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Abstract: The paper presents a phenomenological epidemiological model for the description
and prediction of the time trends of COVID-19 deaths worldwide. A bimodal distribution
function—defined as the mixture of two lognormal distributions—is assumed to model the time
distribution of deaths in a country. The asymmetric lognormal distribution enables better data fitting
with respect to symmetric distribution functions. Besides, the presence of a second mode allows the
model to also describe second waves of the epidemic. For each country, the model has six parameters,
which are determined by fitting the available data through a nonlinear least-squares procedure.
The fitted curves can then be extrapolated to predict the future trends of the total and daily number
of deaths. Results for the six continents and the World are obtained by summing those computed for
the 210 countries in the Our World in Data (OWID) dataset. To assess the accuracy of predictions,
a validation study is first conducted. Then, based on data available as of 30 September 2020, the future
trends are extrapolated until the end of year 2020.

Keywords: COVID-19; SARS-CoV-2; coronavirus; second wave; phenomenological epidemiologic
model; bimodal distribution; lognormal distribution

1. Introduction

For over a century, the use of mathematical models has been introduced to describe and predict
the course of epidemics [1]. Following the first pioneering studies, epidemiologic models of growing
complexity have been developed [2].

Models may be classified as either based on transmission dynamics or phenomenological.
Transmission dynamics models aim at describing the physical, biological, and societal mechanisms
underlying the outbreak and spread of a disease. On the one hand, they can be very helpful in
understanding the behaviour of epidemics and the effects of human interventions. On the other hand,
transmission dynamics models rely sometimes on a large number of parameters, which may be difficult
to evaluate in practice with the necessary accuracy [3]. As an alternative, phenomenological models
can be used. These are based on a limited number of parameters that can be calibrated through
fitting of the available data. Phenomenological models do not aim at understanding the mechanisms
underlying an epidemic, but can be used for efficient and rapid forecasts [4]. For instance, Pell et al.
used phenomenological models to forecast the evolution of the 2015 Ebola epidemic [5].

Both transmission dynamics models and phenomenological models were used to describe
the 2020 COVID-19 pandemic caused by the SARS-CoV-2 coronavirus [6]. Among the former,
the classic susceptible-infected-recovered (SIR) model and modifications thereof have been widely used.
Among the latter, models based on either the logistic or Gaussian distribution functions have been
proposed. Batista applied both the SIR and logistic models to predict the final size of the COVID-19
epidemic in China. By processing data available up to 20 February 2020, he estimated a total number
of cases at the end of the epidemic equal to approximately 84,500 from the SIR model and 83,700 from
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the logistic model [7]. Retrospectively, such predictions turned out to be very accurate if compared
to the official number of cases reported four months later. As of 20 June 2020, the official number of
cases in China was 84,524. Mackolil and Mahanthesh used the SIR and logistic models to describe
the COVID-19 outbreak India. They processed the official data available from 9 March to 9 May 2020
for three states (Karnataka, Kerala, and Maharashtra), characterised by a significant spread of the
epidemic. For the most affected state, Maharashtra, the SIR model estimated the final number of cases
at 46,678, whereas the logistic model predicted 43,993 cases [8]. Retrospectively, such predictions
turned out to be dramatically underestimated. One month later, as of 9 June 2020, 90,787 cases were
reported. As of early August 2020, more than 500,000 cases were registered [9]. Paggi used particle
swarm optimisation to identify the parameters of a SIR model of the COVID-19 outbreak in Italy.
He focused on the four most affected regions (Lombardy, Emilia Romagna, Valle d’Aosta, and Veneto).
The machine learning approach was found to be robust for the identification of a large set of model
parameters. The model results showed that lockdown measures had a major impact especially in
Lombardy [10]. Martelloni and Martelloni used the logistic model to analyse the evolution of the
COVID-19 epidemic in Italy. They processed data available up to 1 April 2020 and forecast about
138,500 cases and 19,900 deaths by the end of the epidemic [11]. Retrospectively, such figures turned out
to be quite underestimated. One month later, as of 1 May 2020, official statistics reported 205,463 cases
and 27,967 deaths with the epidemic still spreading in Italy. Schlickeiser and Schlickeiser used a
Gaussian model to predict the development of the COVID-19 epidemic in Germany. Based on the
data available as of 30 March 2020, they predicted the peak of the death rate to occur on 18 April 2020
+ (−3.4, +5.4) days. Their prediction turned out to be in excellent agreement with the actual peak
registered on 16 April 2020 [12]. Schüttler et al. discussed about the choice of asymmetric functions
to model the COVID-19 death rate, but eventually decided in favour of the simplest symmetric,
bell-shaped Gaussian function. Based on data available as of 2 April 2020, they predicted the final
number of deaths for 25 countries. In a note added in proof, the authors compare their theoretical
predictions with the data available as of 2 June 2020. Good agreement is obtained for some countries,
such as France and Germany. Instead, the model appears to underestimate the real data of some
other countries, such as Italy and Spain [13]. Interestingly, less accurate predictions are obtained for
countries, where the actual time distribution of deaths presents a higher degree of asymmetry.

As a matter of fact, upon inspection of the available data, the number of infections or deaths in a
given country (or geographical region) does not follow in general a symmetric distribution in time.
Rather, after reaching the peak value, a descending branch less steeper than the ascending one can
be often observed. In such cases, a better fit of the real data can be obtained by using asymmetric
distribution functions—such as, for instance, the lognormal distribution—instead of the symmetric
logistic and Gaussian functions. As an example, Figure 1 shows the daily number of COVID-19 deaths
reported in Italy in the first semester of year 2020. Data have been fitted by using both a Gaussian
distribution function (Figure 1a) and a lognormal distribution function (Figure 1b). The residual
norms computed in the two cases were 202,818,961 and 63,831,005, respectively. Application of the
same distribution functions to fit the data of all of the 210 countries in the Our World in Data (OWID)
dataset [14] for the same period furnished cumulative residual norms equal to 3,467,666,524 and
1,365,052,591, respectively. Such results prove, beyond the qualitative comparison between the curves,
the superiority of the lognormal distribution function to fit the data of the present problem.

In a preliminary analysis of the Italian epidemic, the author used a lognormal distribution function
to fit the number of deaths per day reported in each Italian administrative region. By processing the
data available as of 2 May 2020, the total forecast number of deaths in Italy at the end of the first wave
of the epidemic was 35,261 [15]. As of 31 August 2020, the official data reported 35,477 deaths with an
error of less than 1% [16].

When looking at the time evolutions of the number of COVID-19 cases and deaths
around the world, different trends are observed for each country and geographic region. As of
September 2020, China and many European countries have overcome the first wave of the
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epidemic. Other countries—such as, for instance, Australia, Israel, Japan, Romania, and the United
States—are being hit by second waves of the epidemic. In Iran, a third wave of the epidemic is going
on. Such new waves appear as second (or third) peaks in the time distributions of infections and
deaths. In some cases, e.g., the United States, the second waves could be the result of first waves
affecting different internal states or regions. Anyway, a better data fitting for such countries requires
the adoption of suitable bimodal (or multimodal) distribution functions. Any theoretical model aimed
at describing the pandemic at the global level should account for the variability in both space and time
of the monitored trends (cases, hospitalisations, recoveries, fatalities, etc.).

(a) (b)
Figure 1. Fitting of daily deaths data from Italy: (a) Gaussian distribution function, (b) lognormal
distribution function.

The aim of the present work is to develop a phenomenological epidemiological model for the
description of the worldwide trends of COVID-19 deaths and their prediction in the short-to-medium
(1 and 3 months, respectively) term in a business-as-usual scenario. The model assumes a bimodal
lognormal distribution in time of the deaths per country. A nonlinear least squares procedure is used
to fit the available data and determine the six model parameters for each country. Then, the obtained
curves are extrapolated to forecast the future trends. Results for the six continents and the World are
obtained by summing those computed for the belonging countries.

The paper is organised as follows. In Section 2, details are given about the used dataset. Section 3
presents the mathematical model and its numerical implementation. In Section 4, a validation study
of the model is illustrated. Section 5 presents the results obtained for the main countries, as well as
the forecasts for the six continents and the whole World. Discussion follows in Section 6. In Section 7,
some conclusive comments and indications for future developments are given. Appendix A presents a
comparison of the model predictions with actual data, which became available after the submission of
the manuscript.

2. Data

Data used in the present study are obtained from the Our World in Data (OWID) COVID-19
dataset [14]. The OWID dataset is based on official data published by the European Center for Disease
Prevention and Control (ECDC). The ECDC publishes daily statistics on the COVID-19 pandemic by
collecting and harmonising data from the national health agencies around the world [17].

The OWID dataset is updated daily and includes data on country population, confirmed cases,
deaths, testing, etc. starting from 31 December 2019. The dataset is subdivided into 211 locations:
210 countries and an international cluster (reporting the cases from an international conveyance in
Japan), besides a World summary. For the present purposes, for each location and date, the daily (new)
and total (cumulative) number of deaths are extracted and considered for further elaboration.
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3. Methods

3.1. Mathematical Model

The daily number of deaths in a country is assumed to be distributed in time according to a
bimodal lognormal distribution, here defined as the mixture of two lognormal distributions [18]:
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where t represents time, A is an amplitude factor, α ∈ [0, 1] is the mixing parameter, µ1 and σ1

respectively are the mean value and standard deviation of the natural logarithm of t for the first
lognormal distribution, µ2 and σ2 are the same quantities for the second lognormal distribution.

The total number of deaths is given by the integral in time of f (t):
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where erf () denotes the error function. As t −→ +∞, the function F(t) tends asymptotically to the
amplitude, A, which can be interpreted as the total number of deaths expected at infinite time.

3.2. Numerical Implementation

A nonlinear least-squares procedure is used to fit the available data and determine
the model parameters. The fitting procedure is implemented into a MATLAB script called
COVID19_BiLog_World.m, available in the Supplementary Materials.

The OWID COVID-19 dataset is downloaded as a CSV file named owid-covid-data.csv. For each
location in the dataset, the daily number of deaths, d(t), and total number of deaths, D(t), are extracted.
Here, the time variable, t, is expressed in days. It runs from 1 (first day of dataset: 31 December 2019)
to tmax = 367 (last day of simulations: 31 December 2020). The user can choose the days corresponding
to the end of the fitting range, tfit, and the end of the extrapolation interval, tforecast.

For each location, the procedure determines the days, t1 and t2, at which d(t) attains its first
and second maxima. Then, the function representing the theoretical total number of deaths, F(t),
is fitted against the reported total number of deaths, D(t), in the range between t = 1 and t = tfit.
The procedure uses the MATLAB lsqcurvefit function, which requires a minimum value, a guess value,
and a maximum value for each parameter [19]. These are specified as detailed in Table 1.

Table 1. lsqcurvefit range of fitting parameters.

Parameter Minimum Guess Maximum

A (No.) 1.10 D(tfit) max {6 D(t1), 2 D(tfit)} max {12 D(t1), 4 D(tfit)}
M1 (days) 1 t1 tmax
σt1 (days) 0 1 tmax
M2 (days) 1 t2 tmax
σt2 (days) 0 1 tmax

α (–) 0 1
1+d(t2)/d(t1)

1

As a result, the following six parameters are determined for each country: A, M1 = exp
(
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1
)
,
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, and α.

Here, M1 and σt1 respectively denote the mode and standard deviation of the first lognormal
distribution. Likewise, M2 and σt2 are the same quantities for the second distribution [18]. The obtained
parameters are substituted into Equations (1) and (2). Thus, the theoretical estimates of the daily and
total number of deaths are computed between t = 1 and t = tmax. The procedure is repeated for each
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of the 211 locations. Hence, the predicted time trends for the six continents and the World are obtained
by summing those computed for the belonging countries.

The MATLAB script saves the results obtained for each location—in terms of fitted parameters,
residual norm and exit flag returned by the lsqcurvefit function, actual number of deaths (at t = tfit),
and forecast number of deaths (at t = tforecast)—into a CSV file called COVID19_BiLog_World.csv.
Besides, for each (selected) country, continent, and the World, two plots are created and saved in PNG
format: (i) the daily number of deaths and (ii) the total number of deaths, as functions of time.

4. Validation

4.1. Correlation Study

To assess the correlation between the model predictions and actual data, a first validation study
has been carried out by using data available up to 30 June 2020. From this date, extrapolations
have been conducted to forecast the total number of deaths as of 15 and 31 July, 15 and 31 August,
15 and 30 September 2020.

Figure 2 shows scatter plots of the actual vs. predicted number of deaths for the main continents
and the World. Regression lines with the values of intercept, slope, and coefficient of determination are
also shown. Asia, North and South America have slopes larger than 1, thus highlighting a tendency of
the model to underestimate the actual data; instead, Europe has a slope less than 1, corresponding to a
tendency to overestimation (Figure 2a). For the whole World, the slope is 1.3990 > 1, thus highlighting
a general tendency of the model to underestimate data (Figure 2b). The coefficient of determination for
the World is R2 = 0.9958.

(a) (b)
Figure 2. Actual vs. predicted total deaths: (a) main continents, (b) World.

4.2. Retrospective Predictions

To use a larger dataset to assess the accuracy of the model predictions, a second validation study
has been carried out. In this case, the model has been used to predict retrospectively the (known)
number of deaths as of September 2020. Different dates were chosen for the end of the fitting range:
from 30 June to 15 September 2020. Table 2 shows the actual and forecast number of deaths in the six
continents and the World. Percentages in parentheses represent the errors of the theoretical predictions
with respect to the actual data, calculated as [D(tforecast)− F(tforecast)] /F(tforecast).
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Table 2. Actual and forecast deaths on 30 September 2020.

Location Actual
Deaths

Forecast Deaths
End Date of

Fitting Range: 1 30 June 15 July 31 Juyl 15 August 31 August 15 September

Africa 35,673 28,172 32,456 41,066 37,198 36,288 35,604
(26.6%) (9.9%) (−13.1%) (−4.1%) (−1.7%) (0.2%)

Asia 193,257 156,591 171,482 174,028 173,256 178,301 188,030
(23.4%) (12.7%) (11.0%) (11.5%) (8.4%) (2.8%)

Europe 222,139 246,838 215,591 213,573 218,079 218,907 219,429
(−10.0%) (3.0%) (4.0%) (1.9%) (1.5%) (1.2%)

North
America 305,746 259,154 236,142 270,083 318,303 322,088 309,580

(18.0%) (29.5%) (13.2%) (−3.9%) (−5.1%) (−1.2%)

Oceania 972 140 144 656 897 823 1032
(594.3%) (575.0%) (48.2%) (8.4%) (18.1%) (−5.8%)

South
America 251,324 175,060 196,979 217,521 271,055 254,636 247,064

(43.6%) (27.6%) (15.5%) (−7.3%) (−1.3%) (1.7%)

World 2 1,009,118 865,962 852,801 916,934 1,018,795 1,011,050 1,000,746
(16.5%) (18.3%) (10.1%) (−0.9%) (−0.2%) (0.8%)

1 The start date of the fitting range is 31 December 2019. 2 The World summary includes also seven
international deaths [14].

The largest percent errors are observed for Oceania. In particular, the three-month forecasts (as of
30 June and 15 July 2020) are largely in defect because they do not take into account the effects of the
second wave occurred in this continent since the end of July 2020. Oceania, however, carries a marginal
weight in the global balance. Relatively large errors can be noted also in the three-month predictions for
South America, Africa, and Asia. Actually, such predictions are computed on a relatively little amount
of data, which causes poor quality of data fitting and extrapolation (as of June 2020, the epidemic was
still at an early stage in many countries of these three continents). Three-month forecasts for North
America and Europe are the most accurate, thanks to the large amount of data fitted (as of June 2020,
the first peaks of the epidemic were already overcome). Two-month predictions (as of 31 July and
15 August 2020) and one-month predictions (as of 31 August and 15 September 2020) show absolute
errors less than about 15% and 10%, respectively, for all of the continents (apart from Oceania).

Interestingly, in the World summary, plus and minus errors seem to compensate and a much more
stable trend of predictions is observed. The three-, two-, and one-month forecasts are affected by errors
less than about 20%, 10%, and 1%, respectively.

Based on the above, it can be concluded that the model is capable of capturing future trends with
reasonable accuracy. Larger errors are expected for countries and continents with little amount of fitted
data and where the epidemic is still at an early stage. Predictions for single continents may be affected
by larger errors with respect to the World summary.

4.3. Extrapolation Error

Figure 3 shows the extrapolation errors obtained in the retrospective predictions as functions
of the extrapolation interval length, i.e., the number of days included between the end of the fitting
range and the forecast date. For the main continents and the World, the extrapolation errors can be
enveloped approximately by assuming a lower bound error rate of −2.5%/15 days and an upper
bound error rate of +5.0%/15 days.

As concerns future predictions, similar error trends are expected for the extrapolation of the fitted
curves. Extrapolation errors should increase with the length of the extrapolation intervals. Conversely,
errors should decrease with an increase in the amount of fitted data. Hence, extrapolations from data
known as of 30 September 2020 should be more accurate than the extrapolations carried out in the
retrospective study. Anyway, to be on the safe side, the same error rates (−2.5%, +5.0%)/15 days will
be assumed also to define confidence intervals for future predictions.
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Figure 3. Extrapolation error vs. extrapolation interval length.

5. Results

Result presented in this section have been obtained by fitting the available data between
31 December 2019 and 30 September 2020. Then, extrapolations have been computed up to
31 December 2020.

Table 3 shows the results obtained for the two countries with the largest number of actual
COVID-19 deaths in each continent. In the next subsections, plots are presented and commented for a
few representative countries, as well as for the six continents and the World. The complete results and
plots (for all of the 211 locations of the OWID dataset, as well as the continental and World summaries)
are available in the Supplementary Materials.

Table 3. Results for the two countries with largest number of actual deaths in each continent.

Continent Country A M1 σt1 M2 σt2 α Actual Predicted
(No.) (Days) (Days) (Days) (Days) (–) Deaths 1 Deaths 2

Africa South Africa 19,585.9 214.7 55.8 217.5 13.9 0.730 16,667 19,289
Egypt 7105.3 181.3 15.9 184.0 97.0 0.368 5914 6694

Asia India 187,322.1 235.3 86.7 276.9 48.3 0.658 97,497 167,051
Iran 28,584.6 93.3 19.8 211.6 48.7 0.238 25,986 28,394

Europe United Kingdom 46,279.2 111.3 19.0 205.3 166.9 0.823 42,072 44,095
Italy 39,462.5 96.9 20.3 199.1 224.4 0.836 35,875 37,280

North
America

United States 253,254.2 115.0 18.5 221.7 69.2 0.396 205,998 244,290
Mexico 98,272.7 166.2 10.9 203.7 66.9 0.031 77,163 94,706

Oceania Australia 970.2 110.4 187.5 237.0 17.6 0.232 882 934
Guam 228.0 278.1 0.2 305.2 48.7 0.000 47 195

South
America

Brazil 166,675.9 150.2 29.1 223.4 50.5 0.333 142,921 164,969
Peru 35,635.6 185.0 61.5 218.9 15.2 0.701 32,396 35,184

1 On 30 September 2020. 2 On 31 December 2020.
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5.1. Asia

The first COVID-19 cases were reported in Wuhan, China in December 2019 [20]. Figure 4 shows
the actual and predicted trends of COVID-19 deaths in this country. On 17 April 2020, the daily number
of deaths (Figure 4a) presents an isolated peak of 1290 deaths due to a change in the tally criteria [21].
Correspondingly, a strong discontinuity can be observed in the total number of deaths (Figure 4b).
The model does not fit exactly such an artificial discontinuity, but reproduces well the overall trend.
In the last months, the official number of deaths shows only a very slight increase, thus indirectly
demonstrating the effectiveness of the strict lockdown imposed by local Authorities.

(a) (b)
Figure 4. Actual and predicted trends in China: (a) daily deaths, (b) total deaths.

The two Asian countries with the largest number of actual and predicted COVID-19 deaths are
India (Figure 5) and Iran (Figure 6). Quite different trends in time are observed in the two countries.
In India, the daily deaths seem to have reached a peak value in September 2020 and a descending
trend is expected afterwards (Figure 5a). The model is able to fit very well the available data, thus the
extrapolation may be considered reliable (Figure 5b). In Iran, after a first wave of the epidemic with
a peak of daily deaths in April 2020, a second wave has hit the country with a higher peak of daily
deaths in August 2020. Recent data show the onset of a third wave with a tendency towards an even
higher third peak (Figure 6a). The model assumes at most two peaks, so it is not able to fit very well all
of the available data. Based on the above, the prediction of the total number of deaths at the end of
2020 may turn out to be underestimated for this country (Figure 6b).

(a) (b)
Figure 5. Actual and predicted trends in India: (a) daily deaths, (b) total deaths.
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(a) (b)
Figure 6. Actual and predicted trends in Iran: (a) daily deaths, (b) total deaths.

Israel (Figure 7) and Japan (Figure 8) are considered to be representative countries hit by second
waves of the epidemic. In Israel, a first peak of daily deaths was observed in April 2020 and a second
peak is expected in October 2020 (Figure 7a). In Japan, after a first peak of daily deaths in May
2020, a second peak was reached in September 2020 (Figure 8a). In both cases, the assumed bimodal
distribution function enables very good fitting of data (Figures 7b and 8b).

(a) (b)
Figure 7. Actual and predicted trends in Israel: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 8. Actual and predicted trends in Japan: (a) daily deaths, (b) total deaths.
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Figure 9 shows the time trends obtained for the Asiatic continent by summing the available data
and model predictions for each country. Several peaks of daily deaths can be observed, as a result of
the different local trends (Figure 9a). Overall, the current trend is descending and a weakening of the
epidemic in the continent is expected by the end of year 2020. Figure 9b shows the total number of
deaths in the continent with an extrapolation of the model until the end of year 2020. The predicted
trend is strongly increasing. Error bars correspond to the error rate (−2.5%, +5%)/15 days estimated
through the validation study. The forecast total number of COVID-19 deaths on 31 December 2020 in
Asia is 310,819 + (−47,659, +95,318).

(a) (b)

Figure 9. Actual and predicted trends in Asia: (a) total deaths; (b) daily deaths.

5.2. Europe

In Europe, the United Kingdom (Figure 10) and Italy (Figure 11) are the two countries with the
largest number of actual and predicted COVID-19 deaths. Here, peaks of daily deaths were reported
in April (Figure 10a) and March 2020 (Figure 11a), respectively. Since then, decreasing trends have
been observed. Today, weak increases in the number of daily deaths can be observed, but with no
evidence of a incipient second wave (in terms of deaths). For both countries, the model predicts weakly
increasing trends of the total number of deaths (Figures 10b and 11b).

(a) (b)
Figure 10. Actual and predicted trends in the United Kingdom: (a) daily deaths, (b) total deaths.

Some European countries were hit by second waves of the epidemic. For instance, in Romania
(Figure 12) and Serbia (Figure 13), second peaks of daily deaths have been reported in September
(Figure 12a) and July 2020 (Figure 13a), respectively. For both countries, increasing trends of the total
number of deaths are predicted by the model (Figures 12b and 13b).
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(a) (b)
Figure 11. Actual and predicted trends in Italy: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 12. Actual and predicted trends in Romania: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 13. Actual and predicted trends in Serbia: (a) daily deaths, (b) total deaths.

In other European countries, second waves of the epidemic have just started or are expected
in the coming months. For instance, in Spain (Figure 14) and Russia (Figure 15), trends can be
observed towards a second peak of daily deaths by the end of year 2020 (Figure 14a) and Figure 15a).
For both countries, strongly increasing trends of the total number of deaths are predicted by the model
(Figures 14b and 15b).
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(a) (b)
Figure 14. Actual and predicted trends in Spain: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 15. Actual and predicted trends in Russia: (a) daily deaths, (b) total deaths.

Figure 16 shows the time trends obtained for Europe by summing the available data and model
predictions for each country. The overall trends are dominated by countries with the highest number
of fatalities (United Kingdom, Italy, France, Spain, etc.). A slight tendency towards a second wave
can be observed in the continental resume; however with a much lower estimated second peak with
respect to April 2020 (Figure 16a). Figure 16b shows the actual and forecast number of total deaths
in the continent. The predicted future trend is moderately increasing. Error bars correspond to the
error rate (−2.5%, +5%)/15 days estimated through the validation study. The forecast total number of
COVID-19 deaths on 31 December 2020 in Europe is 268,955 + (−41,240, +82,480).

5.3. North America

In North America, the United States (Figure 17) and Mexico (Figure 18) report the largest number
of COVID-19 deaths. In the United States, the daily deaths reached a first peak in April and a second
peak in August 2020 (Figure 17a). Mexico shows a different trend of daily deaths, with a plateau
between June and August 2020 (Figure 18a). For both countries, the model predicts increasing trends
of the total number of deaths (Figures 17b and 18b).
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(a) (b)
Figure 16. Actual and predicted trends in Europe: (a) total deaths; (b) daily deaths.

(a) (b)
Figure 17. Actual and predicted trends in the United States: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 18. Actual and predicted trends in Mexico: (a) daily deaths, (b) total deaths.

Figure 19 summarizes the results for Canada. The trends of the daily (Figure 19a) and total
(Figure 19b) number of deaths are similar to many European countries with no visible signs of
second waves.
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(a) (b)
Figure 19. Actual and predicted trends in Canada: (a) daily deaths, (b) total deaths.

Figure 20 shows the time trends obtained for the North American continent by summing the
available data and model predictions for each country. The overall trends are dominated by countries
with the highest number of fatalities (United States and Mexico). A second wave is visible in current
data with a peak in August 2020 (Figure 20a). Figure 20b shows the actual and forecast number of total
deaths in the continent. The predicted future trend is moderately increasing. Error bars correspond to
the error rate (−2.5%, +5%)/15 days estimated through the validation study. The forecast total number
of COVID-19 deaths on 31 December 2020 in North America is 368,113 + (−56,444, +112,888).

(a) (b)
Figure 20. Actual and predicted trends in North America: (a) total deaths; (b) daily deaths.

5.4. South America

In South America, Brazil (Figure 21) and Peru (Figure 22) are the two countries with the largest
number of actual COVID-19 deaths. In Brazil, the number of daily deaths has undergone a sort of
plateau from June to August 2020, followed by a descending branch (Figure 21a). In Peru, the official
data on daily deaths show two isolated peaks, which the model fits smoothly with a single maximum
(Figure 22a). For both countries, the model predicts increasing trends of the total number of deaths
(Figures 21b and 22b).

The third and fourth South American countries for the total number of COVID-19 deaths are
Colombia (Figure 23) and Argentina (Figure 24). In Colombia, the number of daily deaths experienced
a peak in August 2020, followed by a descending trend (Figure 23a). In Argentina, the epidemic
seems to be still at an early stage and the first peak of daily deaths has not been reached yet
(Figure 24a). The model predicts a moderately increasing trend of the total number of deaths for
Colombia (Figure 23b) and a strongly increasing trend for Argentina (Figure 24b).
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(a) (b)
Figure 21. Actual and predicted trends in Brazil: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 22. Actual and predicted trends in Peru: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 23. Actual and predicted trends in Colombia: (a) daily deaths, (b) total deaths.
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(a) (b)
Figure 24. Actual and predicted trends in Argentina: (a) daily deaths, (b) total deaths.

Figure 25 shows the time trends obtained for the whole South America by summing the available
data and model predictions for each country. According to the model, the daily number of deaths
is expected to undergo a descending trend in the next months (Figure 25a). Figure 25b shows the
actual and forecast number of total deaths in the continent. The predicted future trend is moderately
increasing. Error bars correspond to the error rate (−2.5%, +5%)/15 days estimated through the
validation study. The forecast total number of COVID-19 deaths on 31 December 2020 in South
America is 330,821 + (−50,726, +101,452).

(a) (b)
Figure 25. Actual and predicted trends in South America: (a) total deaths; (b) daily deaths.

5.5. Africa

South Africa (Figure 26) and Egypt (Figure 27) are the two African countries with the largest
number of actual COVID-19 deaths. In both countries, peaks of daily deaths have been reached
and the predicted future trends are descending with no visible second waves (Figures 26a and 27a).
The predicted total number of deaths show moderately increasing trends (Figures 26b and 27b).
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(a) (b)
Figure 26. Actual and predicted trends in South Africa: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 27. Actual and predicted trends in Egypt: (a) daily deaths, (b) total deaths.

Morocco (Figure 28) Algeria (Figure 29) respectively are the third and fourth African countries
with the largest number of predicted COVID-19 deaths. In both countries, a first peak of daily
deaths occurred in April 2020, followed by a second wave with a new peak around September
2020 (Figures 28a and 29a). The model predicts increasing trends of the total number of deaths
(Figures 28b and 29b).

(a) (b)
Figure 28. Actual and predicted trends in Morocco: (a) daily deaths, (b) total deaths.
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(a) (b)
Figure 29. Actual and predicted trends in Algeria: (a) daily deaths, (b) total deaths.

Figure 30 shows the time trends obtained for Africa by summing the available data and model
predictions for each country. The daily number of deaths is currently on a descending trend (Figure 30a).
Figure 30b shows the actual and forecast number of total deaths in the continent. The predicted future
trend is strongly increasing. Error bars correspond to the error rate (−2.5%, +5%)/15 days estimated
through the validation study. The forecast total number of COVID-19 deaths on 31 December 2020 in
Africa is 45,723 + (−7011, +14,022).

(a) (b)
Figure 30. Actual and predicted trends in Africa: (a) total deaths; (b) daily deaths.

5.6. Oceania

In Oceania, Australia (Figure 31) and Guam (Figure 32) are the two countries with the largest
number of COVID-19 deaths. Both countries experienced a first peak of daily deaths in April 2020,
followed by a second wave with a new peak in September 2020 (Figures 31a and 32a). The predicted
total number of deaths are weakly increasing (Figures 31b and 32b).

Figure 33 shows the time trends obtained for Oceania by summing the available data and model
predictions for each country. The continental trends are strongly dominated by the contribution of
Australia. A second wave is currently ongoing, but the predicted trend of daily deaths is descending
(Figure 33a). Figure 33b shows the actual and forecast number of total deaths in the continent.
The predicted future trend is weakly increasing. Error bars correspond to the error rate (−2.5%,
+5%)/15 days estimated through the validation study. The forecast total number of COVID-19 deaths
on 31 December 2020 in Oceania is 1176 + (−180, +361).
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(a) (b)
Figure 31. Actual and predicted trends in Australia: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 32. Actual and predicted trends in Guam: (a) daily deaths, (b) total deaths.

(a) (b)
Figure 33. Actual and predicted trends in Oceania: (a) daily deaths, (b) total deaths.

5.7. World

Figure 34 shows the time trends obtained for the whole World by summing the available data and
model predictions for all of the available countries. After a first peak of daily deaths in April 2020,
a second wave of the pandemic is ongoing with a second peak in August 2020. The predicted trend
of daily deaths is slowly decreasing (Figure 34a). Figure 34b shows the actual and forecast number
of total deaths. The predicted future trend is moderately increasing. Error bars correspond to the
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error rate (−2.5%, +5%)/15 days estimated through the validation study. The forecast total number of
COVID-19 deaths on 31 December 2020 in the World is 1,325,614 + (−203,261, +406,522).

(a) (b)
Figure 34. Actual and predicted trends in the World: (a) daily deaths, (b) total deaths.

6. Discussion

6.1. Parameter Identifiability

A relevant issue of epidemiological models is the identifiability of their parameters. In particular,
structural identifiability concerns the well-posedeness of the mathematical problem, while practical
identifiability is related to the possibility of estimating the parameter values based on the available
data [22]. Several methods have been developed to assess the parameter identifiability in models
formulated in terms of differential equations to be solved numerically [23]. The present model
is formulated instead in terms of assumed analytical expressions, namely Equations (1) and (2),
which include six parameters (A, µ1, σ1, µ2, σ2, and α) for each country. Assuming, without loss of
generality, that µ1 < µ2 (and excluding the degenerate case, where the two lognormal distributions
overlap onto a single distribution), any set of parameter values can be uniquely mapped to a model
output. Thus, the present model is structurally identifiable [24]. The model is also practically
identifiable, as proven by the successful computation of parameters through the implemented data
fitting procedure.

6.2. Observed Trends

The COVID-19 pandemic is affecting different regions around the World in different ways at
different times. This is reflected in the different trends observed for the countries and continents
presented in the previous Section.

In some countries (e.g., Argentina and—not shown in the paper, but available in the
Supplementary Materials—Venezuela, as well as many African countries), the epidemic is still at
an initial stage of exponential growth. Other countries (e.g., India, Mexico, and Brazil) are currently
facing the first wave, while other ones (e.g., Peru, Colombia, South Africa, and Egypt) are on the tail
of the first wave. In many European countries (e.g., United Kingdom and Italy), as well as in China
and Canada, the first wave has been completely overcome. In some countries (e.g., Spain and Russia),
more or less evident signs of a second incipient wave can be observed. Other countries (e.g., Israel,
Romania, United States, Morocco, Algeria, and Guam) are currently facing a second wave of the
epidemic. Other ones (e.g., Japan, Serbia, and Australia) are already at the tail of the second wave.
Lastly, in Iran, a third wave of the epidemic is currently going on.

It should be observed that, in large federal nations, the trends of daily deaths observed at
the national level are actually the sum of many local trends occurring in the single federated states.
This could explain the plateau shapes observed in the daily deaths plots of Brazil and Mexico. Likewise,
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the second wave observed in the plot of the United States could correspond actually to a first wave of
the epidemic affecting a different area of the country. For the above-mentioned countries, more accurate
data fitting and extrapolations could be obtained by scaling down the model to consider the statistical
data of single states and then accumulating the results at national level.

In any case—except maybe for Iran, because of the incipient third wave-, the bimodal lognormal
time distribution of daily deaths assumed by the model was able to fit with reasonable accuracy the
observed data.

6.3. Computational Efficiency

As of 30 September, 275 data points (day, number of total deaths) are processed for each location,
for a total of 275× 211 = 58, 025 data points to be fitted. The model has 6 parameters for each of
the 211 locations in the OWID dataset. Thus, 6× 211 = 1266 parameters are determined overall.
The fitting procedure runs in less than 2 min on an ordinary personal computer.

6.4. Representativeness of Predictions

The fitted data are the official number of deaths reported by national health agencies worldwide.
Thus, also the predictions of the model obtained through extrapolation should be interpreted
as a forecast of the official number of reported deaths. It is difficult to state whether the real
number of COVID-19 deaths is well represented by the model. For instance, in some European
countries, such as Italy and the United Kingdom, it has been reported that official statistics may have
underestimated the real number of deaths. Even more so, the same situation can be expected for many
developing countries.

Some insight can be obtained by looking at the fatality rates. Table 4 reports the actual and
predicted fatality rates for the six continents and the World. The fatality rates of Africa, Asia,
and Oceania are one order of magnitude smaller than those of Europe and the Americas. This could be
a sign of an underestimation of official reports with respect to real data in such continents. The fatality
rates of North and South America are about twice the values of Europe. This could be due to the
different lockdown measures imposed by national governments in the compared continents.

Table 4. Actual and predicted fatality rates (deaths per 100,000 people).

Location Population 1 Actual Fatality Rate 2 Predicted Fatality Rate 3

Africa 1,339,423,921 2.7 3.4 + (−0.5, +1.0)
Asia 4,607,388,081 4.2 6.7 + (−1.0, +2.1)
Europe 748,506,210 29.7 35.9 + (−5.5, +11.0)
North America 591,242,473 51.7 62.3 + (−9.5, +19.1)
Oceania 40,958,320 2.4 2.9 + (−0.4, +0.9)
South America 430,461,090 58.4 76.9 + (−11.8, +23.6)

World 7,757,980,095 13.0 17.1 + (−2.6, +5.2)
1 From the OWID dataset [14]. 2 On 30 September 2020. 3 On 31 December 2020.

7. Conclusions

A phenomenological epidemiological model has been presented for the description and prediction
of COVID-19 deaths worldwide. The model assumes a bimodal lognormal distribution for the number
of daily deaths in time in each country. Thanks to the asymmetry of the lognormal distribution function,
the model is able to fit the available data better than other phenomenological models based on either
the logistic or Gaussian distribution functions. Furthermore, thanks to the presence of a second mode
in the time distribution, the model is able to describe the trends observed in countries hit by second
waves of the epidemic. Besides, if a second wave is at an early stage of development, the model can
estimate the time position of its peak.
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The model has been validated by using the available data to predict retrospectively the known
number of deaths on 30 September 2020. Thus, an estimate has been obtained of the error rate
for the extrapolation of future trends. The forecast number of official deaths due to COVID-19 on
31 December 2020 in the World has been estimated at 1,325,614 + (−203,261, +406,522).

The proposed model is purely phenomenological. Thus, it cannot be used to predict the effects
of any change of government policies or human behaviour. To this aim, transmission dynamics
models should be used instead. Some transmission dynamics models only require a few parameters,
while other ones require the specification of a large number of parameters, sometimes difficult to
quantify. In the latter case, the numerical implementation of transmission dynamics models may be
computationally very expensive. Conversely, the proposed model proved to be computationally very
effective. It is able to process a large amount of (publicly available) data from more than two hundred
countries and provide extrapolations in a few minutes by using a common personal computer.

To sum up, notwithstanding some obvious limitations due to the adopted approach, it is
believed that the proposed model can be useful to forecast the trends of COVID-19 mortality in
the short-to-medium term in a business-as-usual scenario. The computational effectiveness and the
demand for only publicly available data are undoubted strengths of the proposed strategy.

Some future developments of the present work may be envisaged:

1. the predictions of the proposed model shall be checked against the real data that will be available
at the end of year 2020. Consequently, corrections will be considered to improve the accuracy of
future forecasts;

2. for large federal nations (e.g., Brazil, India, Mexico, and the United States), improved predictions
could be obtained by applying the bimodal lognormal distribution model first for each federated
state and then summing the results at the national level. A similar approach could be useful also
for medium-sized countries (e.g., Italy and the United Kingdom), where national estimates could
be improved through the preliminary processing of regional data;

3. for countries facing a third wave of the epidemic (e.g., Iran), the model could be modified by
introducing a third mode in the time distribution of daily deaths. To this aim, a suitable linear
combination of three lognormal distributions could be used. If further waves should be observed,
a model based on a multimodal distribution could be set up. However, if the multiple waves
observed for a country are the result of first waves hitting different internal regions, a better
strategy would be to process regional data first and then sum up the results at the national level;

4. future studies could assess the applicability and accuracy of bimodal (or multimodal) lognormal
distribution models to describe the time trends of other epidemiologic parameters (e.g., number of
cases, hospitalisations, etc.), as well as for diseases other than COVID-19, such as, for instance,
seasonal influenza.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/23/
8500/s1, File owid-covid-data.csv: OWID dataset used for the computations described in the paper (accessed 15
October 2020), File COVID19_BiLog_World.m: MATLAB script implementing the proposed mathematical model,
Folders BiLog-30 Sep-31 Dec 2020 and BiLog-20 Nov-31 Dec 2020: complete results and additional figures with
model forecasts, based on data available as of 30 September and 20 November 2020, respectively.
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Abbreviations

The following abbreviations are used in this manuscript:

COVID-19 Coronavirus Disease 2019
CSV Comma Separated Values
ECDC European Center for Disease Prevention and Control
OWID Our World in Data
PNG Portable Network Graphics
SIR Susceptible-Infected-Recovered

Appendix A. Comparison of Predictions with Actual Data

(This Appendix was added after the second review of the manuscript)
Table A1 shows a comparison of the actual and predicted number of deaths in the six continents

and the World as of 20 November 2020.

Table A1. Actual and predicted number of deaths as of 20 November 2020.

Location Actual Deaths (No.) Predicted Deaths (No.) Error (%)

Africa 48,762 42,289 +15.3%
Asia 273,170 270,181 +1.1%
Europe 343,380 246,839 +39.1%
North America 380,946 350,253 +8.8%
Oceania 1106 1110 −0.4%
South America 314,544 300,753 +4.6%

World 1,361,915 1,211,432 +12.4%

The forecast deaths are in line with the expected extrapolation error—(−2.5%, +5.0%)/15 days
counting from 30 September 2020—with the sole exception of Europe. Here, an impressive second
wave is developing since October 2020.

Based on data available as of 20 November 2020, the updated prediction for the World is of
1,758,340 + (−120,153, +240,306) deaths on 31 December 2020(the complete results for all of the
countries and continents are available in the Supplementary Materials).
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