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Abstract: Estimating the 3D shape of a scene from differently focused set of images has been a
practical approach for 3D reconstruction with color cameras. However, reconstructed depth with
existing depth from focus (DFF) methods still suffer from poor quality with textureless and object
boundary regions. In this paper, we propose an improved depth estimation based on depth from
focus iteratively refining 3D shape from uniformly focused image set (UFIS). We investigated the
appearance changes in spatial and frequency domains in iterative manner. In order to achieve sub-
frame accuracy in depth estimation, optimal location of focused frame in DFF is estimated by fitting
a polynomial curve on the dissimilarity measurements. In order to avoid wrong depth values on
texture-less regions we propose to build a confidence map and use it to identify erroneous depth
estimations. We evaluated our method on public and our own datasets obtained from different types
of devices, such as smartphones, medical, and normal color cameras. Quantitative and qualitative
evaluations on various test image sets show promising performance of the proposed method in
depth estimation.
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1. Introduction

Estimating three dimensional shape of a scene from color image is a challenging task [1].
Without any prior knowledge on the scene, it is an ill-posed problem to recover three dimensional
shape of objects using single color camera. Many researchers have proposed diverse approaches for 3D
depth acquisition. For example, in Reference [2,3], the authors estimate depth information based on
a coded aperture framework. However, it requires hardware modification which cannot be applied to
off-the-shelf camera, such as smart phone camera. Depth from focus (DFF), or shape from focus (SFF),
is a technique for depth estimation from a set of image frames having continuously changing focus
amount that are taken at the same location and viewpoint. By identifying best focused frame of each
pixel, depth of each pixel can be estimated. In DFF, three factors determine the quality of reconstructed
depth: lens aperture, focal length, and focusing distance. While many computer vision techniques
assume that given images are obtained with pin-hole camera, DFF assumes that a real aperture camera
is used. Real aperture cameras have relatively short depth of field resulting in images focused only
on a small distance range of a scene. For instance, Darrell and Wohn [4] use Laplacian of Gaussian
pyramids in order to find best focused frame at each pixel.

There are lots of traditional Depth from focus methods [5–9]. Gaganov et al. [6] propose new
SFF algorithm based on Markov Random Fields, and Mendapara et al. [7] use SUSAN operator.
Mahmood et al. [8] use energy of high-frequency components in S transform and Mahmood et al. [9]
propose to use 3D anisotropic nonlinear diffusion filtering for accurate SFF. Recently, depth from
focus (DFF) method has been improved in various ways producing more accurate depth map and
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high quality all-focused image. Muhammad and Choi [10] use a neural network in order to extract
3D shape of objects based on DFF. In Reference [11], they use neural networks to learn the shape of
focused image surface (FIS). In Reference [12,13], the authors use dynamic programming optimization
technique to get depth (3D shape) of the scene from set of focused images. Their method works
significantly faster than previous FIS algorithms. In Reference [14], the authors propose local search
algorithm for SFF problem to reduce computational complexity. In Reference [15], the authors propose
focus on measurement method based on an optical transfer function, which is implemented in Fourier
domain for 3D shape recovery. Sun et al. [16] employ the entropy of high frequency bands as the
amount of blur combining texture information for improved performance. Liu et al. [17] propose a semi
global DFF approach that enforces the adaptive smooth constraint on reconstructed depth of the scene.
Meoller et al. [1] propose variational approach using an efficient non-convex minimization scheme to
produce depth map. Suwajanakorn et al. [18] formulate uncalibrated DFF problem and propose a new
focal-stack aligning algorithm to estimate depth of given scene using hand held cameras.

In Reference [19], the authors propose a new focus measurement that is robust to noise with higher
accuracy in focus measurement. They present Ring Difference filter (RDF) by inserting a gap and
looking at the pixels that are located farther away from the point of interest (POI). They extended their
work [20] by proposing RDF-based cost aggregation that utilizes both local and non-local characteristics
by inheriting the structure of RDF. Recently, Zhiqiang et al. [21] proposed depth recovery framework
including depth reconstruction and refinement process. They use non-local matting Laplacian prior
and variance based confidence level computation. It is able to produce depth map robust to texture-less
regions and give more clean edges. Hazirbas et al. [22] propose auto-encoder-style network to predict
depth from focal stack. In order to train their network, they create 12-Scene Benchmark dataset.
For the encoder part, they use VGG-16, a popular deep neural network for object recognition [23],
without fully connected layers, and for decoder network they simply use flipped structure of the
encoder network. It provides sharpness map (feature map) for each frame separately with single
output depth map. However, such deep learning approach has limitations, such as fixed number of
input frames (it depends on training samples).

However, traditional DFF methods suffers from unstable approximation results with texture-less
regions and object boundary regions. Indeed, texture-less region shows limited clue for the estimation
of focus amount from only its visual appearance and object boundary contains sudden changes in depth
that making patch based focus estimation difficult. In order to resolve such limitations, we suggest
maximizing depth inference from neighbor pixels and neighbor frames globally optimizing overall
changes of focus amount along the spatial and frame domains. In this work, we propose a new DFF
method using single color camera. We investigate the appearance changes in spatial and frequency
domains over differently focused image frames. In spatial domain, visual appearance change of
low-textured region along the frames is difficult to be observed. In frequency domain, however,
low-textured region gives slightly better observation over frames. Using both spatial and frequency
domain observations, we can get robust depth estimation at each pixel even in low-textured regions.
In order to achieve sub-frame level accuracy in depth estimation at each pixel, optimal location of best
focused frame is estimated by fitting a second order (quadratic) polynomial curve on the dissimilarity
measurements. Based on the estimated initial depth, we build a uniformly focused image set by pixel-
wise adjustment of depth level. In other words, all-in-focus image and following uniformly out-focused
images are created. We perform our depth estimation iterative manner on this uniformly focused
image set that refine our depth estimation. During depth estimation process we create confidence
map that helps to fill erroneous depth points caused by textureless uniform regions. After filling
erroneous points, we use guided filter [24] using predicted depth to build its all-in-focus image with
which we finally create cleaner depth image. Each estimated depth point is considered as 3D point,
and surface normal of the point is computed from its 8 neighbors [25]. We interpolate them using
Algebraic Point Set Surface(APSS) [26], and, finally, using marching cubes algorithm [27], we create
polygonal surface representation.
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Our main contributions are the proposal of a new focus measure that uses both spatial
and frequency domain information, creating a uniformly focused image set (UFIS) to achieve
more accurate depth, as well as hole-filling process that fixes erroneous depth values caused
by textureless region. Figure 1 illustrates the pipeline of our proposed method. We tested our
proposed method with Light Field dataset (LFSD) [28], dataset from smartphone, synthetic, and teeth
datasets (medical). We compare our method with existing focus-measure [29–37], and state-of-the-art
DFF [1,18–20,22,38,39] methods quantitatively (Table 1) and qualitatively.
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Figure 1. Pipeline of our proposed depth from focus method.

Table 1. Focus measure operators and depth from focus (DFF) methods with abbreviation and year
of publication.

Focus Measure Operators Abbr. Year Depth from Focus Abbr. Year

Gaussian derivative [29] GDER 2000 DFF from mobile phone [18] DFM 2015

Variance of laplacian [30] LAPV 2000 Variational DFF [1] VAR 2015

Image contrast [31] CONT 2001 Noise robust RDF [19] RDF 2017

Wavelet sum [32] WAVS 2003 Composite Focus Measure [38] CFM 2017

Variance of Wavelet [32] WAVV 2003 PAD method of multipliers [39] PAD 2018

DCT Energy measure [33] DCTE 2006 Deep Depth from Focus [22] DDFFNet 2018

Wavelet ratio [34] WAVR 2006 Fast and noise robust RDF [20] F-RDF 2019

DCT Energy ratio [35] DCTR 2009

Diagonal Laplacian [36] LAPD 2009

Steerable filters-based [37] SFIL 2009

2. Proposed Depth from Focus

The proposed method consists of three steps. In first step initial depth of each pixel is estimated.
The second step is iterative refinement building uniformly focused image set. The last step is post-
processing that improves depth estimation in both textureless and object boundary regions.

2.1. Initial Depth Estimation

In order to find best-focused frame of each pixel, we calculate neighborhood patch dissimilarity.
Small window size causes noisy depth due to the lack of enough observation for focus estimation.
On the other hand, a bigger patch loses details in depth. In our work, we use adaptive patch size at each
iterative estimation. In addition, we use a circular window to minimize the artifact of estimated depth.
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A circular window creates less perceivable noise. Figure 2 shows the difference of 3D reconstruction
result between square and circle window.

All in focus Proposed depth map 3D Reconstruction

Sq
u

ar
e

C
ir

cl
e

Figure 2. From left to right: all-in-focused image, depth map, and 3D reconstruction results using
circle and square windows (highlighted part zoomed-in). Three-dimensional reconstruction result
shows that circle window produces less artifacts.

Using patch dissimilarity to find the best-focused frame, we chose a reference frame arbitrarily
among focal-stack. Then, we calculate the normalized average absolute difference of patches between
the reference frame and all other frames at each pixel. The best-focused frame becomes a local
maximum in the difference. The best-focused frame detection task for each pixel becomes a simple
local maximum detection task. However, if the best-focused frame is identical or very close to the
reference frame, the best-focused frame cannot be detected easily. To avoid such a singular case,
we blur the reference frame before the difference computation. The blurring amount of the reference
frame is selected not to have a similar blur amount in all other focused image frames (Figure 3a).
We use Gaussian blurring assuming that it simulates optical blur well in out-focus images.

(a) (b) (c)

Figure 3. (a) Adding blur for reference frame (yellow: reference frame, blue: other frames); (b) difference
between reference frame and other frames (curve form); (c) comparison of obtained 3D point clouds
with and without curve fitting.

Normalized average absolute difference between the reference frame and kth frame is calculated
on both spatial and frequency domain information of the given patch using Equation (1) for spatial
domain and Equation (2) for frequency domain:

px,y
k =

x+w

∑
i=x−w

y+w

∑
j=i−w

(
∣∣∣Ri,j − Fk

i,j

∣∣∣ ∗maski,j), (1)

p̄x,y
k =

x+w

∑
i=x−w

y+w

∑
j=i−w

(
∣∣∣R̄i,j − F̄k

i,j

∣∣∣), (2)
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where x and y are pixel indexes, w is window size, R is reference frame in spatial domain, R̄ is reference
frame (neglect edge effects using mask) in frequency domain, k is index of frames (1 6 k 6 n, n is
number of frames in focus-stack), F is kth frame in spatial domain, F̄ is kth frame in frequency domain,
and mask is binary circle mask (to use circle window). Then, we create distance vector for each index
of frame with applying weight and normalization for Equations (1) and (2) using Equation (3):

dk = α
(

p′k
)
+ (α− 1)

(
p̄′k,

)
(3)

where the apostrophe mark means that variable is normalized between 0 and 1, and α is a weight with
which we can assign a preference on either spatial domain clue or frequency domain clue (Figure 4).

Input image
Spatial domain 
Frequency domain

Spatial = 0.25
Frequency = 0.75

Spatial = 0.75
Frequency = 0.25

Spatial = 0. 5
Frequency = 0.5

Figure 4. Difference between reference frame and other frames on less textured part of the image
(marked with rectangle). Each graph: x axes—frame index; y—axes difference between reference frame
and others (normalized between 0 and 1). From left to right: one of the input image, frame difference
on frequency (blue) and spatial (red) domain, third to fifth: summation results after applying weight to
both domain.

Final step is finding the index of maximum distance (max(dk)) which indicates potential best-
focused frame. When we calculate the difference between reference-frame and other frames, the best-
focused frame may gives bigger distance than its neighbors (Figure 5a). Note that, in DFF, the best-
focused frame’s index indicates the depth of the corresponding point. In order to be more accurate
by estimating sub-frame level best focused frame, we use parameterized quadratic curve fitting [40]
around the maximum index (Figure 1 (curve fitting) and Figure 3b). We use second order polynomial
f (x) = a0 + a1x + a2x2 to fit on dk. Figure 3c shows our depth estimation with and without
curve fitting.
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Figure 5. (a) Choosing reference frame arbitrary; (b) initial depth result of DFF methods.
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2.2. Iterative Depth Refinement

Initial depth is estimated by investigating the appearance changes in both spatial and frequency
domains in the previous section. To obtain more accurate result, we build a uniformly focused image set
(UFIS) by taking pixels from the focus stack using resulting depth values. In other words, an all-in-
focus image and following uniformly out-focused images were created. Then, using UFIS, we improve
our depth estimation iterative manner. Let n be a number of frames of UFIS. n is an odd number,
and the central frame c should be an all-in-focus frame generated by the initial depth result (if n = 7
then c = 4, if n = 5 then c = 3). We fill all other frames of UFIS using the following equation:

Ti
x,y = F f

x,y, (4)

where x and y are pixel indexes, T is UFIS (synthetic focal stack), i is an index of the reconstructed
frame number of T, F is initial focus stack, and f is the corresponding frame number calculated by
Equation (5) using initial depth estimation result:

f = round(Dx,y) + (i− c), f =


d 0 ≤ d ≤ n

n d > n

0 otherwise

, (5)

where i is an index of the reconstructed frame (same with Equation (4)), Dx,y is estimated depth at [x, y]
position (same position with Equation (4)), and c is the central frame index of T reconstructed frame.

After UFIS is constructed, we repeat the initial depth estimation process with decreasing window
size. Based on the result of Iterative Depth Refinement, we update the depth result. We continue this
iteration process with a smaller window size until the changes in the depth value at each iteration falls
below a stopping criteria. We update depth result at each iteration using Equation (6):

Dx,y = Dp
x,y +

(
dx,y − c

)
, (6)

where Dp
x,y is previous depth at (x,y) location, dx,y is depth result in the current iteration, and c is center

frame index.
Figure 6 shows the results of 4 iterations. The first image is one of input frames, second is a point

cloud of the scene from initial depth estimation, and A,B,C,D images show the point cloud of each
iteration: green color is first iteration with window size 7 × 7, orange color is second iteration with
window size 5 × 5, blue color is third iteration with window size 3 × 3, and purple color is fourth
iteration with window size 1 × 1. Image A shows the point cloud results of all iterations, and the
green point cloud shows more flat results at the highlighted region (in Figure 6). Image B shows
second, third, and fourth iterations’ point cloud result, and the yellow point cloud has provided a
more flat result than blue and purple (in Figure 6). Image C shows that the blue point cloud has more
flat regions than purple (in Figure 6). It shows that each iteration point cloud becomes more accurate
(in highlighted more curved case). UFIS process tries to reach an optimal result with corresponding
initial (or previous) depth estimation.

Figure 7 describes the creation of our UFIS.
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Iteration – 1

Iteration - 2

Iteration - 3

Iteration - 4

Input image Point cloud at each iteration (zoomed in)

A B C D

Point cloud

1 2

Figure 6. Input image, point cloud(without post-processing) and zoomed-in version of point cloud
result of each iterations. Iteration 1-green, 2-yellow, 3-blue, 4-purple. A—includes all iterations’ result,
B—includes 3 iterations’ result, C—includes 2 iterations’ result, D—includes last iterations’ result.
First iteration’s (green) point cloud cannot provide detailed depth, next iterations’ result shows more
precise depth. Rectangle color of each point cloud result means that iterations are visible in that figure.
Full view of depth map and point cloud shown in Figure 1.
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Figure 7. Iterative depth refinement creating uniformly focused image set.

2.3. Textureless Region and Post Processing

Estimating depth on the textureless region is one of the challenging problems in DFF. Most existing
DFF methods fail in textureless regions because of the lack of enough information to observe. Figure 8
describes two different parts of the input scene: textured and textureless regions.
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Figure 8. Choosing peak-point(best-focused frame) of normalized absolute difference between the
reference frame and all other frames from textured and textureless parts of the scene.

The image shows that textured surface has more information to observe, and the textureless
surface has a lack of enough information to chose the best-focused frame. In Figure 9, the depth
estimation result has a bunch of erroneous points on textureless regions. To fix these erroneous points,
we have to use depth information from its neighbors.

In order to identify textureless region, we investigate all-in-focused image (generated using depth
map) and find inaccurate (noisy) regions from depth map, as well. We create two binary masks:

• Textureless Region Mask (TRM): textureless regions of all-in-focused image, and
• Inaccurate Depth Mask (IDM): erroneous depth regions on depth map.
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Score-confidence

(zoom-in)
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peak

Choosing 
“high-weighted” 

pixel

Zoom-in

All-in-focus Initial Depth Hole-filling process

Textureless Region Mask Inaccurate Depth Mask

A B C

D E F

Figure 9. A hole-filling process on textureless regions that produce erroneous depth values (note: coffee
box and the wall (background) are close to each other, so they have almost similar depth). (A,B) images
are all-focused-image and initial depth map; (C): Hole-filling process; (D): Textureless Region Mask;
(E): Inaccurate Depth Mask; (F): Post processing.

TRM mask. Textureless regions have lower variance in color. In order to create TRM mask,
we scan a window over all-in-focused image calculating color variance within the window. If the
variance is lower than a threshold, we mark the point as textureless. Threshold is the squared value of
the window size (th = w2, w is window size). Threshold value is chosen empirically as the value that
produces a better result than other variations when pixel values are in between 0 and 255. Figure 9D
describes TRM mask (black-color: textureless region).

IDM mask. Inaccurate depth points which are from textureless part have higher variance while
accurate depth points have lower variance. Based on this assumption we create IDM mask. Generating
IDM mask process is similar to TRM. If the variance is higher than a threshold, we mark that
point as an inaccurate depth point. Figure 9E describes IDM mask (black-color: inaccurate depth).
IDM sometimes finds inaccurate regions even at the correct depth around edges of objects. We overlap
both masks to figure out textureless regions. We indicate erroneous depth from textureless regions as
(EDfT). Finally, hole-filling is performed with EDfT regions. We replace EDfT points by its neighbors
of high-score-confidence. Depth confidence gets higher if the peak point in the sharpness estimation
is more greater than its neighbors in the focus measure process. Based on this idea, we created a
score-confidence map in the depth estimation process.

After fixing depth values of textureless region, we perform post-processing for getting cleaner
depth around the object boundary using a filter called guided filter [24]. The guided filter investigates
intensity changes in an all-in-focus image (Figure 10b). Finally, we scale estimated depth values by
scaling factor s to convert frame index to physically meaningful depth value. Median and Gaussian
filters are applied, in turn, to eliminate any remaining noisy value. After obtaining depth information
of the scene, we can get point clouds of the scene, as shown in Figure 1 (point clouds).
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Figure 10. (a) Comparison with Deep Depth from Focus (DDFF)Net on LFSD dataset [28]. All samples
have 10 frames. First-row: input image, second: results from DDFFNet [22], third: our result, last-row:
ground-truth. (b) Effect of guided filter [24] on the depth map: it helps keeping edges.

3. Experimental Results

3.1. Experimental Setup

In experimental evaluation, we use 11 × 11 window size and make it circular mask with
corresponding binary mask. In the iteration step, window size is gradually reduced until it reaches
1 × 1 size. We use alpha = 0.5 on Equation (3). When we choose peak-point to find focused frame,
we use second order polynomial fitting. Reference frame number is round(n/3) (n is number of frames
in stack), and then we apply Gaussian-blurring (size: 11 × 11).

3.2. Error Metrics

In order to evaluate quantitatively, we use following several measurements, which are used
in previous works [41,41–48]: Root mean squared error (linear) (Equation (7)), Root mean squared
error (log) (Equation (8)), Absolute relative error (Equation (9)), Squared relative error (Equation (10)),
and Accuracy (% of y such that, Equation (11)):

RMS =

√
1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣2 , (7)

RMS(log) : log10 =

√
1
T ∑i,j

∣∣∣log yi,j − log y∗i,j
∣∣∣2 , (8)

rel =
1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣ /y∗i,j, (9)

srel =
1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣2 /y∗i,j, (10)(

yi
y∗i

,
y∗i
yi

)
= σ < th, (11)

where y is depth map, y∗ is ground-truth, and T is depth-pixels.
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3.3. Qualitative and Quantitative Evaluation

In order to evaluate our work, we use four different datasets: LFSD dataset [28], Lytro dataset [49],
dataset from mobile [18], and our synthetic and medical (teeth) datasets. We compare our method with
existing focus-measure focus-measure [29–37] and state-of-the-art DFF [1,18–20,22,38,39] methods.

Figure 11 shows results on the LFSD dataset [28]. The LFSD dataset [28] provides focal stacks
captured by Lytro Illum camera with corresponding depth map. It has 5 to 12 focus image frames for
each subject. The depth map has darker intensity for farther depth. The proposed method estimates
depth of each sample reasonably well.

Table 2 shows quantitative evaluation of our method and previous focus measure methods
(to get depth result we used our post-processing without filling textureless region) and state-of-the-art
DFF methods.

Table 2. Quantitative evaluation on the LFSD dataset [28].

Methods Lower Is Better Accuracy (Higher Is Better)

RMS Log RMS Abs rel Sqr. rel δ = 1.25 δ2 δ3

Fo
cu

s
m

ea
su

re
op

er
at

or
s GDER [29] 9.964 0.519 1.279 0.997 49.687 69.968 78.326

LAPV [30] 9.608 0.417 1.553 0.922 56.028 76.290 82.680
CONT [31] 9.890 0.503 1.523 0.988 52.363 71.991 80.187
WAVS [32] 9.665 0.404 1.607 0.926 56.013 76.930 83.064
WAVV [32] 9.668 0.391 1.575 0.921 56.153 77.204 83.848
DCTE [33] 9.817 0.458 1.447 0.962 52.603 73.081 81.620
WAVR [34] 9.684 0.401 1.583 0.928 56.090 76.807 83.336
DCTR [35] 10.091 0.578 1.194 1.056 39.648 61.689 72.927
LAPD [36] 9.706 0.419 1.585 0.944 55.878 76.445 82.596
SFIL [37] 9.973 0.558 1.281 1.002 47.758 67.962 76.599

D
FF

VAR [1] 10.110 0.413 1.553 1.050 51.442 59.558 80.715
RDF [19] 9.865 0.443 1.433 0.971 52.623 72.891 82.676
PAD [39] 10.227 0.506 1.178 1.113 43.446 62.380 74.864
F-RDF [20] 9.850 0.444 1.434 0.961 52.555 72.559 82.693
Proposed 8.915 0.338 1.223 0.843 63.199 80.653 86.495

In order to evaluate our focus measurement without post-processing, we collected synthesized
focus image set (focus level changed by adjusting camera focus) from graphics models, including
ground truth depth. Figure 12 shows sample depth estimation results compared with ground truth.
Depth images are normalized with min/max value corresponding to ground-truth, and depth images
are from initial depth result applying median filter (size: 3 × 3) without using post-processing. In this
test, we vary patch size (Table 3). Each synthetic subject consists of 31 focus image frames with
size 405 × 720. Accuracy in Table 3 is measured by average absolute difference of depth values.
Each window size shows RMSE (Root Mean Squared Error) of the related sample, and the last row
show average absolute difference of them. 11× 11 window size shows best estimation accuracy,
however it depends on the complexity of the shape of test objects. If objects have complicated surface
shape, smaller window size will work better, but it may cause a noisy result (as shown 5 × 5 window
size’s result).
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Figure 11. Experimental results on the LFSD dataset [28]. (A)—bench (6-frames), (B)—flower (10),
(C)—lollipop-toy (7), (D)—flower-2 (9), (E)—flower-3 (12), (F)—marble-stone (12), (G)—door-handle
(12), and (H)—liberty statue (10). The first row shows all in focus images, 2–9 rows are results from
previous focus measuring and state-of-the-art DFF methods, 10-rows show reconstructed depth maps
of our proposed method, and last row shows show given depth from Reference [28].
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Table 3. Average absolute difference of estimated depth.

Sample Window Size

5 × 5 11 × 11 15 × 15 21 × 21 31 × 31

Books 23.88 22.79 23.70 23.51 23.71

Balls 9.08 7.43 9.13 9.44 8.97

Plants 12.09 14.08 15.41 19.96 22.08

Average 15.01 14.76 16.08 17.63 18.49

We constructed 3D mesh model of target object using our teeth dataset (Figure 13). These results
show that our proposed method prove the potential of single color camera-based 3D reconstruction.
In our teeth dataset has 100 focus image frames for each subject taken by dental intraoral camera.
Each estimated depth point is considered as a 3D point, and surface normal of the 3D point is computed
from its 8 neighbors [25]. After that, we interpolate them using Algebraic Point Set Surfaces (APSS) [26]
method. It creates a smooth surface using local moving least-squares (MLS) approximations of the
data [50]. Finally, marching cubes algorithm [27] creates polygonal surface representation (Figure 13).
This evaluation result shows the potential of the proposed method in medical 3D imaging application
with simple color camera.

Figure 12. Depth estimation of our method on synthetic dataset.

Figure 13. Our depth estimation and 3D reconstruction results on teeth dataset (extended result of
Reference [51]).
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We compare our model with Deep Depth from Focus (DDFF)Net [22]. Unfortunately, their model
requires 10 images with fixed size. LFSD dataset [28] has several samples with 10 frames. So, we run
our method with same inputs (10 frames). Figure 10a shows result comparison with DDFFNet [22].
DDFFNet provided blurry and poor depth result, which barely kept structure and depth of the scene on
LFSD dataset [28]. Our proposed method provides better depth estimation, which is clean and accurate.

3.4. Comparison with the State-of-the-Art

In this section, we compare the proposed method with state-of-the-art DFF methods, such as
VAR [1], DFM [18], RDF [19], Composite Focus Measure (CFM) [38], PAD [39], and F-RDF [20].
For experimental evaluation, we use the LFSD dataset [28], the Lytro dataset [49], and the dataset from
mobile [18].

Figure 14 shows depth and point-cloud results of VAR [1], RDF [19], PAD [39], F-RDF [20] and
proposed method on “Buddha” sample. The proposed method provide more clean and accurate depth,
especially around object boundaries. The last row shows a zoom-in part of the highlighted region
where the proposed method has more accurate depth than others.

Proposed Ground TruthF-RDFRDF PADVARAll-in-focus
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Figure 14. Comparison of point cloud of the scene with state-of-the-art methods. First row shows
depth map, second: point cloud results, and last row shows cropped (zoomed-in) region of the scene.
The proposed method provide with correct depth value when most methods fail (at cropped region).

Figure 15 shows peak signal-to-noise ratio (PSNR) between predicted depth and ground truth.
In order to compute PSNR, the block first calculates the mean-squared error using Equation (12).
Then, the block computes the PSNR using Equation (13)

MSE =
∑M,N [I1(m, n)− I2(m, n)]2

M ∗ N
, (12)

PSNR = 10 log10
R2

MSE
. (13)

In Equations (12) and (13), M and N are the number of rows and columns in the input images.
R is the maximum fluctuation (the maximum possible pixel value of the image) in the input image
data type. This figure shows that quality of the proposed method outperforms state-of-the-art methods.



Appl. Sci. 2020, 10, 8522 14 of 20

jeon2019ring
sakurikar2017composite

javidnia2018application
moeller2015variational

surh2017noise

16.20 dB

MCFS-5

cai2010unsupervised

20.31 dB 25.42 dB

Nayar et. al Proposed Ground Truth In-Focus

Buddha23.19 dB

F-RDF

nayar1994shape

22.83 dB 22.37 dB

RDF CFM PAD

18.75 dB21.43 dB

Asif et. al

yang2003wavelet

VAR

17.04 dB

Figure 15. Quantitative evaluation on ‘Buddha’ synthetic sample (with 25 frames) with state-of-
the-art methods. From left to right: Variational DFF (VAR) [1], Ring Difference filter (RDF) [19],
Composite Focus Measure (CFM) [38], PAD method of multipliers (PAD) [39], Fast and noise robust
RDF (F-RDF) [20], proposed, ground-truth, and in-focus image. The proposed method perform better
than recent methods that visible in the images and reflected in the peak signal-to-noise ratio (PSNR)
(in dB) shown below the each depth result. Note that depth image and PSNR value for CFM [38] was
cropped from original paper.

Figure 16 shows qualitative performance of the proposed method on LFSD dataset [28] over
the recent methods, such as VAR [1], RDF [19], PAD [39], and F-RDF [20]. Each sample has 5 to
12 frames of size = 1080 × 1080. Our proposed method provided clean depth with detail and clean
edges, especially on samples B (branch of the tree), D (wire on the window), F (boundary of the statue),
and H (pens).
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Figure 16. Qualitative evaluation on LFSD dataset [28] with state-of-the-art methods. The top of
each sample has the number of used frames. The proposed method provide more accurate depth
with clean edges, even at a complex scene, such as shiny object (G), more clean details on (B,D,F–H),
and proposed method kept structure of the scene on (A,C,E) samples better than other methods.

Figure 17 shows results of VAR [1], RDF [19], PAD [39], F-RDF [20], and the proposed method on
Lytro dataset [49]. Our proposed method gives clean depth results, especially with sample E around
the boundary of the lock.

We evaluated the proposed method on many challenging samples. In Figures 18a and 19,
proposed method provide clean and detailed depth even on complex region of the scene. In Figure 19,
the proposed method provided cleaner edges than other methods on all samples, and second sample
has leaf that only our method could able to provide accurate depth. Figure 18a has the complex part
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of the scene that is highlighted; “Toy” sample has small details that the proposed method provided
accurate depth with clean edges, and “Buddha” sample has a column that shows proposed method
provided accurate depth, while other methods failed, and the proposed method has more a accurate
result on the “Flower” sample with small details.

In the evaluation on mobile dataset [18] shown in Figure 20, we use three test-samples and
compare our work with state-of-the-art methods, such as DFM [18] and CFM [38]. The first row shows
“plants” sample with 30 frames, second: “fruits” sample with 23 frames, and third row shows “books”
sample with 14 frames. Our method finds more accurate depth than prior works, especially around the
edges on all samples. On the “books” sample, DFM [18] failed to provide clean depth on background
because of textureless region (background has black color and no texture), and CFM [38] provided
a noisy result, while the proposed method provided clean depth even at textureless (background)
regions. These results prove that the proposed method can provide a clean and accurate edge, even on
textureless regions.

Experimental evaluations show that our method gets improved depth estimation results over
existing methods. PAD [39] method is less robust to textureless regions and suffers from texture-
copy artifacts. DDFFNet [22] method fails to predict correct depth, providing depth is very blurry,
and it has a limitation with image numbers in stack. VAR [1] can keep the overall structure of
the scene but it cannot provide clean edges. RDF [19] and F-RDF [20] methods have limitations;
their methods cannot provide good result if the image contains a region that is never in focus by a
wide margin. The proposed method generates a depth using information extracted in both spatial
and frequency domains. Fourier domain works more efficiently on low-textured, and spatial domain
has better performance with textured areas. Figure 5b shows that our focus measure is more robust
than state-of-the-art methods. PAD [39] and F-RDF [20] provided high noisy depth (initial depth),
and VAR [1] provided a less noisy depth result, while proposed focus measure provide cleaner depth
result (however, it needs post-processing).
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Figure 17. Qualitative evaluation on Lytro dataset [49] with recent (state-of-the-art) . The proposed
method provide more accurate depth than other methods. (A)—beers (6 frames), (B)—cake (12),
(C)—cocktails (7), (D)—dessert (12), (E)—love-locks (12), (F)—street (5), (G)—wooden-house (5).
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(a) Qualitative evaluation on three samples (toy- 6 frames,
Buddha-25, flower-12). From top to down: In-focus image
(with highlighted region) and cropped part of recent methods
PAD, CFM, RDF-20, and last row shows proposed method’s
result). Our result shows more accurate depth with details
even in challenging parts of the scene. Note that depth images
for CFM [38] method were cropped from the original paper.
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(b) From top to down:
in-focus frame(calculated
using initial depth result),
initial depth, and final depth
of the proposed method.

Figure 18. (a) Quality of our method; (b) initial-depth and final-depth results.

In-Focus RDF CFM F-RDF ProposedVAR PAD

Figure 19. Qualitative evaluation on LFSD dataset [28] with recent (state-of-the-art) methods.
The proposed method can provide depth with detail information even at complex scene. Note that
depth image for CFM [38] method was cropped from the original paper.
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ProposedCFMDFMAll-in-focus

Figure 20. Qualitative evaluation (dataset from DFM [18]) with state-of-the-art methods. First column
shows all-in-focus image, second: result from DFM [18], third: CFM [52], fourth: the proposed method.
The proposed method provide detailed and clean edges, and third row has clean background while
other methods failed on textureless region (background). Note that depth images for CFM [38] and
DFM [18] methods were cropped from the original papers.

4. Conclusions

This paper proposes a new robust and accurate depth estimation method based on depth
from focus (DFF) iteratively reconstructing a uniformly focused image set. We investigated the
appearance changes in spatial and frequency domains in an iterative manner. We evaluated our
method extensively on four public and our datasets, including a synthetic dataset. Three-dimensional
modeling experiments were performed showing the potential of the proposed method in both
consumer applications using a smartphone and medical applications in 3D reconstruction.
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