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Abstract: Risk control has always been a major challenge in finance. Overdue repayment is
a frequently encountered discreditable behavior in online lending. Motivated by the powerful
capabilities of deep neural networks, we propose a fusion deep learning approach, namely
AD-MBLSTM, based on the deep neural network (DNN), multi-layer bi-directional long short-term
memory (LSTM) (BiLSTM) and the attention mechanism for overdue repayment behavior forecasting
according to historical repayment records. Furthermore, we present a novel feature derivation
and selection method for the procedure of data preprocessing. Visualization and interpretability
improvement work is also implemented to explore the critical time points and causes of overdue
repayment behavior. In addition, we present a new dataset originating from a practical application
scenario in online lending. We evaluate our proposed framework on the dataset and compare the
performance with various general machine learning models and neural network models. Comparison
results and the ablation study demonstrate that our proposed model outperforms many effective
general machine learning models by a large margin, and each indispensable sub-component takes an
active role.

Keywords: overdue repayment forecasting; online lending; feature derivation; machine learning;
deep learning; attention mechanism

1. Introduction

With the development of the economy and the rising level of consumption in national standards
of living, the majority of people and companies have encountered capital turnover problems and have
therefore attempted to obtain a loan for consumption, capital turnover, investment, etc. Therefore,
the demand for financial credit services is continuously increasing. Online lending is a convenient
and fast micro-loan innovation finance mode. Platforms streamline the intermediate, tedious loan
procedure, thus attracting increasing numbers of clients who intend to solve their financial difficulties.

While online lending provides customers and platforms with an effective path towards a loan
transaction, various fraudulent and insecurity factors emerge as well. Almost all credit businesses face
problems such as long-term liabilities, loan delinquencies and overdue repayment, which pose great
challenges for risk control in online lending. When overdue behavior occurs, financial institutions
can make up for loss according to some collateral in traditional credit business. In contrast, manually
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handling small monetary loans with high frequency is difficult in online lending. Once frauds such as
overdue repayment occur, tracking accountability and recuperating loss become difficult problems.

Repayment behaviors in online lending always accumulate in time to form a repayment behavior
sequence. Analyzing the historical record of repayment behaviors can allow potential repayment
behavior patterns to be discerned, thus predicting the occurrence of overdue repayment. In [1,2],
the authors developed machine learning models to analyze event records, but they ignored the
sequential format in these records. Deep learning models, especially sequential neural networks,
have achieved remarkable performance in event sequence-related tasks [3–5]. These kinds of models
are well suited to handle the massive amount of online repayment behavior data. However, as only
limited features can be collected in online lending, deep neural models may easily sink into an
over-fitting problem. Feature derivation by manually designing new features is commonly utilized to
enlarge the feature size, but relies on human expertise.

In this paper, we publish a new dataset collected from a practical application scenario in online
lending and propose a novel feature derivation and selection approach. Based on the dataset,
we propose an overdue repayment forecasting method based on a fusion of deep learning models.
Experiments demonstrate that our method outperforms various general machine learning models and
neural network models. Furthermore, visualization and interpretability improvement work in our
approach show the critical time points and causes of overdue repayment behavior. The contributions
of our research can be summarized as follows:

1. We present a new dataset that originates from a practical application scenario in online lending,
which can be downloaded at https://github.com/zjersey/payment_overdue_dataset. Over one
million repayment records of 85,000 anonymous borrowers are contained, and all the sensitive
information is encrypted for confidentiality.

2. An improved feature derivation and selection method is proposed that can generate extensive,
fully-combined new features and select an arbitrary number of the most significant features based
on a scorecard model.

3. We introduce deep learning models into the domain of risk control in online lending; specifically,
overdue repayment forecasting based on historical repayment behaviors. Our proposed
architecture, namely AD-BLSTM, combines a deep neural network (DNN), bidirectional long
short-term memory (LSTM) [6] (BiLSTM) and the attention mechanism [7]. DNN and BiLSTM are
used to learn from the static background information and dynamic event sequence, respectively,
to maximize the superiority of the two networks. The attention mechanism is introduced
to weight the importance of hidden layers in LSTM and integrate them to obtain a more
informative representation.

4. Experimental results demonstrate that our approach outperforms various general machine
learning models and neural network models. Interpretability improvement work is implemented
based on the attention mechanism and derived features. We visualize differentiated attention
weights to explore the key event time steps and analyze the feature importance of derived features
to determine the causes of overdue repayment.

2. Related Work

Overdue repayment forecasting in this paper can be regarded as an event or behavior
prediction problem. Previous works on this topic have aimed at applying predictive techniques
to event sequences.

2.1. Event Prediction

The main purpose of event prediction is to predict the occurrence and condition of future events
based on a sequence of past events. Prior research works have focused on probabilistic graphical model.
Becker et al. [8] propose a framework of probabilistic models and additional methods such as the EM
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algorithm [9] to predict the future behavior of business process instances based on historical event
data. This framework is composed of several probabilistic modules, such as the model transformation
module and prediction module, which play different roles. Breuker et al. [10] develop predictive
modeling techniques to describe business process behavior. Most similar probabilistic frameworks,
such as those in [11–14], require the design of a complex module structure and are not end-to-end
models but have good robustness and interpretability.

Machine learning is utilized after probabilistic graphical models [1]. The three prediction models
of machine learning, constraint satisfaction and quality-of-service (QoS) are combined and compared
in [2]. Machine learning methods such as the decision tree [15], support vector machine (SVM) [16],
Bayes network [17] and cluster analysis [18] are comprehensively used and compared. The procedure
of the machine learning-based predictive technique mainly contains the two steps of data preprocessing
and model learning, reducing the intricacies of te probabilistic graphical model and achieving better
results while maintaining interpretability.

With the development of neural networks and deep learning techniques, the recurrent neural
network (RNN) [19] and long short-term memory (LSTM) [6] have exhibited powerful abilities in
sequence-related tasks, especially in the realm of natural language processing (NLP) [20–22]. Event data
commonly exist in the form of sequences, and so many works have focused on deep learning-based
event prediction [3–5,23,24]. Evermann et al. [25] propose a process prediction method based on
LSTM to predict the behavior of the running of a process. A range of similar techniques have
introduced an LSTM-based deep learning approach to predict the timestamp of future behavior [26],
the continuation trajectory of running cases [27], the remaining service execution times [28] and the
completion properties [29].

The point process [30–33] is a solid framework for dealing with multi-dimensional event data in
the continuous time domain that treats each event as a point associated with a time stamp, location
and other attributes. Previous works [34–39] have associated the point process with neural networks
to process event data.

2.2. Deep Learning in Online Lending

Deep learning has the characteristics of end-to-end learning, thus eliminating the complicated
manual design process. On one hand, the feature representation ability of neural networks is extremely
powerful, and so the deep leaning approaches mentioned in Section 2.1 can achieve better results
than general machine learning methods and probabilistic models. On the other hand, the parameters
of neurons in the network can hardly represent meaningful mathematical information of the input
features, and so neural networks are poorly interpretable.

Recently, some works have introduced deep learning into the online lending domain. The authors
in [40] transfer the learning algorithms of LSTM, the attention mechanism and word2vec [41], which are
effective in the NLP domain, into online lending and propose a credit scoring method. The online
operation record data of borrowers in online lending are regarded as a sentence with multiple words.
Word2vec is applied to produce latent representation embedding for the behavior record. Instead,
we divide the original behavior data into static attributes and dynamic sequences. Our proposed
feature derivation and selection method is applied on the static features afterwards.

The authors in [42] develop deep learning models to predict the trading volume of the online
market based on the trend of change in investor sentiment. TextCNN [43] is introduced to classify
the sentiment of investor comments, and LSTM is utilized to analyze the trend of the trading volume.
The prediction of the daily trading volume can be regarded as a time-series problem, while in our
research, overdue repayment forecasting is an event-series problem.

3. Proposed System

We introduce multiple deep learning models to predict future overdue repayment behavior in
online lending based on previous repayment behaviors. The structure of our proposed AD-BLSTM
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approach is illustrated in Figure 1. AD-BLSTM integrates DNN, LSTM and the attention mechanism for
the purpose of appropriately representing different parts of the input repayment behavior record and
improving prediction performance and interpretability. At the same time, we propose an improved
feature derivation method that can generate extensive fully-combined new features and select an
arbitrary number of the most significant features based on a scorecard model.

The purpose of the task is to classify future repayment behavior into two types, overdue repayment
behavior (positive) and normal repayment behavior (negative), according to the past repayment logs.
Therefore, the problem is simplified into a binary classification task.

As illustrated in Figure 1, the structure of our system can be divided into five modules: feature
derivation and selection, a multi-BiLSTM layer, a DNN layer the attention mechanism and an output
layer. We first divide the input data into dynamic and static features. The last repayment label serves
as the target and all the previous time-dependent features are set as dynamic features that are fed into
the multi-BiLSTM layer. Produced by feature derivation and the selection module, static features are
fed into the DNN layer. We simplify the task to a binary classification task, and so the objective is to
minimize the cross-entropy loss:

L = −∑
i
[ ŷ(i) log(y(i)o ) + (1− ŷ(i)) log(1− y(i)o ) ] (1)

where ŷ(i) is the ground-truth and y(i)o is the output probability by the system.

…
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Figure 1. Structure of the AD-BLSTM model. Input raw data are pre-processed into dynamic label
sequences and static features. Feature derivation and a selection approach are operated on static
features for better informative representation. Two-layer bi-directional long short-term memory
(BiLSTM) encodes the sequential input, while the deep neural network (DNN) encodes selected
features. The attention mechanism balances the importance of each hidden LSTM layer, and two
encoded vectors are concatenated into the output layer.

3.1. Feature Derivation and Selection

Generally, the process of feature derivation is essential when the features of the input are not
abundant. Feature derivation requires manual design and professional prior knowledge, thus making
the derivation procedure stochastic and insufficient. Generally, derivation methods are based on
statistical information and expert diagnosis. Statistics-based methods calculate some common
mathematical statistical values such as the maximum value, mean value and variance value of part of



Appl. Sci. 2020, 10, 8491 5 of 18

the existing features. Expert diagnosis-based methods introduce new features by professional prior
knowledge and manual inference.

Motivated by the statistics-based feature derivation methods and the problem of insufficiency,
our approach improves upon the original method by categorizing features into various major
categories and expanding the mathematical statistical values in each major class. Our proposed
feature engineering framework is illustrated in Figure 2.

Major 

Category 1

Major 

Category 2
…… Major 

Category 𝒩𝒸

sub-index 1 sub-index 1 …… sub-index 1

…… …… …… ……

sub-index n1 …… …… sub-index n
𝒩𝒸

sub-index n2 ……

Feature Derivation Table 

feature

derivation 

𝒩𝑑

feature

selection  

𝒩𝑠

Figure 2. Overview pipeline of our proposed feature engineering method. A feature derivation table is
manually designed by filling with Nc major categories, each with ni sub-indexes. The feature size is
enlarged intoNd based on the table. Weakly influential features are filtered out during feature selection,
and the feature size is reduced into Ns.

The purpose of feature derivation is to extend the number of input features from N0 to Nd,
where N0 is the number of input features and Nd � N0. First of all, we manually design Nc

major categories according to the content of the input features. Besides this, mathematical statistics
are set as one major category. Specifically, in this research, we set financial indicators, products,
mathematical statistics, periods and time conditions as our major categories. Secondly, we add a
number of subindexes as adequately as possible in each major category. For instance, the category of
mathematical statistics includes subindexes of the cumulative value, cycle proportions, variance value,
etc. Finally, the connection of one subindex from each major category is extracted as a new derived
feature. Each customer’s repayment behavior sequence is mapped into the derived features, and the
mapping value is the corresponding feature value. A negative number is filled as a missing value
signal when there is no accurate mapping value between the input data and derived feature.

The total amount of newly derived features can be calculated by Equation (2):

Nd =
Nc

∏
i=1

ni (2)

where ni is the amount of subindexes in the i-th major category. To maximize the size of derived
features, ni is supposed to be relatively large when designing the major categories and subindexes.

One specific instance is illustrated in Figure 3. By combining the “overdue days” subindex in
the financial indicator major category, “non-payday loan” in product, “maximum” in mathematical
statistics, “weekday” in time condition and “one week” in period, we can obtain a newly derived
feature (Feature 1): the maximal overdue days for a non-payday loan on weekdays of the recent
one week.

Our proposed derivation approach involves the standardization and extension of common
measures, and the problem of aimlessly selecting combining variables is solved by our method.
Although feature combinatorial representation can be accomplished by the neural network
automatically due to deep learning’s characteristic of end-to-end learning and its powerful
representation ability, the experimental result in our research shows that the derived features can
improve the model performance despite requiring additional work. More importantly, each new
feature is produced through the connection of several indicators, which is meaningful for improving
the interpretability.
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After the process of feature derivation, the size of the input features is expanded from N0

to Nd. To eliminate the existence of meaningless padding values and weakly influential features,
feature selection is essential. The feature selection approach is introduced in Algorithm 1. The selecting
pipeline can be divided into four parts: chiMerge, weight of evidence (WOE), Pearson correlation
coefficient and LR. After the multi-step procedure of selecting influential features, the total volume of
features decreases from Nd to Ns. Selected features will be fed into the follow-up networks.

Financial 

Indicator
Product Mathematical

Statistic

Time 

Condition 
Period

overdue days non-payday 

loan
maximum weekend one week

…… ultra short 

term loan
average value weekday ……

…… …… ……

Financial 
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Product Mathematical

Statistic

Time 
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Period

overdue days non-payday 

loan
maximum weekend one week

…… ultra short 

term loan
average value weekday ……

…… …… ……

Feature 1

Feature 2

…
…

Feature 𝒩𝑑

…
…

…
…

Figure 3. An example to illustrate our proposed feature derivation method. We iteratively traverse
all the feature collections in the feature derivation table to enlarge the feature size. At each iteration,
one sub-index is selected from each major category to form a new feature.

Algorithm 1: Feature Selection.

Input: derived features λ = {λi}
Nd
i=1, thresholds θχ, θr, θp

Output: selected features λ′ = {λi}Ns
i=1

1 chiMerge [44] (λ)→ {χi}
Nd
i=1, {bin(j)}m

j=1

2 for i← 1 to Nd do
3 if χi < θχ then
4 λ← λ− {λi}

5 WOE (λ, bin)→ ω

6 for ω(i), ω(j) in ω do
7 Pearson correlation coefficient:

8 ri,j =
∑k(ω

(i)
k −ω̄(i))(ω

(j)
k −ω̄(j))√

∑k(ω
(i)
k −ω̄(i))2 ∑k(ω

(j)
k −ω̄(j))2

9 if |ri,j| > θp then
10 ω ← ω− {ω(i), ω(j)}

11 Logistic Regression: LR (ω)→ p-value, coef
12 ζ ⊂ ω s.t. p-value(ζ) > θp

13 ω = ω− ζ

14 λ′ ⊂ ω s.t. coef(λ′) has the same sign
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3.2. DNN Layer

The deep neural network (DNN), also known as the multi-layer perceptron neural network (MLP),
is the most fundamental network. A large DNN is stacked by precursor perceptron neurons with
weights and an activation function. A single perceptron cannot represent a linearly non-separable
situation, even the basic logic operation “xor”. Expanding the number of perceptrons and connecting
layers can represent any mathematical function.

The relationship between the input x(i) and output y(i) of the i-th layer can be calculated by
Equation (3):

y(i) = F (W(i)x(i) + b(i)) (3)

where F is the activation function, usually tanh, ReLU or the sigmoid function. y(i) can be the output
possibility or the input of the next layer as x(i+1).

We train a three-layer DNN as an encoder of input features Xs ∈ RNs after derivation and selection
into vectorM ∈ Rp, where p is the number of neurons in the last layer.

3.3. Multi-BiLSTM Layer

In neural networks such as DNN and CNN, the inputs are independent of each other without
temporal dependence, while the recurrent neural network (RNN) considers sequential information
in which the data are not only related to the input at this time but also related to the previous input.
In other words, the RNN has the ability to memorize. The RNN models the dependency within
sequence data extensively, but the accumulation of the gradient product of each time step in backward
propagation causes the gradient to disappear when the sequence length is long.

On the basis of the RNN, LSTM is a type of neural network with the additional ability of forgetting,
which is thus suitable for sequence data and has achieved outstanding results in natural language
processing. The shortcoming of the RNN is that there is only one hidden layer state updating inside
the network, so the model is relatively simple. All the historical input data are memorized by the RNN
without filtering, thus frequently resulting in the long-distance dependence problem. LSTM alleviates
the gradient disappearance and explosion problem by introducing several gate units with different
functions. LSTM selectively operates on input information which is memorized, forgotten or output to
the next layer with a certain weight according to the content importance of the information. All the
operations are implemented by multiple computing components called “cell gates”, including forget
gates, input gates and output gates.

Firstly, the forget gate calculates the degree of forgetting the historical information, denoted as C,
based on the input data and the hidden state of the previous moment.

ft = σ(Wf · [ht−1, xt] + bf) (4)

ft will be multiplied by Ct−1 afterwards to forget partial information in Ct−1.
The input gate updates the candidate hidden layer value and the hidden layer state. Referring to

Equation (5), it determines the proportion of candidate hidden values updating to the hidden value Ct,
and the candidate hidden value C̃t is calculated by Equation (6). The hidden layer state Ct is updated
with the forget gate, based on Equation (7).

it = σ(Wi · [ht−1, xt] + bi) (5)

C̃t = tanh(WC · [ht−1, xt] + bC) (6)

Ct = ft ∗Ct−1 + it ∗ C̃t (7)
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The function of the output gate is to output the hidden state in a certain proportion.

ot = σ(Wo · [ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

Historical information does not flow into the future state entirely, while essential information is
preserved and useless information is forgotten after the three cell gates.

LSTM and the RNN both process sequence data in one direction, and ht is determined only by xt

and ht−1, ignoring the correlation between future events and current events. BiLSTM complements
LSTM to address this problem of using a single direction. By contrast, the input sequence is processed
in the reverse order simultaneously to obtain another hidden state, htb, thus representing a sequence
in two directions, and two hidden states are concatenated afterwards to get the final hidden state
h
′
t = [ht f ; htb].

Consider a sequence of overdue repayment flags of length L: X = {x(1), x(2), . . . , x(L)} , where
each point x(t) ∈ {0, 1} in the sequence represents whether the t-th repayment behavior is overdue
(when x(t) = 1) or not (when x(t) = 0). Motivated by the structure of the pretrained language
representation model ELMO [45], we train a two-layer BiLSTM network as the encoder to reconstruct
input sequential behavior data into the vectorH ∈ R2m×L:

H = [ [ ~h1 f ; ~h1b], [ ~h2 f ; ~h2b], . . . , [ ~hL f ; ~hLb] ] (10)

where ~hi f ∈ Rm and ~hib ∈ Rm are the forward and backward hidden states, respectively, in the i-th
time step of the second LSTM layer.

3.4. Attention Layer

We propose an attention mechanism operating on the hidden state at each moment. We calculate
the importance weight of each hidden state and combine the states based on weights to obtain a
combined final hidden state. The formulas of the attention mechanism are listed below:

Mh = tanh(H) (11)

α = so f tmax(ωTMh) (12)

r = H · αT (13)

h∗ = tanh(r) (14)

where H is the output of the BiLSTM layer referring to Equation (10) and ω ∈ R2m is the variable
learned by the training process. α ∈ RL reflects the weights of hidden states at different moments and
is operated onH to obtain the final output state h∗ ∈ R2m.

3.5. Output Layer

We concatenate the output of the multi-BiLSTM layer h∗ and the DNN layerM to form a vector
Xo ∈ R2m+p and apply it to a fully-connected layer and softmax function to obtain the predicted
probability yo.

4. Experiments

4.1. Dataset

Customers normally submit their fundamental information, such as identity information, wealth
information and credit records, when they borrow money from online lending platforms. Besides,
online lending platforms may record transaction details when loan behaviors are continued.
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We present a new dataset in this paper, which is available to the public (https://github.com/
zjersey/payment_overdue_dataset). The real-world dataset was provided by a company in Shanghai
and collected from the two situations above. The practical situation is that of an online lending
platform that is used by a large number of borrowers and lenders. Borrowers and lenders can engage
in loan transactions with each other under the control of the platform. Our dataset is sampled from the
transaction records of the platform.

Each piece of data represents a record of a repayment transaction from a borrower to a lender.
Our dataset contains 1,048,575 transaction records and 85,236 borrowers are involved, with an average
of 12.3 repayment behaviors for each borrower. The maximal number of repayment records for a
borrower is 20. The number of borrowers with a different number of records (ranging from 1 to 20)
was counted, and the proportion is illustrated in Figure 4. Since the length of the behavior sequence in
our dataset is not particularly long and there are borrowers with few records, some long-sequence
modeling based methods [6,19] would not perform well for our dataset.

As a borrower might have transactions with multiple lenders at the same time, the repayment
behavior does not have a regular frequency in our dataset. Besides, repayment behaviors between
precise borrower-to-lender matches may be small in number. Therefore, our proposed approaches focus
on modeling the historical records from the borrower level instead of the borrower-to-lender level.

Each transaction record contains 64 engineering features, which can be divided into three
categories based on content:
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number of repayment transactions

0.00

0.02

0.04

0.06

0.08

0.10

0.12

pr
op

or
tio

n 
of

 b
or

ro
we

rs

0.42%0.72%1.12%
1.64%

2.67%

4.40%

6.79%

9.68%

11.95%
12.76%

11.09%

9.41%

7.91%

6.53%

4.86%

3.50%

2.38%
1.35%

0.63%
0.20%

Figure 4. Statistical illustration of the proportion of borrowers with different numbers of repayment records.

• Customer information (after data masking): borrowers’ unique identification, industry, etc.
Note that data masking has been applied to protect the privacy of customers.

• Dynamic repayment records: obliged repayment amount, obliged repayment time, overdue
days, etc.

• Background information: expense ratio, loan type, order scenario, etc.

The most meaningful information lies in the dynamic features. Each repayment transaction
record has a due date, due amount of money, actual repayment date and actual repayment amount.
The transaction record is identified as an overdue repayment if the actual repayment date is later than
the due date or the actual repayment amount is less than the due amount. The background and identity
features provide some auxiliary information. Although there are 64 features in total, some of them are

https://github.com/zjersey/payment_overdue_dataset
https://github.com/zjersey/payment_overdue_dataset
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meaningless or have a strong correlation. Therefore, the workable features after feature screening are
limited in number, which makes feature engineering essential and challenging.

4.2. Data Preprocessing and Experimental Settings

We define a record as overdue repayment behavior if the overdue day or overdue amount in a
repayment record is not equal to zero. The label for overdue repayment is set as positive; otherwise, it is
set as negative. To define the target of the training process, we first sort the data by unique identification
and a repayment timestamp. The target of the individual with the last repayment behavior being
overdue is set to positive; otherwise, it is set as negative. As a result, the number of positive individuals
is 15,608, accounting for 18.3% of the total, while negative samples account for 81.7%.

The sequence of all the behavior labels except the last label is regarded as the dynamic features
and fed into the multi-BiLSTM layer. The window length of the label sequence is the maximum of
each individual’s record length, and padding is added at the end of the sequence to make up the
required length. We operate a feature derivation and selection approach on the records, except the last
record, for each individual to obtain static features as the input of the DNN layer. In feature derivation,
we design five major classes as described in Section 3.1 with 14, 7, 20, 3 and 10 subindexes, respectively;
thus, the total amount of newly derived features is Nd = 14× 7× 20× 3× 10 = 58, 800. After feature
selection, we retain 42 of the most influential features in the DNN layer.

We choose TensorFlow (https://www.tensorflow.org/)—a deep learning tool based on
Python—as the deep learning framework for our experiment. We randomly select 80% of the data as
the training set, 10% as the validation set and 10% as the test set. The parameters of our AD-MBLSTM
model are listed in Table 1.

Table 1. Parameter setting.

Parameter Parameter Description Value

time_step Length of input sequence 15
lr Learning rate 0.03

optimizer Optimization method Adam
lstm_unit Neuron number in single LSTM 50
DNN_units Neuron numbers in hidden

layers of DNN
[150, 300]

epoch Training rounds 20
batch_size Batch size 128
dropout Dropout ratio of LSTM 0.15

4.3. Evaluation Indicators

The statistics of the positive and negative sample proportions described in Section 4.2 indicate that
the data distribution is unbalanced with few positive samples. Supposing that every input individual
is classified as negative, then we can still obtain an accuracy of 81.7%. Obviously, this accuracy value
is quite high but meaningless, because no overdue behavior can be recognized by the model. As the
performance of the model cannot be measured appropriately only in terms of accuracy, we supply
other evaluation indicators including recall, the area under the curve (AUC) value and KS value.

The confusion matrix is a fundamental evaluation indicator in binary classification tasks and is
essential for the calculation of multiple other indicators as well. The confusion matrix is a 2× 2 table
with four combinations of actual values and prediction values:

• TP: True positive, showing that the actual value and prediction value are both positive.
• TN: True negative, showing that the actual value and prediction value are both negative.
• FP: False positive, showing that the actual value is negative while the prediction value is positive.
• FN: False negative, showing that the actual value is positive while the prediction value is negative.

https://www.tensorflow.org/
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On the basis of the four combination values above, TPR, TNR, FPR and FNR are the four ratio
values that represent the proportion of corresponding combination values. The formulas for TPR and
FPR are as follows:

TPR =
TP

TP + FN
(15)

FPR =
FP

TN + FP
(16)

All of the evaluation indicators can be calculated by the combination values and ratio values
mentioned above. The recall value represents the proportion of the positive samples that are predicted
as the correct class, according to the following formula:

recall =
TP

TP + FN
(17)

where a higher recall value indicates that more positive samples are distinguished by the model, which
satisfies the actual demand of our research; i.e., to distinguish overdue repayment behaviors.

Gradually changing the threshold of classification from 0 to 1 and calculating the corresponding
TPR and FPR, we can form a line graph regarding the (TPR, FPR) pairs as points, named the receiver
operating characteristic (ROC) curve. The AUC is the area under ROC curve. A large AUC value
indicates good performance of the classification model, and a perfect model has an AUC of 1.

Similarly, taking the threshold as the x-axis and the TPR and FPR as the y-axis, we can obtain a
graph with two lines, named the KS curve. The KS value is the maximum distance between the FPR
curve and FPR curve in the vertical direction.

KS = max(|TPR− FPR|) (18)

where a higher KS value indicates that positive and negative samples are distinguished more obviously.

4.4. Baselines

In order to comprehensively measure the performance of our proposed AD-MBLSTM model,
we use baseline models, including multiple general machine learning models and basic neural
networks, that have been utilized frequently in previous work for comparison. We divide the input data
into dynamic and static features in AD-MBLSTM; however, this operation does not suit the baseline
models, so we simply implement feature derivation and selection on the inputs and afterwards train
the processed data using baselines with the same parameters.

• Logistic regression (LR) is a fundamental and commonly used classification approach based on
sigmoid function and the maximum likelihood method. The LR model does not need to assume
the prior distribution of input data. Not only can the classification label be determined, but the
predicted probability can also be obtained. and so the threshold can be adjusted according to
demand and label distribution.

• XGBoost [46] achieved state-of-the-art performance in large numbers of machine learning tasks as
soon as it was proposed. The overall idea of XGBoost is to constantly add new decision trees to
improve the performance of a system. Newly supplied trees can make up for the shortcomings of
the previous weak classifiers to compensate for prediction residuals.

• The factorization machine (FM) [47] interactively combines input features in pairs, which allows
training to be performed on each pair of potential features. There is a similarity between FM and
SVM in the formula. However, in contrast to SVM, all interactions between features are considered
via factorized parameters in FM, and so FM works well even in problems with huge sparsity.

• DNN extracts derived and selected features directly and connects them to the output layer.
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• In multi-BiRNN, we consider each variable of the input record as a dynamic variable and feed
input data into a two-layer bidirectional RNN. We choose this structure due to its similarity to the
LSTM layer in AD-BLSTM, thus facilitating comparison.

• Multi-BiLSTM has the same structure as multi-BiRNN except that the RNN is replaced with LSTM.

4.5. Result Analysis

The comparison results of AD-BLSTM with baseline methods are listed in Table 2. Our proposed
AD-BLSTM model can be seen to outperform other methods in all evaluation indicators, especially in
recall, AUC and KS values. AD-BLSTM achieves 0.59 recall value on the basis of an accuracy of over
0.85, indicating that 59% of overdue repayment behaviors can be predicted accurately. The AUC and
KS values of AD-BLSTM suggest that it is capable of distinguishing positive and negative samples and
thus represents a stronger classifier compared with other methods.

Traditional methods regard repayment records as a single input instead of a sequence, processing
data into a fixed vector via feature engineering and training by general machine learning methods
or neural networks, which has a similar procedure to the LR, XGBoost, FM and DNN baselines.
By observing these baseline results, we can conclude that even the procedure of feature engineering
has been improved by our proposed feature derivation approach, and although strong classifier
algorithms such as XGBoost and FM have been utilized, the recall, AUC and KS still fluctuate to an
unsatisfying level.

The training pipeline for the two memory network baselines, Mul-BiRNN and Mul-BiLSTM,
shows large difference with the above four baseline methods. Repayment records are regarded as
a time sequence instead of a non-sequential vector. As the recurrent network can extract sequential
information effectively, the two baseline methods perform much better than traditional methods.
Therefore, sequential modeling is essential in the context of our research.

Table 2. Comparison results with baseline models. The best is in bold. AUC: area under the curve;
KS: Kolmogorov-Smirnov value; FM: factorization machine; Multi-BiRNN: multi-layer bi-directional
recurrent neural network; AD-BLSTM: our model.

Methods Accuracy Recall AUC KS

LR 0.850 0.18 0.675 0.286
XGBoost 0.851 0.19 0.684 0.292

FM 0.852 0.21 0.684 0.304
DNN 0.852 0.23 0.685 0.315

Multi-BiRNN 0.798 0.43 0.779 0.432
Multi -BiLSTM 0.804 0.47 0.781 0.438

AD-BLSTM 0.855 0.59 0.844 0.481

4.6. Ablation Study

In this subsection, we explore the effect of the attention mechanism, feature derivation method,
sequential input features and static input features; the results are listed in Table 3. In the table,
“w/o attention” refers to the concatenation of the hidden vector of BiLSTM at the last moment with the
DNN-extracted feature vector connected to the output layer; “w/o derivation” refers to the operation
of basic feature engineering approaches such as normalization and one-hot encoding on the first
record of each individual piece of raw data and directly connecting to the DNN layer, instead of
feature derivation and selection. We can conclude from Table 3 that the attention mechanism and
feature derivation improve the prediction performance of AD-BLSTM, but modestly. However, in the
next subsection, we will show that the two components play an essential role in interpretability.
Furthermore, in the table, “w/o sequence” refers to the isolation of BiLSTM and the attention layer,
degenerating to the DNN baseline in Table 2, while “w/o statistics” isolates the DNN layer for the
purpose of observing the effect of sequential behavior and static background information. The results
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indicate that the previous repayment label sequence has an influential impact on the next repayment
target even without identification and background information, while the impact of static features is
far less influential. Another observed phenomenon is that the accuracy has the opposite variation trend
to the other indicators, perhaps for the reason that the model pays more attention to distinguishing
overdue repayments, thus misclassifying some negative instances.

Table 3. Ablation study results. The best is in bold.

Model Accuracy Recall AUC KS

AD-BLSTM 0.855 0.59 0.844 0.481
↪→w/o attention 0.857 0.57 0.843 0.478
↪→w/o derivation 0.840 0.57 0.842 0.477
↪→w/o attention and derivation 0.842 0.53 0.840 0.473
↪→w/o sequence 0.852 0.23 0.685 0.315
↪→w/o statics 0.785 0.41 0.747 0.416

4.7. Interpretability

In this subsection, we introduce our work exploring the cause for overdue repayment, which can
enhance the credibility of the prediction results and meanwhile provide possible prevention approaches.
Our interpretability work is mainly based on the attention mechanism and feature derivation.

4.7.1. Locating Critical Time Point via the Attention Mechanism

In the attention layer, the vector α reflects the importance weights of LSTM hidden layers at
different moments, calculated by Equation (12). Therefore, we explore the pivotal time points in a
sequence of repayment actions by visualizing and analyzing the vector α, as illustrated in Figure 5.
We calculate the mean α value of all individuals and visualize it as Figure 6. The importance weight has
a positive correlation trend with the elapsing of time points except for the first time point. The reason
for this is that the hidden layer representation in LSTM is calculated by the current input and previous
hidden representation, thus containing more information than the previous input. However, the first
hidden state is still distinctly larger than the next. We calculate the difference value of adjoining hidden
states in positive samples and visualize it as Figure 5. The result demonstrates that the first and last
three hidden states have more prominent weights than the others. In the process of dividing dynamic
sequences, padding is performed at the end of sequences whose behavior number is less than the
time_step, and the hidden states remain unchanged in these padded moments. Therefore, the last
three hidden states may all refer to the last repayment behavior. We conclude that the first and last
behavior have the most significant influence on the final result.

Figure 5. Visualization of mean attention weights.
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Figure 6. Visualization of differential attention weights.

4.7.2. Analysis of Derived Features

The derived features can be fed into machine learning models with interpretability to further
explore the latent logic of overdue repayment behavior. We choose XGBoost as the classifier model and
set the features and corresponding targets as inputs. After convergence, we analyze the importance of
features and explore the most meaningful subindexes.

To begin with, we select some of the static background features as the input for the XGBoost
model. After convergence, the importance weights of the features are illustrated in Figure 7. In the
figure, product_id_0-3 stands for the four types of loan products. sub_industry_name_0-6 stands for
the seven types of sub-industry and industry_id_0-2 stands for the three types of industry: consumer
finance, Internet finance and their integration. The meaning of all these features has been included in
the description file of our dataset. From Figure 7, we can conclude that the type of product and industry
has a significant impact on the overdue repayment behavior. Surprisingly, most people assume that the
amount of owed money may greatly influence the overdue repayment, but as illustrated by our results,
the owed money (start_money in the chart) has a similarly low impact to birthday, region and gender.

Figure 7. The importance of static background features calculated by XGBoost.

Furthermore, we analyze the importance weights of all the 42 features obtained by our proposed
feature derivation and selection method. The results are illustrated in Figure 8. The longitudinal axis
denotes the order number of features, and the meaning of features has been provided in our dataset.
By summarizing the key words of the features with five largest importance weights, we conclude
that the last behavior has more of an impact on whether a future repayment will be overdue or not
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than the others, which agrees with the result after analyzing the attention weights. Additionally,
whether the type of product is a very short-term cash loan matters a great deal, corresponding to the
above conclusions from analyzing the background features.

Figure 8. The importance of 42 selected derivation features calculated by XGBoost.

5. Conclusions

In this paper, we proposed a fusion deep learning model and a novel feature derivation and
selection approach for overdue repayment forecasting. Our methods were evaluated on a real-world
dataset that we collected and made publicly available. Multiple neural networks were combined
to simultaneously encode the static background information and dynamic sequential information.
Experimental results demonstrated that our model outperforms various machine learning models and
neural networks. The proposed feature derivation method can generate a large number of combination
features from the original low-quality features. Furthermore, we visualized attention weights and
found that the first and last behaviors are critical time points in a repayment behavior sequence.
By analyzing the derived features, multiple interesting conclusions regarding the importance weights
of features were provided.
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