
applied  
sciences

Article

Design and Optimization of a High-Time-Resolution
Magnetic Plasma Analyzer (MPA)

Benjamin Criton 1,*,† , Georgios Nicolaou 1,2 and Daniel Verscharen 1,3

1 Department of Space and Climate Physics, Mullard Space Science Laboratory, University College London,
Dorking, Surrey RH5 6NT, UK; g.nicolaou@ucl.ac.uk (G.N.); d.verscharen@ucl.ac.uk (D.V.)

2 Southwest Research Institute, San Antonio, TX 78238, USA
3 Space Science Center, University of New Hampshire, Durham, NH 03824, USA
* Correspondence: benjamin.criton.19@ucl.ac.uk
† Current address: IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.

Received: 3 November 2020; Accepted: 24 November 2020; Published: 27 November 2020 ����������
�������

Featured Application: This instrument concept is designed to analyze plasma onboard scientific
spacecraft. Its measurements allow the construction of the velocity distribution functions of
protons and α-particles with high cadence to understand the small-scale kinetic processes in
space plasmas.

Abstract: In-situ measurements of space plasma throughout the solar system require high time
resolution to understand the plasma’s kinetic fine structure and evolution. In this context, research is
conducted to design instruments with the capability to acquire the plasma velocity distribution and
its moments with high cadence. We study a new instrument design, using a constant magnetic
field generated by two permanent magnets, to analyze solar wind protons and α-particles with high
time resolution. We determine the optimal configuration of the instrument in terms of aperture size,
sensor position, pixel size and magnetic field strength. We conduct this analysis based on analytical
calculations and SIMION simulations of the particle trajectories in our instrument. We evaluate the
velocity resolution of the instrument as well as Poisson errors associated with finite counting statistics.
Our instrument is able to resolve Maxwellian and κ-distributions for both protons and α-particles.
This method retrieves measurements of the moments (density, bulk speed and temperature) with a
relative error below 1%. Our instrument design achieves these results with an acquisition time of
only 5 ms, significantly faster than state-of-the-art electrostatic analyzers. Although the instrument
only acquires one-dimensional cuts of the distribution function in velocity space, the simplicity and
reliability of the presented instrument concept are two key advantages of our new design.

Keywords: solar wind; space plasma; in-situ plasma analyzer; high time resolution; small-scale
processes; magnetic analyzer

1. Introduction

1.1. Scientific Objectives

The solar wind is a plasma flow, emitted by the Sun, that fills the entire heliosphere. As with
other space plasmas, its properties have been studied extensively by spacecraft carrying in-situ
plasma instruments [1–3]. The kinetic state of such a plasma is fully described by the velocity
distribution functions (VDFs) of the particles. Due to the very low collisionality in many space
plasmas, thermal particles often exhibit different distributions from a simple Maxwellian. For example,
κ-distributions are often used to describe the superthermal tails of the measured VDF [4–7]. Thus,
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any space-plasma instrument must resolve non-thermal properties of the particle VDFs. Moreover,
as the solar wind passes over the measurement point at a supersonic speed (approximately in the range
from 300 to 800 km/s) in the spacecraft frame, the acquisition of VDF variations must be achieved
with high cadence. Assuming average solar-wind conditions, we translate this cadence requirement
into a sampling time requirement for the instrument. Since many important kinetic processes occur
on scales of the order of the proton gyro-radius ρp, we require that a suitable instrument for the
study of ion-kinetic processes resolves spatial scales of size ρp. For a typical solar wind speed of
u = 500 km/s, the resolution of a structure of size the proton gyro-radius at a heliocentric distance of
1 au (ρp = 80 km) [8,9] requires a sampling time of Ts = 2π ρp/2u ≈ 500 ms according to the Nyquist
criterion. Modern space plasma instrumentation aims at sampling the VDF with a high enough cadence
to study sub-ion-scale variations in the VDF. This is the direction taken by, for example, the Debye
mission [10] and the THOR mission [11]. The goal of our instrument design is a cadence of 5 ms,
which is two orders of magnitude faster than the requirement to resolve structures with a size of the
average ρp at a heliocentric distance of 1 au.

1.2. State-of-the-Art Space Plasma Instruments

Traditionally, most instruments measuring charged particles in the solar wind fall within one
of two families: Faraday cups and electrostatic analyzers (ESAs). The Parker Solar Probe SWEAP
instrument suite includes a Faraday cup (SPC) [12,13] that achieves measurements with a cadence of
16 Hz for a full distribution and greater than 128 Hz in high-cadence mode (only one energy/charge
window near the peak of the distribution is measured). The instrument has a 28◦ field of view (FOV)
with 1◦ target resolution and achieves radial 1D measurements of the VDF. ESAs are often capable
of performing 3D measurements of the distribution. The typical acquisition time of a full 3D VDF
for an ESA is higher than the typical acquisition time of an 1D VDF for a Faraday cup. For instance,
the Hot Ion Analyzer (HIA) on board Cluster samples a full 3D VDF in 4 s, while the Proton Alpha
Sensor (PAS) on board Solar Orbiter samples a full 3D VDF in 1 s [14,15]. These longer acquisition
times are a consequence of the measurement cycle in these instruments. Our instrument concept
aims instead at high energy and time resolutions at the expense of a full 3D coverage. It is based on
the successfully flown Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van
Allen Probes, which was designed for the measurement of energetic electrons in the Earth’s radiation
belts [16]. In the MagEIS design, the magnetic field created by two permanent magnets deflects
the incoming electrons toward a set of silicon detectors. The hit positions of the electrons on the
detector area are related to their energy according to the definition of the relativistic gyro-radius.
The magnetic field is used to select energy bands for the energy-sensitive silicon detectors placed
in the focal plane [16]. Our instrument design uses the same operation principle, although it relies
on the measurement of the curvature radius by a position-sensitive sensor as its sole determination
of the particle energies, which is sufficient for non-relativistic particles such as thermal ions in most
space-plasma applications.

1.3. Instrument Working Principle and Expectations

Our instrument concept, the Magnetic Plasma Analyzer (MPA), comprises of two planar
permanent magnets placed parallel to each other (face to face), creating a quasi-uniform magnetic
field between them. The charged plasma particles follow different trajectories through the magnetic
field depending on their energy. A position-sensitive detector is mounted on the side of the magnetic
chamber. As a result, particles with different energies are detected at different positions on the detector.
MPA detects all particles from a given look direction in the same acquisition step, independent of
their energies. Indeed, the expected counts are independent of any voltage modulation (unlike ESAs
or Faraday cups). Instead, the number of counts only depends on the physical parameters of the
instrument and sensor to first order: aperture size, magnetic field strength and pixel size. This is the
key advantage of MPA’s working principle: the simultaneous measurement of all velocities in one
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acquisition step leads to a higher time resolution than ESAs. For our instrument concept, we define a
pixel as a set length range on the position-sensitive sensor that can be sampled with one given anode.
Small pixel sizes allow for a larger number of energy channels (better resolution) but result in fewer
counts on each pixel. In this paper, we discuss the optimal geometry of the MPA instrument to measure
proton and α-particle VDFs, the two most abundant ion species in the solar wind. We then evaluate
the performance of the instrument assuming Maxwellian and κ-distributions of the incoming particles.
We assume a perfectly uniform magnetic field inside the instrument and zero magnetic field outside
the instrument (except in our SIMION simulations in Section 4.2).

2. Instrument Design

2.1. Instrument Geometry and Functionning

MPA consists of an aperture, a magnetic chamber and two permanent magnets, as illustrated
in Figure 1. Ions within a limited field of view enter the magnetic chamber through the aperture.
Inside the gap between the two permanent magnets, ions are deflected by the magnetic field according
to the Lorentz force:

m
dv
dt

= q v∧ B, (1)

where m and q are the mass and charge of the ion, v is its velocity vector and B is the magnetic field
inside the chamber. In a simplistic case in which B = B0ey and the incoming particles have an initial
velocity v0 = v0xex with an initial position r0 = 0 ex + 0 ey + 0 ez, the solution of Equation (1) is:{

x(t) = v0x
ω0

sin(ω0t)

z(t) = v0x
ω0
− v0x

ω0
cos(ω0t)

, (2)

where ω0 = qB0/m is the homogeneous gyro-frequency inside the magnetic chamber. Equation (2)
describes a circular trajectory of radius

R̃ =
mv0x

qB0
. (3)

Figure 1b illustrates the trajectories of three ions inside the chamber. According to Equation (3),
the curvature radius of the particles is directly proportional to their v0x. Assuming that all particles
are protons and knowing the magnetic field strength B0, it is thus possible to measure the speed of
the particles directly by measuring their curvature radius, represented by their hit distance in the
sensor plane.
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Figure 1. Basic geometry of MPA. The instrument model has a conical aperture of diameter a at the
entrance of the magnetic chamber (yellow area) with a semi angle of 2.5◦. In Figure 1b, we represent
the trajectories of three ions with equal mass, charge and speed but different offsets from the central
aperture axis. (a): Face view; (b): Side view.

2.2. Position of the Sensor to Obtain Optimal Velocity Resolution

The position of the sensor within the magnetic chamber is crucial in order to obtain the optimal
velocity resolution. We obtain the largest change of hit position with particle velocity when the sensor
is perpendicular to the aperture (the sensor is mounted on the chamber’s surface next to the aperture),
as shown in Figure 1b. In this setup, the hit position z is linked to the speed of a given particle by:

z = 2
mv0x

qB0
. (4)

This expression is based on the assumption that the aperture is reduced to a point and that the
particle velocity v0 before entering the aperture is parallel to the x axis. In Section 3, we discuss the
influence of the aperture size on the velocity determination. A second advantage of this sensor position,
apart from having the highest velocity resolution, is the first-order focusing property which states that
all particles with velocity v0 and within a small solid-angle element are focused onto the same hit
position in the sensor plane. We demonstrate this property for a particle with v0 = v0xex + v0zez and
r0 = 0. According to Equation (1), we obtain:{

vx(t) = v0x cos(ω0t)− v0z sin(ω0t)

vz(t) = v0z cos(ω0t) + v0x sin(ω0t)
, (5)

and after integration: 
x(t) = x0 +

v0x

ω0
sin(ω0t) +

v0z

ω0
cos(ω0t)

z(t) = z0 +
v0z

ω0
sin(ω0t)− v0x

ω0
cos(ω0t)

. (6)
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Using cos(α) = v0x/
√

v2
0x + v2

0z and sin(α) = v0z/
√

v2
0x + v2

0z, we obtain:


x(t) = −

√
v2

0x + v2
0z

ω0
sin(α) +

√
v2

0x + v2
0z

ω0
[cos(α) sin(ω0t) + sin(α) cos(ω0t)]

z(t) =

√
v2

0x + v2
0z

ω0
cos(α) +

√
v2

0x + v2
0z

ω0
[sin(α) sin(ω0t)− cos(α) cos(ω0t)]

, (7)

leading to {
x(t) = −R sin(α) + R sin (ω0t + α)

z(t) = R cos(α)− R cos (ω0t + α)
, (8)

where we define the curvature radius as

R =
√

v2
0x + v2

0z/ω0. (9)

The hit time thit at which the particle hits the sensor plane fulfills the condition x(thit) = 0.
From this condition, we find

thit =
π − 2α

ω0
(10)

resulting in

z(thit) = 2 R cos(α) = 2 R
[

1− 1
2

α2 + o(α4)

]
∼ 2 R. (11)

Thus, for small incoming angles, the hit position is not affected by the initial z-component of
the particle velocity (v0z). This approximation is used in the remainder of the article to justify our
assumption that all ions enter the instrument along its x-axis, despite potential (small) oblique entry
angles of v0.

2.3. Dependence of the Field of View on Speed and Determination of the Magnetic Chamber Width

If the magnetic chamber is too narrow, fast particles with v0y 6= 0 hit the magnet surfaces.
These particles would not be detected by the sensor or could potentially experience back-scattering as
neutrals after charge-exchange, generating false counts in the sensor. This effect leads to an effective
velocity-dependence of the field of view. For this characterization, we assume a particle inside the
chamber with a trajectory according to Equation (8). Since the Lorentz force does not affect the
trajectory of the particle along the parallel direction (y), the y-position of the particle after a time t is
y(t) = v0y t + y0, where y0 accounts for a potential offset of the initial particle position. We define
the half-width of the magnetic chamber as h. Without loss of generality, we assume that v0y ≥ 0.
The following arguments apply likewise to the case in which v0y < 0. A particle reaches the sensor
plane without hitting a magnet surface if and only if

v0y t + y0 < h ∀ t ∈ [0 ; thit] i.e., ∀ t ∈
[

0 ;
π − 2α

ω0

]
. (12)

Thus, to fulfill the detection condition, the y-component of the initial velocity must follow this
inequality:

v0y <
(h− y0) ω0

π − 2α
, (13)

which we re-write for small α as

v0y <
(h− y0) ω0

π
. (14)
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Defining β as the incoming angle of the particle in the x-y plane, we find from Equation (14) a
relation between the out-of-plane angle and the measured velocity v0x:

β = arctan
(

v0y

v0x

)
< arctan

(
q (h− y0) B0

π m v0x

)
. (15)

As a starting point, we choose to physically constrain the FOV of MPA to 5◦ × 5◦, setting a 5◦

upper limit for the out-of-plane view angle of the instrument. This choice is based on the effective
angular acceptance of the MagEIS Low and Medium instruments. Although the MagEIS Low and
Medium chambers have a physical 20◦ × 10◦ FOV, their effective out-of-plane acceptance ranges from
10◦ for the lowest to 3◦ for the highest detectable energies [16]. Considering the higher density of
thermal ions measured by MPA compared to the highly energetic electrons measured by MagEIS, it is
not necessary to use acceptance angles as large as 20◦. Such a large acceptance angle would lead to a
degradation of the focusing of ions in the sensor plane and production of more secondary emissions
due to increased collisions of ions with the magnetic chamber walls. With our choice of a 5◦ × 5◦ FOV,
the out-of-plane view angle is given by

γ = min
[

5◦, 2× arctan
(

q (h− y0) B0

π m v0x

)]
. (16)

Figure 2 shows the dependence of γ on speed for different chamber widths when particles are
assumed to enter the instrument at the center of the aperture: y0 = 0. As expected, a larger gap between
the magnets allows for a wider field of view at a given speed. MPA’s effective out-of-plane view angle
remains constant for particle speeds up to 500 km/s with a chamber gap of 14 mm. Faster particles
will be detected with a narrower FOV. We note that the MagEIS instrument used a gap between its two
magnets of approximately the same size (see Table 1).
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Figure 2. Variation of the out-of-plane view angle γ with velocity for different chamber width.
These curves simulate protons flying through the instrument chamber with different gap width
(6, 8, 10, 12 and 14 mm), and a magnetic field strength of B0 = 0.1 T.

To obtain a FOV of 5◦ × 5◦ on a wider range of velocities, two parameters can be adjusted: the
chamber width or gap (as seen in Figure 2) and the magnetic field strength. Wider magnetic chambers
will induce higher levels of stray fields, as discussed by J.B. Blake et al. [16]. On the other hand, we
can keep the chamber narrow by increasing the magnetic field to the detriment of heavier magnetic
materials. This trade-off must be conducted in further engineering work.
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2.4. From Counts to a VDF

We assume a constant conical aperture with a half angle of 2.5◦ for the remainder of the
article. Based on the experience with the MagEIS instrument, this aperture parameter guarantees a
roughly constant viewing angle of the distribution function at a reasonable error on count numbers.
This aperture parameter is also the starting point of our discussion of the focusing property in
Section 2.2. The aperture at the edge of the magnetic chamber is a disk of area A and diameter
a (see Figure 1). The number of particles entering the conical aperture of area A and semi-angle
Θ0/2 = 2.5◦ during an acquisition time τ is

N = τ A
∫ ∞

0

∫ 2π

0

∫ Θ0/2

0
v cos(θ) f (v) v2 sin(θ) dθ dφ dv, (17)

N = τ A
2π

4
(
1− cos (Θ0)

) ∫ ∞

0
v3 f (v) dv, (18)

where f (v) is the (assumed to be) spherically symmetric VDF, which simplifies to:

N = G
∫ ∞

0
v3 f (v) dv, (19)

where
G = τ A

π

2
(1− cos (Θ0)) (20)

is the “geometric factor” of the instrument. The factor G accounts for the key parameters of the
instrument: aperture area, acquisition time and FOV. Since Θ0 is small, we use

1− cos (Θ0) ∼
Θ2

0
2

, (21)

leading to

G = τ A
π

4
Θ2

0. (22)

We note that the geometric factor derived here is not identical to the definition of the geometric
factor of ESAs (see Equation (3) in [17] or Equation (3.11) in [18]) since dE/E is not constant in the
case of MPA. The position of the center of a detecting pixel i in the position-sensitive sensor plane is
defined as

zi =

(
i− 1

2

)
l +

a
2

i ∈ J 1; n K , (23)

where we place the origin of our coordinate system at the center of the aperture. According to
Equation (4) and using the pixel setup shown in Figure 1b, the position of the center of pixel i is linked
to the velocity of a particle detected by this pixel as

vi =

[(
i− 1

2

)
l +

a
2

]
qB0

2m
, (24)

where vi is the central velocity associated with pixel i and l is the width of the pixel. The difference of
the speeds associated with two neighboring pixels is given by

δv = vi+1 − vi =
qB0l
2m

, (25)

so that the number of counts (assuming a detection efficiency of 100%) by pixel i during an acquisition
time τ is

Ci = G
∫ vi+

qBl
4m

vi−
qBl
4m

v3 f (v) dv. (26)
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If we design the instrument so that the velocity step between two neighboring pixels is small
compared to the measured velocities (δv/v0 ∼ 0), we can re-write the number of counts in pixel i for a
given input distribution as

Ci = G δv v3
i f (vi). (27)

The estimated distribution function obtained from the number of counts per pixel by the
instrument is then simply

fest(vi) =
Ci

G δv v3
i

. (28)

This result is in agreement with the method used by Nicolaou et al. [19] where the output VDF
is obtained by inverting Equation (27). Equations (27) and (28) do not account for finite detection
efficiencies and other non-ideal behaviors of the instrument. In general, the sensitivity of any type of
particle detector depends on the speed, mass, charge and hit angle of the detected particles [20,21].
We introduce a finite, dimensionless efficiency parameter εiMCP < 1, where the subscript i indicates pixel
i associated with speed vi. In addition to the detector’s characterization, the position-sensitive anode
efficiency must be measured before launch [2]. We introduce a further finite, dimensionless efficiency
parameter εianode < 1 to correct for the anode efficiency. Moreover, the variation of the FOV with velocity
formulated in Section 2.3 must be included in the calculation of the geometric factor. We introduce a
finite, dimensionless normalization factor gi ≤ 1, which depends on velocity and is thus specific to
each pixel i. Considering these effects, the corrected count number is given by

C̃i = εianode
εiMCP gi Ci = εianode

εiMCP gi G δv v3
i f (vi). (29)

Lastly, we must apply a dead-time correction to the counting measurements. The true count
number is obtained using the established formula [2,22]

Cti =
C̃i

1− τd
τ C̃i

, (30)

where τd is the total effective dead time of the detector and the readout electronics and τ is the
acquisition time. The parameters εiMCP , εianode , gi and τd must be characterized and measured during
the test and calibration phases. For the sake of simplicity in this conceptual study of MPA, we assume
that εiMCP = εianode

= gi = 1, τd = 0, and use Equations (27) and (28) for our following simulations.

2.5. Instrument Length

As a minimum requirement, the z dimension of the MPA’s magnetic chamber must be longer than
two curvature radii associated with the fastest particles. Similarly, the x dimension must be deeper
than one curvature radius (see Figure 1b). According to this requirement, the minimum dimensions
of the instrument also depend on the magnetic-field strength, which defines the curvature radius.
Keeping the remaining parameters constant, an increase of the magnetic-field strength increases the
number of particles detected on each pixel, leading to a smaller statistical error in the measurement.
However, it also increases the relative error in velocity measurements according to Equation (25).
The MagEIS instrument provides us with a reasonable starting point for an achievable magnetic-field
strength. The MagEIS properties are summarized in Table 1. We choose for MPA a starting value of
0.1 T. In Section 3, we study the influence of the magnetic field strength on the overall performance of
our instrument.
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Table 1. Key parameters for MagEIS Low, Medium and High [16,23]. The mass of each instrument
is estimated given the total mass of the suite containing four analyzers (one Low, one High and two
Medium) [23].

Parameter Low Medium High

Energy range 20 keV–240 keV 80 keV–1200 keV 800 keV–4800 keV
Magnetic field strength 0.055 T 0.16 T 0.48 T
Magnetic chamber gap 7 mm 7 mm 12 mm
Field of view 20◦ × 10◦ 20◦ × 10◦ 16◦ × 19◦

Apperture geometry 2 mm × 5 mm 2 mm × 5 mm 10 mm × 5 mm
Mass 8.5 kg 8.5 kg 8.5 kg

In the solar wind, the proton bulk speed ranges from roughly 300 (slow solar wind) to 800 km/s
(fast solar wind) (see Table 1 in [24], Figure 2 in [25] and Verscharen et al. [9]). The speed also
depends on latitude and heliospheric distance [26]. Using Equation (4), we determine that the required
length to measure protons with a speed of 800 km/s is 17 cm. However, the requirement to measure
α-particles as well makes necessary a longer instrument, since α-particles have twice the charge of
protons and four times their mass, leading to a larger hit distance in the sensor plane according to
Equation (4). Therefore, MPA must be twice as long as estimated in the proton-only case in order to
measure α-particles with the same speed as the protons. We choose for a first design a length of 30 cm.
This enables measurements of protons up to 1400 km/s and α-particles up to 700 km/s. In contrast,
the MagEIS instrument is approximately 7 cm long, i.e. smaller, and thus lighter than our design.

2.6. Summarized Instrument Geometry

We summarize the relevant instrument parameters in Table 2. We present a more detailed
discussion of the aperture radius, pixel size and magnetic field in Section 3 to optimize MPA in terms
of accuracy of the estimated VDF.

Table 2. Summary of the MPA characteristics.

Parameter Value

Aperture shape Cone of half-angle 2.5◦

Aperture entrance Disk of radius 1 mm
Magnetic field Uniform at 0.1 T
Instrument length 30 cm
Instrument height 15 cm
Instrument gap width 14 mm
Pixel size 1 mm

3. Instrument Performance

3.1. Velocity Resolution

The size of the aperture and of each pixel are two parameters that play key roles in the velocity
resolution of the MPA instrument. In addition, the detector sensitivity has an effect on the instrument
performance. We discuss a trade-off between different detector technologies (micro-channel plates or
multiple stacked channel electron multipliers) in Section 5.2. We calculate the velocity resolution of
MPA in the case of a particle flying in a plane parallel to the magnets (v0 = v0xex). We determine the
maximum velocity of a particle hitting pixel i at the distance given by Equation (23) from the center of
the aperture with a velocity vi = q B0 Ri/m expressed in Equation (24). The fastest particle that this
pixel measures comes from the top of the aperture and hits the bottom of the pixel. Thus,

2 Rmax = 2 Ri +
a
2
+

l
2

, (31)
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which leads to a maximum speed associated with this pixel of

vmax = vi +
a + l

4
qB0

m
. (32)

By analogy, the minimum speed associated with pixel i is

vmin = vi −
a + l

4
qB0

m
. (33)

Consequently, the velocity resolution of the instrument is

∆ v = vmax − vmin =
a + l

2
qB0

m
. (34)

With MPA’s characteristics presented in Table 2, we obtain a resolution of 14.4 km/s, which yields
for a 500 km/s solar wind a relative resolution of ∆ v/v0 = 2.8%. This phenomenon is illustrated
in Figure 3 where the hit positions of five beams of protons, separated by velocity steps of 7.2 km/s,
are depicted. Pixels of 1 mm width are represented between the black lines. A pixel positioned to
measure particles with speed v0 can in fact detect particles with speed in [v0 − ∆v/2 ; v0 + ∆v/2].
Thus, the uncertainty on the speed of one detected particle is ∆v.
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Figure 3. Five beams of particles are simulated using the SIMION software. Each beam has a set speed
and a cylindrical (uniform) distribution of positions at the aperture of the instrument. The radius of the
beam is 1 mm (2-mm disk aperture). Pixels are the areas separated by black horizontal lines.
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3.2. Errors Based on Counting Statistics

In addition to the velocity errors based on the finite resolution of the instrument, the detection of
particles also introduces uncertainties due to the counting statistics. The number of counts Ni that the
sensor measures in pixel i follows a Poisson distribution:

P(Ni) = e−Ci
CNi

i
Ni!

, (35)

where Ci is the expected number of counts for velocity vi presented in Equation (27). The standard
deviation of the Poisson distribution is σ =

√
Ci. The number of counts for each pixel with a confidence

interval of 2 σ is presented in Figure 4. We use an acquisition time of 5 ms with a disk aperture of
1 mm radius and a pixel size of 1 mm in width. The solar wind is modeled with a Maxwellian VDF
with a density of 5 cm−3, as represented in Figure 5. Due to the high number of counts per pixel,
the Poisson errors are low over a wide range of velocities around the center of the VDF. We obtain less
than 10% of relative error for speeds ranging from 440 to 560 km/s, which corresponds to ±60 km/s
around the central velocity of the VDF. The Poisson errors are, however, linked to the size of the pixels.
The larger the pixels are, the lower the relative Poisson errors are due to the larger Ni for each pixel,
and vice versa.
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Figure 4. Evolution of the counting errors with particle speed. The top plot shows the 2σ error bars on
the expected counts for each pixel. The bottom plot represents the relative error (er) in percent made on
the determination of the speed. The 10% (green) and 20% (red) levels are represented.
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Figure 5. Maxwellian VDF with density 5 cm−3, temperature 100,000 K and bulk speed 500 km/s.
This distribution function serves as the input for our calculations in Section 3.2.

3.3. Optimization of the Aperture Size, Pixel Size, and Magnetic Field Strength

We conduct test-particle simulations to quantify the relative errors made on VDF parameters for
different aperture sizes and pixel sizes. We assume an idealized homogeneous magnetic field inside
the instrument and use Equation (4) to determine the hit position of the particles. We inject particles
with a Maxwellian distribution and a κ-distribution starting with a uniform distribution of particle
locations on the instrument’s disk aperture. We represent both input distributions (Maxwellian and
κ-distribution) in Figure 6. We obtain estimates of the VDF parameters such as number density (n),
thermal speed (vT) and bulk speed (U) by fitting, using a Levenberg–Marquardt algorithm, for every
set of aperture and pixel size. For the κ-distribution, we require a fourth parameter, the κ-index. We run
these simulations for different types of solar wind: slow, intermediate and fast. The instrument and
solar wind parameters are summarized in Table 3.
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Figure 6. Maxwellian and κ VDFs with parameters summarized in Table 3. These distribution functions
serve as inputs for the following simulations.
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Table 3. Input values for our simulations.

Parameter Value

Density 5 cm−3

Temperature 100,000 K
Bulk speed 500 km/s
κ 3
Measurement duration 5 ms
FOV 5◦ × 5◦

Magnetic field strength 0.1 T

Figure 7 shows the relative error made on the determination of the plasma moments: density,
thermal speed and on its bulk speed as a function of aperture diameter and pixel size for the particular
case of an intermediate solar wind. Simulations for slow and fast winds yield similar results (not shown
here). Regions in parameter space for which the relative error on the determination of the VDF
parameters is low appear in blue in Figure 7. From this analysis, we choose an ideal pixel size of 1 mm
and an ideal aperture diameter of 2 mm. We conduct the same type of simulations to evaluate the
impact of the magnetic field strength on the resolution of the instrument. We plot the relative errors
of the VDF parameters as a function of magnetic field strength and pixel size. The results are shown
in Figure 8. According to this set of simulations, the maximum value of the magnetic field that still
achieves low relative errors (below 10%) is approximately 0.2 T. Therefore, it is possible to divide the
length of MPA from our initial value of 30 cm by a factor of two without major loss of accuracy.
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Figure 7. Relative errors in percent made on measurements of an intermediate solar wind (bulk speed
of 500 km/s, temperature of 100,000 K and density of 5 cm−3) as a function of aperture and pixel size.
Panels (a) through (g) show the resulting relative errors for all of the fit parameters of the Maxwellian
and κ-distributions.
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Figure 8. Relative errors in percent made on an intermediate solar wind with magnetic field and
pixel size. Panels (a) through (g) show the resulting relative errors for all of the fit parameters of the
Maxwellian and κ-distributions.

4. Instrument Simulation

The chosen geometry is summarized in Table 2 with an aperture radius of 1 mm and an acquisition
time of 5 ms. With these parameters, we conduct ion tracing simulations with SIMION [27] to confirm
the accurate and reliable functioning of MPA for both Maxwellian and κ-distributions. In the following
set of simulations, we evaluate whether MPA is able to retrieve the moments of Maxwellian and κ

VDFs as archetypical distributions to describe the solar wind [4,9] even though our instrument is able
to resolve any other type of distribution with the same accuracy. The raw output of MPA corresponds
to a list of speeds with their associated particle counts, so that the conversion to a distribution function
only depends on the physical parameters of the instrument, as shown in Equations (28)–(30). Due to
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the linearity between zhit and ‖v0‖ in Equation (11), MPA creates a direct one-to-one correspondence
between the actual distribution and the measured spectrum.

4.1. SIMION Results for Protons

We simulate three different types of solar wind: slow, intermediate and fast (for parameters,
see Table 4). The SIMION results are presented in Figures 9 and 10 for Maxwellian distributions and
Figures 11 and 12 for κ-distributions. Figures 9 and 11 present the count numbers recorded on each
pixel as a function of hit distance. We then use Equation (28) to obtain the associated VDFs and show
the results in Figures 10 and 12. The fit results of the estimated distribution functions are summarized
in Tables 5 and 6. MPA resolves the plasma parameters accurately over its 5 ms acquisition time.
This outcome supports the feasibility of MPA to give precise one-dimensional VDF measurements.

Table 4. Slow, intermediate and fast solar wind input parameters for the Maxwellian and κ-distributions
of speed used in SIMION simulations.

Solar Wind Density (cm−3) Thermal Speed (m/s) Bulk Speed (km/s) κ

Slow 5.5 36,341 400 3
Intermediate 5 40,631 500 3
Fast 3 57,460 700 3

Table 5. Estimation of the plasma moments after fitting for our three Maxwellian distributions.

Solar Wind Density (cm−3) Thermal Speed (m/s) Bulk Speed (m/s)

Slow 5.49 ± 0.027 36,416 ± 68 400,062 ± 48
Intermediate 4.95 ± 0.023 40,559 ± 72 499,973 ± 51
Fast 2.94 ± 0.015 57,154 ± 113 700,029 ± 80
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Figure 9. Three different types of solar wind simulated with SIMION. We present the number of
counts per pixel (1 mm wide) as a function of hit distance on the position-sensitive sensor along the
z-axis in our instrument design. In all three examples, the velocities of the simulated particles follow a
Maxwellian distribution function.
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Table 6. Estimation of the plasma moments after fitting for our three κ-distributions.

Solar Wind Density (cm−3) Thermal Speed (m/s) Bulk Speed (m/s) κ

Slow 5.43 ± 0.16 34,538 ± 1468 399,981 ± 68 3.44 ± 0.34
Intermediate 4.99 ± 0.2 39,447 ± 2361 499,994 ± 101 3.26 ± 0.41
Fast 2.96 ± 0.12 56,492 ± 3533 699,963 ± 138 3.10 ± 0.37
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Figure 10. Estimated (red) and model-input (blue) distribution functions. The estimation of the
distribution function is based on the counting results shown in Figure 9. In all three examples, the
velocities of the simulated particles follow a Maxwellian distribution function.
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Figure 11. Three different types of solar wind simulated with SIMION. We present the number of
counts per pixel (1 mm wide) as a function of hit distance on the position-sensitive sensor along the
z-axis in our instrument design. In all three examples, the velocities of the simulated particles follow a
κ-distribution function with κ = 3.
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Figure 12. Estimated (red) and model-input (blue) distribution functions. The estimation of the
distribution function is based on the counting results shown in Figure 11. In all three examples, the
velocities of the simulated particles follow a κ-distribution function with κ = 3.

4.2. SIMION Results for Combined Proton and α-Particle Measurements

α-particles are the second-most abundant ion species in the solar wind. We use a Maxwellian
distribution to model the α-particles. We use values from Bourouaine et al. [28] for the density and
temperature of the α-particles. Assuming an α-particle-to-electron number-density ratio of 3.5%,
we determine the Maxwellian distribution described in Table 7. We set the total density of positively
charged particles to 5 cm−3 and use a proton temperature of 100,000 K. The temperature ratio between
protons and α-particles is typically around 1.5. We neglect any relative drifts between α-particles and
protons, since these are small compared to their bulk speeds in the solar wind and would not affect
our result significantly.

Table 7. Properties of the α-particle and proton input VDFs.

Particle Species Density (cm−3) Thermal Speed (m/s) Bulk Speed (km/s)

α-particles 0.175 24,881 500
Protons 4.825 40,631 500

Figures 13 and 14 present our combined SIMION simulation results for protons and α-particles.
According to Figure 14, the α-particles exhibit larger statistical fluctuations in the number of counts.
However, as their thermal speed is higher, our instrument still provides us with a sufficient number
of counts (around 80 at peak) to study this population. The fit results for the α-particles are given
in Table 8.
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Figure 13. Counts as a function of hit distance for α-particles and protons.
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Figure 14. Estimated (red and green) and model-input (blue and black) distribution functions.
The estimation of the distribution function is based on the counting results shown in Figure 13.

Table 8. Estimation of the plasma moments after a least square fitting for the simulated α-particles and
comparison with the corresponding input values.

Parameter Input Value Output Value

Density 0.175 cm−3 0.160 cm−3 ± 0.0043 cm−3

Thermal speed 24,881 m/s 24,151 m/s ± 249 m/s
Bulk speed 500 km/s 496 km/s ± 176 m/s

5. Discussion and Conclusions

Our instrument concept MPA aims at answering science questions on small-scale processes that
are generally believed to be important for the solar-wind heating and acceleration. We study the
ability of a magnetostatic plasma instrument to resolve proton and α-particle VDFs with a high time
resolution. We find that MPA can achieve this goal. MPA is based on the dependence of the gyro-radius
of a charged particle travelling across a constant magnetic field on the particle velocity. The gyro-radius
being proportional to the speed, by measuring the gyro-radius, we indirectly measure the particle
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speed. To obtain the best velocity resolution, we place our position-sensitive sensor such that it
measures the diameter of the particle’s circular motion. The velocity resolution of the instrument is
then determined by the width of the pixels in the sensor plane, the aperture length and the value of the
magnetic field strength. Whilst reducing the pixel size improves the velocity resolution, it deteriorates
the counting statistics as fewer particles hit each pixel. The key feature of MPA is that the Lorentz
force naturally separates all incoming particles according to their speed. Thus, in one acquisition
step, a full 1D cut of the VDF across all energies is obtained. This operating principle enables a high
time resolution (5 ms). However, even in this instrument design, the time resolution is limited by
counting statistics. To overcome inaccuracies due to counting statistics, we can enlarge the aperture,
by increasing either the field of view or the aperture area, to the detriment of velocity resolution.

Our assumptions made for the sake of simplicity must be discussed and assessed in further
detailed engineering work. A magnetic circuit simulation must be conducted to model the exact
magnetic field between the two magnets. Shielding considerations are always important in the context
of scientific space instrumentation, where magnetic cleanliness is crucial. A trade-off study between
resolution and count rate will be necessary to decide on the best sensor, magnetic field strength and
aperture geometry for our measurements. Moreover, the dependency of the count measurements on
particle energy, mass, charge and hit angle must be addressed during calibration phases. Figure 1 of
Peko and Stephen [20] and Figure 3 of Stephen and Peko [29] highlight the strong dependence of the
detector efficiency on mass and charge of the analyzed particles. Consequently, it will be necessary to
characterize the detector for ions such as He2+, C6+, C5+, O6+, O7+, etc. found in the solar wind [30,31].
However, since MPA separates ion species with identical inflow speeds by a distance proportional to
m/q, a direct characterization of ion populations is possible.

Finally, MPA has a narrow field of view (5◦ × 5◦), making 3D measurements impossible.
Three-dimensional measurements of the solar wind were achieved, for example, by Marsch et al. [24]
using Helios data between 0.3 and 1 au. These measurements have revealed that often temperature
anisotropies occur with either T‖/T⊥ > 1 or T‖/T⊥ < 1 [24], where T⊥(T‖) is the temperature
perpendicular (parallel) to the background magnetic field. These anisotropies are most pronounced
at small heliocentric distances (around 0.3 au). Thus, 3D in-situ measurements are of interest to base
and confirm analytical models of heating processes [32,33] and when the VDF differs strongly from a
Maxwellian. We note in this context that, with only one MPA-type instrument aboard a spacecraft,
one would only be able to measure VDFs from one single look direction (notwithstanding the use
of spacecraft spin to measure in multiple directions). Depending on the local field geometry at the
time of the measurement, MPA samples cuts along varying directions relative to the local magnetic
field. This leads to a lack of information on, for example, the instantaneous temperature anisotropy at
the time of the measurement. However, the combination of multiple MPA units covering different
look directions can resolve this shortcoming at the expense of mass and cost. Alternatively, we
recommend the combination of MPA with a traditional ESA, so that MPA provides the high-resolution
and high-cadence measurements in one look direction, while the ESA provides the 3D distribution at a
lower resolution and cadence.

5.1. Magnetic Field Design

In all sections except Section 4.2, we assume a uniform field within the magnetic chamber
(B0 = 0.1 T). The SIMION software, on the other hand, models a more realistic magnetic field by
solving a Poisson equation for the magnetic field: B = −µ∇Ω, where Ω is the magnetic scalar potential
and µ is the constant magnetic permeability. Thus, SIMION models more realistically the magnetic
field generated by the two magnets in the absence of currents within the magnetic chamber. This is
sufficient for a first investigation at this point but not for a more detailed instrument design. The path
of the particles inside the instrument is governed by the instantaneous magnetic field vector at its
current position. Furthermore, the magnetic circuit must be designed in detail to keep the field inside
the gap as homogeneous and unidirectional as possible and the stray field as low as possible. This work
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would benefit from the heritage of the MagEIS instrument in which case the magnet design was a key
point of the success for the instrument [16]. Indeed, in the Low and Medium units, the field’s variations
were kept below 0.5% of the mean field value [16] to ensure uniformity of the field. The stronger field
inside the High chamber (0.48 T) of the MagEIS suite was realized with variations of around 5% of
the mean value. Following the detailed design phase of the magnets for MPA, a file containing the
established magnetic field vectors inside the chamber can be used in SIMION to simulate the real
response of the instrument to different specific particle populations.

5.2. Detectors and Readout Electronics

To record the hit position of protons and α-particles, our instrument requires a position-sensitive
sensor plane. This can be achieved by the use of either a micro-channel plate (MCP) or a channel
electron multiplier (CEM). Moreover, we explicitly require a high time resolution while maintaining
high count numbers. This can raise a concern regarding MCPs as their saturation count rate is around
1 MHz, depending on the detecting surface area. On the other hand, CEMs present higher count rates
independent of the hit area but may induce a lower velocity resolution due to their size. Cara et al. [11]
use 32 CEMs to achieve a 1.5◦ resolution in their high-cadence THOR instrument design. For MPA,
the sensor has a rectangular shape (strip) and pixels are organized along the z axis. Figure 15 shows an
anode array in the case of an MCP detector.

acquisition
chain

z

y

Figure 15. Position-sensitive anodes and a representative pixel. The anodes are represented by the
blue lines. They consist of conductive wires that detect the current generated by the electron beams
(gray circles) and determine the vertical z position of the beam based on the knowledge of which wire
has been hit. A pixel is defined as either a single anode or a collection of multiple anode wires and
is represented here as a yellow rectangle. The two permanent magnets, which delimit the magnetic
chamber, are represented by the dark rectangles at both sides of the pixels.

While we do not show the MCP itself in this figure, we represent the MCP-produced electron
clouds as gray circles. An acquisition chain is responsible for recording every hit and its position
along the z axis. A pixel (yellow rectangle in Figure 15) can correspond to a unique anode wire or
resistive strip, or a combination of neighboring wires/strips, depending on the trade-off between
velocity resolution required for a particular measurement and counting statistics (the summation of
counts from multiple wires/strips defines the number of counts in a pixel if multiple wires/strips are
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combined). We recommend that readout electronics composed of amplifiers and discriminators are
multiplexed to reduce the number of components required.
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