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Featured Application: The work proposes A New Method to Design Autonomous Wireless Sensor
to support Industrial Applications of the Internet of Things.

Abstract: The vibrations, due to their abundance in most industrial processes, constitute an attractive
solution for the power supply of Industrial Wireless Sensor (IWS). However, the amount of energy
that can be harvested presents numerous fluctuations due to the engines’ different operating modes
(overload, full load, or even operation without charge). Most designs do not incorporate this
fluctuation in the definition of the specifications of the autonomous IWS. This paper then presents
a design method to ensure the node’s energy autonomy while maximizing its Quality of Service
(QoS). To precisely define the specifications of the IWS, vibration measurements were carried out at
its location for one month. The recorded data was used to propose a new Predictor of the Harvestable
Energy from Vibrations (PHEV). A comparative evaluation of the proposed PHEV performances with
a state-of-the-art predictor is carried out. The results obtained show that the PHEV makes it possible
to minimize the Root Mean Square Error (RMSE) from 28.63 mW to 19.52 mW. A model of energy
dissipation in IWS, considering the Internet of Things’ requirements, was established. The model
is based on Long-Range (LoRa)/Long-Range Communication Wide Area Network (LoRaWan).
The amount of data transmitted is then maximized according to the expected energy harvest rate by
setting up a Maximization Data Size Protocol (MDSP). The proposed method makes it possible to
ensure an acceptable QoS without resorting to reconfigurable circuits, which are sometimes bulky for
miniature devices such as the IWS.

Keywords: IWS; vibrations; energy prediction; PHEV; energy dissipation; RMSE; LoRa/LoRaWan;
MDSP; QoS

1. Introduction

Numerous studies have shown that benefits such as increased productivity, security, efficiency,
and even lower costs are due to the automation of most industrial processes [1]. Moreover, these are the
objectives of Industry 4.0, which aims to transform all the processes of a factory into an interconnected
global system. At the base of automated systems, there are sensors whose function is to transmit
information on the system’s state at regular time intervals. More specifically, in the industrial
environment, the sensors are used in automation systems [2], operation controls, system monitoring
(humidity, temperature, fire alarm, dust index, toxic gas, and pollution) [2–4], and motion control [5].

The used sensors in the industrial process can be wired or wireless; when these sensors are
wireless, they are referred to as Industrial Wireless Sensors (IWSs). When the process to be monitored
requires several sensors, the numerous wired connections can be troublesome for the process. For this
reason, IWSs have experienced enthusiastic support because of their small dimensions, their ease of
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deployment, their flexibility, and their low cost [6]. These numerous advantages are, unfortunately,
accompanied by the issue of their energy supply. Since IWSs are battery-powered, recharging or
replacement operations are very costly because they require a cessation of production. The solutions
for harvesting ambient energy, which consists of transforming an energy source located in the sensor’s
immediate environment into electrical energy for its supply, are then considered.

Many energy harvesting techniques are offered; the difference is likely the primary source used
(sun, vibrations, radiofrequency waves, heat, internal light, etc.). Sources such as the sun provide
significant amounts of energy that can even be fed back into the national grid; however, the sunshine
level is deficient in confined spaces. Recently, radio waves have also been used to recharge IWS
batteries [7]. Unfortunately, the amount of ambient radiofrequency energy that can be harvested is
limited due to potential health concerns [8]. Concerning the heat, previous work has shown that
conversion efficiencies are extremely low [9]. Thus, for industrial applications, vibrations are the most
considered energy source to power the IWS [10].

1.1. Literature Overview and Main Problematic

Three transduction mechanisms, namely electrostatic, electromagnetic, and piezoelectric,
are considered to convert vibrations into electrical energy. Piezoelectric transducers (PTs) are the most
considered because of their strong electromechanical coupling and the ease of integrating them into
the desired applications [11]. As most vibration applications in industrial processes are low frequency,
PT architecture is of the cantilever type [12]. The main problem linked to cantilever PTs’ design is
their narrow bandwidth, resulting in low conversion efficiency when the main vibration frequency
fluctuates. The main techniques for increasing the PT’s efficiency include non-linearity and de circuit
management [13].

The research carried out in non-linear modules offers solutions to amplify the voltage and the
maximum energy transferred to the load. The most used non-linear techniques are the Synchronized
Switch Harvesting on Inductor (SSHI) [14], the Synchronized Switch Harvesting on Capacitor
(SSHC) [15], and the Synchronous Electric Charge Extraction (SECE) [16]. These techniques are
derived from the Synchronized Switch Damping on Inductor (SSDI) proposed in [17] to cushion
vibrations in mechanical systems. In the SSDI technique, by connecting to the piezoelectric material,
a passive electrical load, it can transfer some of the mechanical energy in an electrical form, leading to
mechanical damping [18]; therefore, maximizing the recovered electrical power. Practically, a switch
is used to insert into the PT’s circuit as it passes through its maximum voltage, an impedance that
is dual to the PT’s internal impedance; this has caused an increase in the current through the dual
impedance. This current decreases by recharging the PT’s impedance to a voltage reverse to its initial
voltage, giving rise to a voltage greater than the PT’s maximum initial voltage [19]. For example,
using the SSHI technique was possible in [20] to harvest 200% more power than with a standard PT
at a frequency of 30 Hz. In [15], using the SSHC technique, it was possible to amplify the harvested
power six times compared to the standard PT this at an excitation frequency of 22 Hz. As can be
seen, although these solutions help to amplify the level of harvestable power, they are still offered
for a fixed excitation of the PT. Unfortunately, in actual use, the vibrations’ fundamental frequency
changes according to the engine’s operating speed, which generates the waves. In most industrial
processes, the motor at a given moment may find itself at full load or overload and even sometimes
at no charge. These different operating regimes will cause a fluctuation in the harvestable energy.
The vibrations’ primary frequency changes give rise to the PTs’ low efficiencies in real situations.

Other design methods aim to tune the transducer’s resonant frequency to the main frequency of
the vibrations to overcome this limitation. For this, some research suggests broadband or multiband
transducers [21,22]. However, designing such kinds of PT is accompanied by an increase in the size of
the circuits, which can prove to be cumbersome for miniature components such as IWS.

Another method to make an IWS operational under the harvested energy, without resorting
to bulky circuits consists of storing energy until it is enough to allow the node to transmit data.
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This research field concerns the management of harvestable energy, and this energy harvesting
technique is known in the literature as Harvest-Store-Use (HSU) [23]. Very often, the method allows
the node to operate perpetually, but this is to the detriment of the Quality of Service (QoS) since it
is difficult to predict the frequency of data transmission and the amount of data that the IWS can
transmit at a given time. For example, in [19], the vibration data from a mining locomotive are used to
design a piezoelectric micro-generator, which incorporates most of the optimizations proposed in the
literature, in particular, the non-linear SSHI technique. The designed circuit allowed an IWS to transmit
data with 512 bits at less than a kilometer every 7 min. Note that in most IoT applications, events can
occur at any time, so it is essential to provide the node with the ability to transmit data at regular time
intervals. This work then dealt with the random amount of energy harvested from vibrations to supply
IWSs. As mentioned above, this problem is always present in vibrational energy harvesting regardless
of the electromechanical used conversion model. This work then proposes designing a predictor of the
harvestable energy of vibrations to optimize the potential of the autonomous IWS.

Much work has been proposed in recent years to predict environmental harvestable energy rates
for powering wireless sensors [24–26]. However, these researches consider solar energy and have been
facilitated by the accessibility to weather forecasts commonly provided for different regions. Note that
the prediction of harvestable energy is a prerequisite for the efficient management of the harvested
energy. In [26], for example, using a 7-day sun database, Kansal et al. have proposed a predictor
of harvestable energy. Depending on the harvested power, the management module ensuring the
sensor in an Energy-Neutral Operation (ENO) state has been implemented. The ENO state consists of
conditioning the sensor to always lower energy expenditure than the harvested energy. Studies on
predicting harvestable energy from vibrations have received little consideration, primarily due to
a database lack. Secondly, numerous fluctuations appearing in some spectra of vibrations proposed in
the literature have reduced researchers’ interest in predicting the level of harvestable energy [12,26].
Thus, in the design method proposed here, it will first be a question of defining a sufficient database of
vibrations to establish a model making it possible to quantify the rate of harvestable power. Based on
this issue, the main contributions of this paper are further described in the following subsection.

1.2. Motivation and Main Contribution

As mentioned above, this work’s main issue is the fluctuating character (due to the engines’
operating regime that varies depending on its load) of the amount of energy harvestable from vibrations
for supplying the IWSs. Thus, this work’s first contribution will then be to design a harvestable energy
predictor from an industrial process’s vibrations.

The above literature overview has also highlighted the need to focus not only on the harvestable
energy rate but also on the efficient management of this energy. However, most studies are limited to
the performance of the PT without defining the IWS stand-alone specifications. For example, in [27],
a PT capable of harvesting power of 8.9 mW at 8.3 Hz is proposed; it would then be interesting to
define an application (data size, transmission frequency, or transmission range) for this energy level.
The architecture of the proposed system in our study is shown in Figure 1 below. The system includes
the IWS, which must measure, process, and transmit the data to a collection point called Base Station
(BS). A Predictor of the Harvestable Energy from Vibrations (PHEV) is used to predict the amount of
energy available in each transmission cycle. Under the basis of the available power and the sensor’s
energy requirement, the Power Management Module (PMM) defines the maximum size of the data
that can be transmitted to the BS.

To quantify the sensor energy requirement, it is necessary to consider the hardware components of
the IWS. The hardware is based on three main parts shown in Figure 1 (the sensor, the microprocessor,
and the RF transceiver). The characteristics of some ultra-low consumption components currently
marketed are shown in Table 1. From the electrical characteristics taken from the component datasheets,
the most significant consumption is due to the data communication with power levels of up to 54 mW
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if we consider the case of the CC2430 transmitter from Texas Instruments [28]. These consumption
levels will be even higher if the sensor’s energy consumption during sleep mode is considered.
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Figure 1. Conceptual view of the proposed system, which is comprised of a piezoelectric transducer
(PT), Predictor of the Harvestable Energy from Vibrations (PHEV), Power Management Module (PMM),
Industrial Wireless Sensors (IWS), and Base Station (BS).

Table 1. Some IWSs commercial off-the-shelf components and nominal power consumption specifications.

Sensors Microprocessor Radio Chip

Components Power consumption
in active mode Components Power consumption

in active mode Components Transmit power
consumption

ADXL35
(Accelerometer of
Analog Devices)

1.8 V @ 0.35 mA [29]
MSP430G2553

of Texas
Instrument

1.8 V @ 0.23 mA [30]
CC2430 of

Texas
Instrument

2 V @ 27 mA
[28]

STLM20
(Temperature
sensor of ST)

2.4 V @ 0.008 mA
[31]

MSP430L092
of Texas

Instrument
0.9 V @ 0.18 mA [32]

CC2520 of
Texas

Instrument

1.8 V @ 18.5 mA
[33]

MPL115A
(Pressure sensor

of Freescale)

3.3 V @ 0.005 mA
[34]

ATMega128
of Atmel 2.7 V @ 8 mA [35] SX1211 of

Semtech
2.1 V @ 25 mA

[36]

The PT must supply the above power levels; Table 2 carries some PT currently marketed and
the power density’s performance. The most popular and increasingly used transducers are those
of Mide-Technology [37] because of their high-power density. From the characteristics in Table 2,
it appears that the commercially available transducers are useful for a specific predefined frequency
band. The power levels supplied are low compared to the energy requirements reported in Table 1.
Some research has investigated this issue, and the proposed method is to leave the sensor in sleep
mode as long as the stored energy is not sufficient for transmission. For example, in [38], it took 12 h of
charging on a 0.33 pF capacitor before the sensor was able to transmit data. In [19], only 512 bits was
transmissible every 7 min at less than one kilometer. This poor QoS is because most of the consumption
models considered for stand-alone IWSs are based on short-range communication modules like the
CC2520 from Texas Instruments. Thus, the solutions proposed so far come to the detriment of the QoS
of the IWS, which justifies the need for a new design method, which is the goal of this paper. It is then
proposed here to define the specifications of the IWS based on the possibility of predicting the amount
of energy harvested during each measurement cycle. The main contributions are to design a predictor
of harvestable energy of the surrounding vibrations and the implementation of protocols allowing the
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IWS to transmit a certain amount of data in each measurement cycle; the different stages of this new
design method are described in the next subsection.

Table 2. Some marketed piezoelectric transducer.

PT Frequency Range (Hz) Power Size (cm3)

Mide volture [37,39] 50–200 9 mW @ 1 g 3
Piezo System [40] 52 7.1 mW @ 2.6 mm (deflexion) 3.3

MicroGen System [41] 100, 120 and 600 0.85 mW @ 600 Hz; 0.5 g 0.7
PMG Perpetuum [42] 50 and 60 Hz 25.5 mW —

1.3. The Method, Assumptions, and Paper Organization

In this work, it is proposed to analyze the vibrations at the location of the IWS before conception.
The analysis of fluctuations over a very long-time interval will make it possible to design a predictor of
the harvestable energy subsequently. The specifications of the IWS will be defined beforehand based
on the estimated energy harvesting rate. To define the maximum data size, an IWS’s consumption
model based on IoT protocols is established. Then the PMM is programmed so that the IWS sends
its maximum amount of data to the base station at the end of each measurement cycle. The protocol
implemented in the PMM will be called the Maximizing Data Size Protocol (MDSP). It will make it
possible to maximize the size of the data transmitted to the base station by harnessing harvestable
energy during the measurement cycle. The design steps to develop the new design method proposed
here are shown on the functional diagram in Figure 2.
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Overall, in Figure 2, the first step will be to analyze vibration signals at the IWS location.
An electromechanical conversion model of the MATLAB/SIMULINK software will be used to observe
fluctuations in harvestable power at the sensor location. An Exponentially Weighted Moving-Average
(EWMA) filter will then be used to predict harvestable power levels in each measurement cycle.
The predictor’s performance will then be analyzed through the maximum absolute error and the



Appl. Sci. 2020, 10, 8486 6 of 25

Root Mean Square Error (RMSE). Subsequently, based on the temporal analysis of power, the PHEV
predictor will be set up to minimize prediction errors. The harvestable power will be combined with
a long-range consumption model of the IWS to implement the MDSP in the PMM to maximize the
data transmitted to the base station. Finally, an evaluation of the design method’s performance will be
provided as well as a comparison in terms of throughput with related work.

The following assumptions will be made throughout this work:

• The memory for storing data in the IWS is assumed to be unlimited.
• The conditioning of the energy coming from the PT is not treated since, in most designs,

Maximum Power Point Tracking (MPPT) is used to keep track of the maximum efficiency
operating condition [43]. This issue is not discussed here as MPPT is now a classical function.
The maximum power transfer is studied here by varying the resistive load of the PT.

According to the functional diagram of Figure 2, in Section 2, the vibration measurements on
the industrial process to be automated will be reported as well as the mechanical-electric conversion
model. Section 3 is devoted to the design of the PHEV. In Section 4, a consumption model of the IWS
based on the IoT requirements is proposed to precisely quantify the transferable data size during
each measurement cycle. The MDSP will then be set up to transmit the maximum amount of data
to the base station. Section 5 provides a comparison of the results obtained with some related work.
Finally, the paper is concluded in Section 6.

2. Case Study and Measured Vibrations

2.1. Process Description

The industrial process that is the subject of this study is part of the LaRonde mine factory of
Agnico Eagle. It is the crushing of minerals extracted underground. To better prepare the minerals for
the flotation stages, they must be ground twice. The first mill is the Semi-Autogenous Grinding (SAG)
type, and the second is the ball mill. For this study, the measurements are taken from the SAG mill
drive motor. The complete SAG mill drive diagram is shown in Figure 3a; it includes the drive motor,
a reduction gear, and the SAG. For the automation of such a process, many sensors must be installed for
monitoring data such as temperature, speed, and pressure. In this work, we first assessed the potential
of the harvestable energy from the generated vibrations. The vibration sensor is of the ACC103 type
and capable of measuring vibrations between ±500 g up to a frequency of 10 kHz. The Figure 3b is
a photograph of the sensor’s location, which is on the gearbox.
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2.2. Measured Vibration

Vibration data is taken every minute and recorded using Emerson’s AMS 2140 Machinery Health
Analyzer. Data was recorded between March 1 at midnight and March 31 at 11:59 p.m. Figure 4,
below, represents the time evolution of vibrations over the first ten days of the month. The achieved
results show a periodicity that was shifted in time. Under the first day’s data, the vibration levels
were quite low between 2 a.m. and 6 a.m. In contrast, we observed that peaks of vibration were
produced between 8 p.m. and 11 p.m. These vibration levels were due to the mine’s operating regime.
The volume of rocks crushed between 8 p.m. and 11 p.m. was relatively large, while the amount of
rocks between 2 a.m. and 6 a.m. was probably low. It was also observed that the vibration peaks in the
different days did not occur at the same time interval, which will give rise to a fluctuation in the level
of harvestable energy.
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Frequency analysis is also proposed in Figure 5, and the results reveal that most of the energy was
concentrated at low frequencies with acceleration peaks above 20 m/s2. This result is impressive in
terms of the amount of harvestable energy since the maximum harvested power was proportional to
the square of the acceleration [12]. In the following subsection, an analysis of fluctuations in harvestable
power is performed.
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Figure 5. Frequency distribution of the measured vibrations.

2.3. Mechanical-Electric Conversion

To estimate the harvestable energy of the measured vibrations, a Simscape model was used.
Recall that the fluctuations that occur in the harvestable power were inevitable, regardless of the used
harvesting method. Thus, the study of the conversion model was beyond the objectives of this work.
It is proposed here to analyze the fluctuations of the vibrations due to the different operating speeds of
the engines. The conversion system was built in the Simscape/Simulink Matlab environment using the
piezo stack component. The structure and dynamics of this block corresponded to the constitutive
equations of piezoelectricity developed in [44] and defined as follows:{

S = sET + dE
D = dT + εTE

(1)

where S, represents the strain sensor, T the stress tensor, and D and E the electric displacement
vector and the electric field vector, respectively. εT is the dielectric permittivity, which is measured at
constant stress.

The piezo stack block was considered in [45], and the impact of the number of piezoelectric
layers on the conversion efficiency was analyzed. It emerged from this work that the increase in the
number of piezoelectric layers leads to a rise in mechanical losses. The Simscape model with the
piezo stack composite has also been used in [46] to evaluate the harvestable vibrations on vehicle
engines to extend the wireless sensor’s lifetime necessary for the Vanet network in smart transport
systems. The model’s parameterization also makes it possible to use the characteristics extracted from
the marketed components’ datasheet. Most of the simulation parameters proposed here (Table 3) come
from Mide technology’s QP20W composite datasheet [47].

Table 3. Parameter values for the piezo stack component in Simscape Simulink.

Parameter Value

Stack area
(
mm2

)
45.974× 33.02

Blocking Force (N) 88.96
Test voltage (V) 40

No-load displacement at test voltage volts (µm) 0.016
Electric capacitance (nF) 145

Resonant Frequency (Hz) 1 Hz
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The simulation diagram is shown in Figure 6 below. The schematic includes an excitation source
for the transducer (the vibration data measured over the 31 days was considered). A Simulink to
a physical signal (PS) converter was used to transform the data into a physical signal. The signal
output is a force that then feeds the piezo stack composite. The voltage across the load (voltage) was
converted into Simulink’s physical signals and saved for further processing.
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Figure 6. Simulation diagram in Simscape.

Using vibration data recorded the first day, the optimal load resistance obtained for the parameter
values reported in Table 3 is shown in Figure 7. The analyses were proposed for different values of
the transducer’s resonance frequencies. The results show that the best performance was achieved
when the resonance frequency of the composite was set at 1 Hz. This result was consistent with that of
Figure 5, where we can see that the acceleration peak on the first day is closer to 1 Hz. The value of
optimal load resistance was 1.5 MΩ.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 25 

The simulation diagram is shown in Figure 6 below. The schematic includes an excitation source 

for the transducer (the vibration data measured over the 31 days was considered). A Simulink to a 

physical signal (PS) converter was used to transform the data into a physical signal. The signal output 

is a force that then feeds the piezo stack composite. The voltage across the load (voltage) was 

converted into Simulink’s physical signals and saved for further processing.  

Using vibration data recorded the first day, the optimal load resistance obtained for the 

parameter values reported in Table 3 is shown in Figure 7. The analyses were proposed for different 

values of the transducer’s resonance frequencies. The results show that the best performance was 

achieved when the resonance frequency of the composite was set at 1 Hz. This result was consistent 

with that of Figure 5, where we can see that the acceleration peak on the first day is closer to 1 Hz. 

The value of optimal load resistance was 1.5 MΩ. 

The analysis leading to the results of Figure 7 was based on the average harvestable power. The 

fluctuations in power that occurred during the first four days in which the load resistance was set to 

1.5 MΩ, are shown in Figure 8. Similar amounts of the harvestable power over the first four days, 

with an average power of around 1.26 mW is observed in Figure 8. The evolution of the harvestable 

power under a month’s data is shown in Figure 9. The average harvestable power is 1.28 mW, with 

a periodicity 𝑇 that was shifted depending on the day. This periodicity in the amount of energy 

harvestable was due to the repetitive tasks existing in most industrial processes, which operate 24 h 

a day. In the next section, a predictive model is then set up to manage the harvested energy efficiently. 

 

Figure 6. Simulation diagram in Simscape. 

 

Figure 7. Dependence between the harvested power and load resistance. Figure 7. Dependence between the harvested power and load resistance.

The analysis leading to the results of Figure 7 was based on the average harvestable power.
The fluctuations in power that occurred during the first four days in which the load resistance was set
to 1.5 MΩ, are shown in Figure 8. Similar amounts of the harvestable power over the first four days,
with an average power of around 1.26 mW is observed in Figure 8. The evolution of the harvestable
power under a month’s data is shown in Figure 9. The average harvestable power is 1.28 mW,
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with a periodicity T that was shifted depending on the day. This periodicity in the amount of energy
harvestable was due to the repetitive tasks existing in most industrial processes, which operate 24 h
a day. In the next section, a predictive model is then set up to manage the harvested energy efficiently.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 25 
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Figure 9. Harvestable power on different days of the month: Highlighting the periodicity.
(a) Measurement over the month; (b) Zoom between the second and the fourth day.

3. Prediction of the Harvestable Energy

3.1. Previous Linear Energy Prediction

Numerous studies have been proposed to predict harvestable energy from ambient
sources [26,48,49]. One of the most popular algorithms is based on an EWMA filter [50]. The method
involves dividing the database into time slots. The idea is that the harvestable energy at the time slot t
of a day d is similar to the energy harvestable at the previous time intervals of the same day and at the
same slot of time at the previous day d− 1. Thus, the power estimated at time t is defined as follows:

p̂d (t) = α·pd(t− 1) + (1− α)·pd−1(t) (2)

where p̂n (t) represents the power estimated at the time slot t of the current day. pd(t− 1) is the power
harvested during the previous time slot of the same day. pd−1(t) is the power harvested at the same
time interval during the previous day. Finally, α (0 ≤ α ≤ 1) is the weight of the filter. Using data
from the sun for nine days, in [26], an optimal value of α of 0.5 was obtained. This value was the one
with the lowest prediction error. In [48], using data from the sun over a year, the value of α leading
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to a minimum error was 0.28. The time slot was set at 30 min in these previous works, each day
comprising 48-time slots.

Note that the time slot is a function of the process to be controlled. In this work, the initial
vibration sampling, time slots of one minute, and the vibration data recorded throughout the month
were used. The optimal weight was then determined by looking for the Mean Square Error (MSE)
minimum. The Sum of the Mean Square Errors (SMSE) between the measured and the estimated
power is defined as:

SMSE(α) =

nd∑
d=1

T∑
t=1

(pd(t) − p̂d(t))
2 (3)

where nd is the number of days considered for the analysis, and T corresponding to the number of the
sample made over a day (T = 1440). pd(t) is the measured power, and p̂d(t) is the estimated power
calculated as in Equation (2). The value of α which minimizes the SMSE can be obtained by equating
the derivative of SMSE(α) to zero and then solving for α. Using data recorded over a month, the sum
of the squared errors’ according to α, is shown in Figure 10. This high value of α shows that the
correlation is low between the harvestable power over two consecutive days. This result is consistent
with the shift in periodicity observed in Figure 10.
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Maintaining α at its optimal value, the EWMA predictor’s performances are shown in Figure 11.
The performances over the whole measurement period (one month) are shown in Figure 11a,b,
respectively, about the comparison between the experimental power and the predicted power and
about the absolute error.

• In Figure 11b, a prediction error of up to 1.02 mW was obtained; such a difference can be prejudicial
for the definition of the specifications of the autonomous IWS. Around the 383rd hour, a prediction
error of 1017 uJ was also observed. The overall analysis from the results of Figure 11b gives
a relative error of 25.25% and a Root Mean Square Error (RMSE) of 28.63%.

• In Figure 11c,d, there was a comparison between the actual power and the estimated power
around the times when the most significant errors occurred. The results showed that the predicted
power follows the same trend as the real power when it is monotonic.

• Figure 11e,f showed a larger zoom around the most significant errors to better visualize the
previous aspect. These latest results show that the EWMA method fails when the power fluctuates
a lot. This observation was in agreement with the result of Figure 10, for which it was obtained
that the power value was better correlated with the power at the last instant. So many fluctuations
in power lead to the failure of the EWMA method. A new predictor of the harvestable vibrational
energy is proposed in the next subsection to overcome this limitation.
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Figure 11. Exponentially Weighted Moving-Average (EWMA) predictor performance. (a) Real and
estimated power over the whole measurement period; (b) Absolute error over the whole measurement
period. (c) Zoom between the 6th and 7th day. (d) Zoom between the 15th and the 16th day. (e) Estimated
power and absolute error during the 6th day. (f) Estimated power and absolute error during the
15th day.

3.2. The Predictor of the Harvestable Energy from Vibrations

It is considered a broader data history to increase the precision in estimating the power harvestable
from vibrations. To avoid having to store a considerable number of data, the periodicity T observed in
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Figure 9 is considered to estimate the power at a given instant. The used data history is that shown in
Figure 12, and the harvestable power at the current slot t is evaluated using several weights (α, β, γ)
by the following equation:

p̂d (t) =

ND∑
i=1

αi.pd−i(t) +
T∑

j=1

ND∑
i=1

βi, j.pd−i(t + j) +

ND∑
i=0

γi, j.pd−i(t − j)

 (4)
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Figure 12. Used data history to predict the harvestable power.

In this equation, ND represents the previous number of days and T the periodicity over time.
p̂d (t) is the estimated power at time t of the day d and, pd−i(t) represents the harvested power during the
previous days in the same time slot. pd−i(t + j) and, pd−i(t− j) are, respectively, the harvested powers
in previous days at the previous and subsequent time slots of the current moment t. The previous
time slots of the current day are also taken into consideration with the weight αi. The goal is to reduce
the RMSE compared to the value obtained with the EWMA algorithm; for this, the optimal weights(
αopt, βopt,γopt

)
for each estimate are determined.

Using the algorithm defined by the Equation (4), with the value of T is set at 80, the performances
of PHEV are shown in Figure 13.

• Figure 13a compares the predicted power for the measurements recorded during the month.
The result shows that the power estimated by the PHEV follows the power peaks of the real power.

• Figure 13b shows the evolution of the absolute prediction error during the month. The largest
absolute error reached was 0.857 mW, unlike 1.02 mW obtained with the EWMA predictor.
This error corresponded to a relative error of 21.2%, unlike 25.25% with the EWMA predictor.

• Figure 13d,e show that the power gaps between the real power and the predicted power were less
pronounced with the PHEV than the EWMA algorithm.

• An analysis of the absolute prediction errors in the EWMA and PHEV algorithm was shown in
Figure 13f, and it was obtained that the prediction error was lower in the case of PHEV. Based on
these results, the RMSE obtained with PHEV was 19.52 mW compared to 28.63 mW with the
EWMA algorithm. Performances of the two predictors on all the month’s data are summarized in
Table 4.



Appl. Sci. 2020, 10, 8486 14 of 25

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 25 

(a) (b) 

  

(c) 

 

(d) 

 

(e) (f) 

  

Figure 13. PHEV performance compared to EWMA. (a) Real and estimated power over the whole 

measurement period; (b) Absolute error over the whole measurement period. (c) Comparison of real 

and PHEV predicted powers during the 10th day. (d) Comparison of real and predicted powers 

(PHEV and EWMA) during the 6th day. (e) Comparison of real and predicted powers (PHEV and 

EWMA) during the 15th day. (f) Comparison of absolute prediction errors for the two algorithms 

(EWMA and PHEV). 

Table 4. Performance of EWMA and PHEV. 

Predictor Metric EWMA PHEV Improvement 

Maximum absolute error (𝑚𝑊) 1.02 0.857 16% 

Relative error (%) 25.25 21.2 16.03% 

Figure 13. PHEV performance compared to EWMA. (a) Real and estimated power over the whole
measurement period; (b) Absolute error over the whole measurement period. (c) Comparison of
real and PHEV predicted powers during the 10th day. (d) Comparison of real and predicted powers
(PHEV and EWMA) during the 6th day. (e) Comparison of real and predicted powers (PHEV and
EWMA) during the 15th day. (f) Comparison of absolute prediction errors for the two algorithms
(EWMA and PHEV).
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Table 4. Performance of EWMA and PHEV.

Predictor Metric EWMA PHEV Improvement

Maximum absolute error (mW) 1.02 0.857 16%
Relative error (%) 25.25 21.2 16.03%

RMSE (%) 28.63 19.52 31.82%

4. Efficient Management of Harvested Energy

With the possibility of predicting the amount of harvestable energy, this section proposes a method
of efficiently managing this energy. The method consists of defining the specifications of the IWS
by integrating the amount of energy that will be harvested during the current measurement cycle.
This would reduce the data queue in the IWS by maximizing the transferable data during each
measurement cycle. To precisely define the node’s residual energy, an electrical energy consumption
model that considers the most dissipation source in the IWS node is established. Under the basis of
the harvestable energy and the energy need, the data’s maximum size is then defined. In this section,
the PHEV performance is evaluated in terms of the amount of data transmitted to the BS.

4.1. IWS Energy Consumption Model

To accurately estimate the node’s specification based on the recovered energy, it is essential to
consider a node consumption model that incorporates most sources of dissipation. Two main factors
are involved in the definition of IWS activities, the network’s topology, and the communication protocol.
Topology refers to the organization of the network; the main topologies are the star, the mesh, and the
cluster. The protocol refers to techniques for accessing the channel shared by the various IWSs in
the network to avoid collisions and interference. Most of the current IoT networks are star networks;
therefore, each IWS directly transmits the collected data to the BS. In this work, it was assumed that the
BS schedules transmission times under the Time Division Multiple Access (TDMA) to avoid collisions.

Following the star topology of the IoT networks and of the different blocks that constitute the IWS
(see Figure 1), three main sources of dissipation must be considered to estimate the energy requirement
of the IWS for b bits of data. This is the energy related to data acquisition, energy due to processing,
and the energy required for data transmission [51]. According to many previous studies [51–54],
and some IWs commercial off-the-shelf components (Cf Table 1), the communication module is the
biggest energy consumer in the IWS. For example, in [52], the amounts of energy for data sensing and
for data processing of an accelerometer MMA7260Q are respectively estimated to be 0.000268 times
and 0.044 times the energy dissipated for data communication. In [54], the energy dissipated for
communication is evaluated at 51% of the total energy cost of the IWS in industrial processes for which
the sensor must be used for the activation of a pre-actuator (contactor or speed variator, for example).
Given these observations, only the energy cost associated with data transmission will be considered in
this work.

In most studies, the energy consumption estimation is based on short-range communications
modules like the CC2520 of Texas Instruments. Recently, thanks to advances in the field of
microelectromechanical systems, many long-range communications protocols are increasingly offered
to meet the current requirements of IoT applications. Among these protocols, we can mention
the Long-Range Wide Area Network (LoRaWAN), the Narrowband IoT (NB-IoT), and Sigfox [55].
From previous work [55–57], it emerges that LoRa is the most advantageous in terms of lifespan; this
technology is then considered to maximize the performance of the IWS in terms of transmission range
or maximum data sizes. In LoRa technology, Chirp Spread Spectrum (CSS) modulation is used; it is
based on a spectrum spread, allowing the signal to be transmitted over a spectral width greater than
all the frequencies compose it. There are three operating modes in LoRa technology called classes
A, B, and C [58]; the most energy-efficient is class A in which the sensors go into sleep mode after
acknowledging the data. LoRa modulation provides the ability to use multiple orthogonal spreading
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factors (SF) to improve spectral efficiency and network capacity. Each symbol is made up of SF bits
and changes in a BandWidth (BW) window around the central frequency [59]. The transmission time,
TOA (for Time on Air) in ms of a number symbol Nsym is defined by:

TS =
2SF

BW
Nsym (5)

The SF is between 5 and 12, and the bandwidth is expressed in kHz. The value of Nsym varies
depending on the modulation parameters. In this work, the LoRa SX1280 of Semtech [60] transceiver
is considered, and for variable packet size, the number of symbols is defined by:

Nsym =


Nprea + 6.25 + 8 + ceil

(
max(b+ 16 − 4.SF+ Nent,0)

4.SF

)
si SF < SF7

Nprea + 4.25 + 8 + ceil
(

max(b+ 16 − 4.SF+ 8 + Nent,0)
4.SF

)
si SF7 ≤ SF ≤ SF10

Nprea + 4.25 + 8 + ceil
(

max(b+ 16 − 4.SF+ 8 + Nent,0)
4.(SF− 2)

)
si SF > SF10

(6)

where b represents the number of bits in the payload, SF is the spreading factor, and Nprea and Nent,
respectively, represent the number of symbols in the preamble and the number of symbols in the header.

Considering the transmission power Ptx and the transmission duration ToA, the energy dissipated
for the data transmission Etx(b) in mJ, is evaluated as follows:

Etx(b) = Ptx·ToA (7)

By substituting Equation (5) in Equation (7), the expression of Etx(b) becomes:

Etx(b) =
Ptx·2SF

·Nsym

BW
(8)

with Nsym, which is the number of symbols in the packet and evaluated by one of the equations defined
in the system of Equations (6). BW is the bandwidth in kHz and SF is the spreading factor.

The transmission power Ptx is related to the maximum range of the LoRa transmitter. To assess
the maximum range of the LoRa transmitter, one must consider the sensitivity SR of the receiver,
which represents the minimum power necessary to detect the transmitted signal. The sensitivity
value is provided in the datasheet, and in the case of the LoRa SX1280 transceiver, it is −99 dBm [60].
The sensitivity corresponds to the power received in a link budget between the LoRa transmitter and
the LoRa receiver. Considering the path-loss propagation model and assuming the unit gains antenna,
the attenuation factor Lpath is defined as follows:

Lpath =

(
4π fLoRa

c

)2

·dn (9)

where fLoRa, c, n, and d, represent the used frequency, the speed of light, the path loss exponent,
and the distance between the LoRa transmitter and the LoRa receiver, respectively.

Depending on the attenuation factor Lpath and the transmission power Ptx, the sensitivity SR will
be expressed as follows:

SR =
Ptx(

4π fLoRa
c

)2
·dn

(10)

Thus, the transmission power in LoRa is linked to the transmission range d as follows:

Ptx = SR

(
4π fLoRa

c

)2

·dn (11)
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Finally, the substitution of Equation (11) in Equation (8) makes it possible to express the energy
cost associated with data transmission as follows:

Etx(b, d) =
(

4π fLoRa

c

)2 SR·dn
·2SF
·Nsym

BW
(12)

The parameters for evaluating the energy cost of the IWS are reported in Table 5 below; the values
considered are those of a LoRa SX1280 transmitter from Semtech [60].

Table 5. Parameter values for IWS energy cost estimation.

Parameter Symbol Value and Ref

Path loss exponent n 3 or 4 [61]
LoRa transmitter/receiver frequency fLoRa 2.4 GHz [60]
LoRa SX1280 transceiver sensitivity SR −99 dBm [60]

Spreading Factor SF 5− 12 [60]
Bandwidth BW {203; 406; 812; 1625} kHz [60]

Using the parameters in Table 5, it was obtained as a function of the loss exponent (3 or 4),
the energy levels shown in Figure 14. The results showed for transmission ranges up to 10 km,
the maximum energy demand was 1.02 mJ in an environment with a loss exponent of 3 (which was the
case of obstructed factories [61]), while the energy demand is above 10 J for n = 4 which would be the
case with obstructed buildings [61]. In the rest of this paper, an exponent path loss of 3 was considered.
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4.2. Management of the Harvested Energy

Equation (12) offers three possibilities of slaving the performance of the node to the energy
harvested. These are the size b of the data in the payload and the IWS’s transmission range. The third
possibility is the transmission frequency in the case of a duty cycle adaptation strategy. Assuming that all
the energy harvested is dedicated to the operation of the IWS (i.e., we consider an ideal case of a lossless
harvesting circuit), the energy management module will then work as shown in Figure 15 below.
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As shown in this figure, the objective is to transmit the maximum amount of data at the end of
the cycle for a known measurement cycle time and distance. This first scenario makes it possible to
reduce the length of the queue of data stored in the sensor [62]. In the second case, it is considered
that the transmission of a data size is fixed in advance at the greatest possible distance; this strategy
would be suitable for fairly dense mesh networks and minimize transmission delays due to multi-hop
communications [63]. The duty cycle strategy is the third case dealt with; it applies when the data
size and transmission range are previously defined. To simplify writing, for maximizing the data size,
the used protocol will be abbreviated as MDSP. It will be a question for the PMM to use all of the
harvested energy (estimated by the PHEV) during the current cycle to transmit data at the end of the
cycle. Regarding the harvested energy stored during the measurement cycle, it is designated by EH

and is defined as follows:

EH =

t+T∫
t

pPHEV(τ)·dτ (13)

where T is the duration of a cycle, pPHEV is the harvestable power during the current measurement
cycle; the PHEV predicts it, and t is the instant marking the start of the current cycle.

The problem of optimizing energy management by the PMM is then the problem P1 formulated
as follows:

min
b,d

(EH − EWS(b, d)) s.t.
{

EHi − EWS ≥ 0
b ≥ 0 ; d ≥ 0

(14)

This problem boils down to minimizing the residual energy of the IWS at the end of each cycle
while preventing it from going through a value less than 0. The node’s actual residual energy at the
end of each measurement cycle, considering its accumulated energy, is defined as follow:

Eresidual = EH − EWS(b, d) +

t+T∫
t

(preal − pPHEV)(τ)·dτ

where preal is the power actually accumulated during the measurement cycle; the other parameters of
the equation are defined as previously.

For data size analysis, it is assumed that the network is deployed at a fixed distance, d from
the base station. The measurement cycle is one minute, corresponding to the initial sampling of the
vibration data. Figure 16 shows the operational flowchart of the PMM.
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Figure 16. Block diagram of proposed protocol: Maximizing Data Size Protocol (MDSP).

In Figure 16, Emin is the minimum energy required to transmit a bit. At the start of the cycle,
the range of data variations is defined, and the ranged and the duration ∆T of the cycle; nT represents
the number of samples taken during the month. The operation of PMM comes down to transmitting
as much data as possible at the end of the cycle under the basis of the energy harvested during the
cycle. The duty cycle adaptation is also considered in this algorithm because the IWS stays on standby
mode if it has not accumulated the energy necessary to transmit a data bit. The transmission range
was firstly set at 1 km, and the maximum data size that can be transmitted was 1500 bits. The results
obtained in terms of cumulative data over one month are shown in Figure 17.

• Figure 17a shows the transmitted data accumulated over the month for a transmission range of
1 km. The result also highlights the frequency of transmission of the IWS. Overall, it was achieved
that the IWS depletes its energy reserve during the first hours of measurement. For example,



Appl. Sci. 2020, 10, 8486 20 of 25

for a transmission with a maximum size of 4 kbits, the average throughput at the start of the
month was 4.36 bits / s, unlike 0.5 bits / s observed towards the end of the month.

• In Figure 17b, the maximum range was increased to 3 km, and it is observed that the amount of
data transmitted over the whole month decreases, which was an expected result since the energy
cost of the IWS has increased.

• In Figure 17c, the transmission range varies from 100 to 5000 km, with a data size set to the legend’s
values. The amount of data transmitted over the month increases with increasing packet size.
For example, for packets of size 4096 bits, it was obtained that 94.21 kbits of data were transmitted
during the month under the basis of the energy harvested from the vibrations. This amount of
data corresponds to an average throughput of 2.15 bits per second.

• For different packet sizes (512 bits, 1024 bits, 2048 bits, and 4096 bits), the evolution of the residual
energy of the IWS is shown in Figure 17d. The evolution of the residual energy agrees with
the previous results, in which it was noted that the transmission frequency is higher in the first
hours of the month. It was also observed that the residual energy of the IWS increased after
each transmission. This was justified because the harvestable energy calculation during each
measurement cycle is based on the PHEV’s predicted power. This power was less than or equal
to the real power, as shown in Figure 13a. This is another advantage of PHEV, which avoids
overestimating the harvestable power, as is the EWMA predictor.

Overall, the achieved throughput based on the harvested energy can be satisfactory for monitoring
temperature data, which varies very slowly due to thermal inertia. Note that the real throughput can
also be improved if the residual energy of the IWS is updated after each transmission since, in most of
the results obtained, the predicted energy is below the actual energy.
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5. Comparison with Related Works

Very few works offer a complete design for IWSs powered by vibration energy. The complete
design method includes the PT’s performance and defines the specifications of the IWS powered by
the harvested energy, more specifically from vibrations. Table 6 shows the comparison with some
related designs. The application, as well as the strategy used, are also specified. This comparison was
proposed in terms of throughput, transmission range, or else transmission frequency.

Table 6. Comparison with some related designs.

Ref (Year)
Applications

(Acceleration @
Frequency)

Used Method
Throughput

@Transmission Range@
Transmission Frequency

[64] (2005) −−@ 60 Hz Data compression and
HSU approach − @ − @ 0.1 s−1

[65] (2017) 0.15 g @ 40 Hz HSU − @ − @ 1 min−1

[38] (2017) −−@ 2.42 Hz HSU − @ − @ 12 h−1

[66] (2018) Vehicles (1.3 g @40 Hz) HSU −−@ 327 m @ 10 min−1

[19] (2020) Mining locomotive
(0.98 g @21.88 Hz) PT with SSHI and HSU 1.21 bits/s @ 958 m @ 7min−1

This Work (2020) SAG PT with PHEV and MDSP 4 bits/s@3 km @ 1min−1

As shown in Table 6, the commonly used method is the Harvest-Store-Use technique,
which involves leaving the IWS on standby until enough energy is harvested for data transmission.
The design in [64] was one of the first to propose a slaving of sensor performance to harvestable energy.
Although a transmission frequency of 10 Hz was reached in this work, it is important to mention that
the data compression technique (which can cause loss of information) was used. Besides, the sensor
was powered by a hybrid energy harvesting system comprising the PT and a photovoltaic cell.

In [65], a transmission frequency equal to that achieved in this work was obtained.
However, these results are based on laboratory tests and not on an actual industrial application.
The same observation can be made for the study in [38]. In [19] by considering most PT optimization
solutions (in particular the SSHI technique), it is obtained that the vibrations took at a given moment
in a mining locomotive make it possible to transmit data every 7 min at only 958 m, unlike every 1 min
to 3 km as is the case in our study.

Overall, unlike our design method, most of the related designs are based on fixed excitation
characteristics (constant frequency and constant acceleration) of the transducer, which is difficult to
achieve in a real situation.

6. Conclusions

This paper is motivated by the need to deploy completely autonomous IWS in current industrial
applications to support Industry 4.0 objectives. A design method is introduced here to make it possible
to maximize the size of the transmitted data to the BS at each measurement cycle. Unlike most
of the work, which consists of accumulating the harvested energy in a battery until it is enough
to transmit data, this work proposes predicting the rate of the harvestable energy. The vibrations
that abound in the industrial sector are a power source for the IWS. A database of the vibrations
at the location of the IWS is first made up then the mechanical to electrical energy conversion is
performed by using a Simscape model. Initially, linear prediction techniques based on the EWMA
algorithm were considered. Although the results obtained were satisfactory, a relative prediction
error of approximately 25.25% was obtained. It subsequently exploited the periodicity observed
in the harvestable power, periodicity due to the industrial process’s repetitive tasks, to propose
a PHEV, which made it possible to reduce the relative error to 21% and the RMSE from 28.6% to 19.5%.
The energy predictor makes it possible, under the basis of a hardware block consumption model
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based on commonly used components, to ensure an average bit rate of 4 bits/s, which is satisfactory
for observing physical phenomena such as temperature. The design method proposed here ensures
the WS’s energy autonomy while maintaining an acceptable QoS and can be applied to any other
industrial process.
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