Yadav, Chowdhury, & Reddy, 2010) adapts the 
region-based energy model, known as the Chan-Vese Level Set Model for segmentation. Figure 11 
shows a sequence of four different results obtained by modifying the model level ℎ. 

The segmented images were compared to the original ones and to the ground-truth. For each 
level of segmentation, cells that matched the ground-truth were listed. In Figure 11A (ℎ = 1), Figure 
11B (h=3) and Figure 11 (ℎ = 100), it is possible to see that the technique estimates the cells edges. 
However, when the threshold level increases, the algorithm begins to detect high intensity regions 
instead, as shown in Figure 11D (ℎ = 150), thus, cells are not identified. 

Table 4 summarizes the results obtained by comparing the ground-truth image, the one 
segmented by the proposed method, and those obtained with the level set algorithm. The maximum 
success rate was reached at level 3, where a failure rate of 40% was obtained, which is high compared 
with the 6% obtained with our method. 
 

 

 
Figure 11. Segmentation results obtained with the level-set technique for four different values of the 
parameter h. (A) h=1. (B) h=3. (C) h=10. (D) h=20. (E) h=100. (F) h=150. 
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Table 4. Results obtained with the proposed method and the level set algorithm for different values 
of level h. 

Method Level h Found Cells Failures [%] 
Ground-truth - 50 0 

PST - 47 6 
 1 26 48 
 3 30 40 
 5 29 42 
 7 29 42 
 10 27 46 

Level set 12 28 44 
 20 26 48 
 35 28 44 
 50 29 42 
 100 26 48 
 150 0 100 
 200 0 100 

 

3.3. Comparison with the Balloon Segmentation for Multicellular Images—BSMI Technique 

The technique described by Federici et al. (Federici, Dupuy, Laplaze, Heisler, & Haaeloff, 2012) 
uses a physical balloon inflation algorithm to detect cellular architectures from the cell wall 
segmentation in microscopy images. This method extracts information about the cellular morphology 
and determines which cells are in contact with each other. The stages of the process are automatic. 
However, manual changes can be made at each step. 

Prior to segmentation, this technique uses a pre-processing step. Then, in the first stage, the 
Watershed Transform is applied to find the edges of the cellular tissue to be segmented. In the second 
stage, the seeds used to recognize each cell are found, manually or automatically, through a sampling 
algorithm based on the “path” between two points to determine if both are inside the same cell. If the 
foregoing is true, one of them is removed. This decision is based on the product h*l, where h is the 
highest intensity along the path and l the distance between points. If there is a small relation, the 
point belongs to the cell, but if there is a large one, some cells cannot be detected. Figure 12 shows a 
sequence of four images segmented by the BSMI technique with increasing values of the product h*l. 
This technique identifies regions with low-intensity levels, surrounded by pixels with higher levels 
to detect and locate the central parts of each region. The sequence of images shows that, in some 
areas, the centers are adequately located. However, some of them are outside the region of interest, 
hence producing false positives in the background. 



Appl. Sci. 2020, 10, 8523 13 of 16 

 
Figure 12. Segmentation results with the Balloon Segmentation for Multicellular Images (BSMI) 
technique for four different h*l values. (A) h*l = 5. (B) h*l = 30. (C) h*l = 100. (D) h*l =150. 

Table 5 summarizes the results obtained by comparing the ground-truth image, the one 
segmented by the proposed method and those obtained with BSMI technique. The maximum success 
rate was reached for h*l = 15, where the failure rate was 12%, compared with the 6% obtained with 
our method. 

Table 5. Results obtained with the proposed method and the BSMI technique. 

Method BSMI Found Centers Found Cells Failures [%] 
Ground-truth - - 50 0 

PST - - 47 6 
 7 47 40 20 
 10 45 39 22 
 15 49 44 12 
 20 50 42 16 
 25 46 39 22 
 30 46 40 20 

Balloon 50 47 39 22 
Technique 

 100 46 41 18 
 120 42 37 26 
 300 48 41 18 
 500 47 41 18 
 5000 45 40 20 

Table 6 Summarizes the number of cells found with the different methods in the six sub-images 
shown in Figure 13, which were taken from each image in Figure 1, using the best parameters found 
by hand in the level set and BSMI techniques. Results show that the proposed method has better 
performance, losing 9.09% of the cells in the worst case. 
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Figure 13. Sub-images taken from each image of Figure 1 and employed to compare the meristem 
segmentation methods described here. . 

Table 6. Results obtained with the meristem segmentation methods. 

Sub-
Images 

Ground-
Truth Proposed Method Level Set Algorithm BSMI 

Cells Found 
Cells 

Failure 
[%] 

Level 
Set 

Found 
Cells 

Failure 
[%] 

h*l 
Accurate 

Cells 
Failure 

[%] 
A 50 47 6.00 3 30 40.00 15 44 12.00 
B 55 50 9.09 7 32 41.82 10 41 25.45 
C 61 57 6.56 7 20 67.21 30 53 13.11 
D 86 83 3.49 1 44 48.84 10 69 19.77 
E 62 60 3.23 10 15 75.81 300 60 3.23 
F 79 76 3.80 7 22 72.15 25 69 12.66 

4. Conclusions 

A method for the segmentation of meristem cells was introduced in this paper, based primarily 
on mathematical morphology techniques. The proposed method requires the adjustment of three 
parameters. For its automatic optimization, the technique called Parametric Segmentation Tuning 
was employed. In the PST, optimal parameter values are obtained through an iterative process. In 
this way, automatic segmentation of microscopy images of the shoot apical meristem, containing 
irregularly shaped cells with variable contrast, is achieved with improved reliability. The PST 
technique can employ a variety of similarity functions or distances. When these functions are 
optimized, they allow for estimating the best parameters of the segmentation algorithm. The indices 
tested produced the same results, thus finding that the sensitivity index is better thanks to its lower 
computational cost. 

Experimental results showed that the proposed method is effective, eliminates false objects 
produced by local minima, and correctly identifies cells. This technique requires no geometrical 
information to obtain the best segmentation and could be applied with any other state of the art 
meristem segmentation technique, where several parameters must be adjusted by hand. When 
validating with the ground-truth images, it is concluded that the proposed segmentation technique 
is accurate in at least 90% of the cases, and better results are obtained than those of techniques based 
on level set algorithm and balloon segmentation techniques. 
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