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Abstract: Human activity recognition (HAR) has been an active area in computer vision with a broad
range of applications, such as education, security surveillance, and healthcare. HAR is a general time
series classification problem. LSTMs are widely used for time series classification tasks. However,
they work well with high-dimensional feature vectors, which reduce the processing speed of LSTM in
real-time applications. Therefore, dimension reduction is required to create low-dimensional feature
space. As it is experimented in previous study, LSTM with dimension reduction yielded the worst
performance among other classifiers, which are not deep learning methods. Therefore, in this paper,
a novel scale and rotation invariant human activity recognition system, which can also work in low
dimensional feature space is presented. For this purpose, Kinect depth sensor is employed to obtain
skeleton joints. Since angles are used, proposed system is already scale invariant. In order to provide
rotation invariance, body relative direction in egocentric coordinates is calculated. The 3D vector
between right hip and left hip is used to get the horizontal axis and its cross product with the vertical
axis of global coordinate system assumed to be the depth axis of the proposed local coordinate system.
Instead of using 3D joint angles, 8 number of limbs and their corresponding 3D angles with X, Y,
and Z axes of the proposed coordinate system are compressed with several dimension reduction
methods such as averaging filter, Haar wavelet transform (HWT), and discrete cosine transform
(DCT) and employed as the feature vector. Finally, extracted features are trained and tested with
LSTM (long short-term memory) network, which is an artificial recurrent neural network (RNN)
architecture. Experimental and benchmarking results indicate that proposed framework boosts the
performance of LSTM by approximately 30% accuracy in low-dimensional feature space.

Keywords: human activity recognition (HAR); Kinect depth sensor; 3D posture data; egocentric
coordinate system; dimension reduction; discrete cosine transform (DCT); deep learning; LSTM

1. Introduction

Human activity recognition (HAR) is one of the most essential topics of computer vision concerning
the last two decades and has been used in various areas such as video-based surveillance systems [1],
elderly care [2], education [3], and healthcare [4–7]. HAR provides information about human physical
activity and aims to discover simple or complex procedures in a very realistic environment. To recognize
human activities at the highest accuracy, HAR presents the right diagnosis of activity models obtained
from various sensors. Sensors used in HAR applications consist of three clusters that are cameras,
wearable sensors, and gyro sensors [8–12]. General approaches address a HAR problem in two main
categories as vision-based and non-vision based systems. Vision-based HAR systems combine different
methods with advanced applications using image processing. However, non-vision based HAR
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systems extract the relevant features coming from the sensor and recognize the activity using a proper
machine learning classifier. Both methods have positive and negative sides compared to each other.
For instance, non-vision based systems work better in terms of environmental conditions such as fixed
scenes and lack of lighting and occlusion. On the other hand, vision-based sensors are much cost
effective and are more useful in daily life applications (video surveillance systems) [13]. For this study,
we decided on using the vision-based sensor since vision-based sensors fit more for daily life use and
are more affordable. There have been various studies for vision-based human activity recognition
in the literature. Despite the fact that there exist human activity recognition systems based on RGB
cameras, researches indicate that dark environment and illumination changes are still challenging
problems. In order to overcome this issue, illumination-invariant systems have been developed using
depth sensors. In this regard, a human posture recognition system based on a single depth camera
was presented in [14] where skeleton information is articulated with rotated Gaussian kernels and
indexed in tree structure. Another study conducting the same issue is also presented in [15] where
3D transformations of each skeletal joint are indexed in twist and exponential maps to construct a
deformation model to be employed for the recognition and pose tracking of the objects within the
range of a single depth camera. In addition, spatiotemporal behavior of human activities is extracted
by depth sensors using the cosine distances among 3D skeleton joints [16]. Similarly, in [17], 3D pose
estimation system is proposed in which multiple body joints are constructed in a per-pixel classification
problem by combining confidence scored intermediate body parts.

Different from RGB cameras and depth sensors, various sensors have been employed to achieve
human activity recognition such as multiple accelerometers, pyroelectric sensors, and wearable sensors.
In [18], authors use wearable sensors to perform human behavior analysis. In [19], motion sensors are
employed to analyze daily motion activities. Another study employed pyroelectric sensors to recognize
abnormal human activities [20]. In [21], smart phones are used for human activity recognition based on
the analysis of signals that come from motion sensors. Additionally, internet of things (IoT) technology
is used for human activity recognition by employing different machine learning methods [7].

On the other hand, various feature types, data structures and machine learning approaches were
employed to obtain better performance in human activity recognition. In [6], a healthcare application
based on a single camera is proposed in which multiple features are classified by means of a Hidden
Markov Model (HMM). In other study, spatial-temporal features are extracted and analyzed in [22,23].
In [24], graph structure is employed for abnormal human activity recognition. Additionally, a system
based on weighted segmentation of the red channel is proposed to control background noise in which
feature selection is performed by averaging and ranking the correlation coefficients of background
and foreground weights [25]. Moreover, deep learning methods, especially long short-term memory
(LSTM) networks, are widely used in human activity recognition [26–29]. However, they require big
training data and high-dimensional feature vectors to perform well in classification tasks.

In previous study [10], LSTM showed dramatically the worst performance with low dimensional
feature vectors among the other machine learning classifiers, which are not deep learning-based
methods. In order to boost the performance of LSTMs in low dimensional feature space, in this paper,
a novel scale and rotation invariant human activity recognition system, which employs LSTM network
with low-dimensional 3D posture data, is presented. Since angles are used, proposed system is already
scale invariant. In order to provide rotation invariance, body relative direction in egocentric coordinates
is calculated. Different from the previous study [10], 3D joint angles are not employed as the feature
vector. Instead, the angle of each limb vector with X, Y, and Z axes of the proposed egocentric
coordinate system is employed as the feature vector. Additionally, several compression methods such
as averaging filter, Haar wavelet transform (HWT), and discrete cosine transform (DCT) are employed
to reduce dimension in feature vectors. This is an essential operation to attain real-time processing
speed. Finally, RNN-LSTM network is employed to recognize five classes of human activities, namely,
walking, standing, clapping, punching, and lifting. Experimental and benchmarking results show
that proposed method dramatically (around 30%) increases the accuracy of LSTM classification in low



Appl. Sci. 2020, 10, 8474 3 of 17

dimensional feature space compared to the previous method. The rest of the paper is organized as
follows: Section 2 describes the methodology, Section 3 presents the experiment, experiment results,
and evaluation; and conclusions are presented in Section 4.

2. Materials and Methods

Real-time human activity recognition systems require two main performance metrics,
i.e., high accuracy and high processing speed. Since human activity recognition is a time series
classification problem, LSTM’s are well known for its excellent performance on time series classification.
However, LSTM’s have two disadvantages, i.e., requires high dimensional feature vectors and high
number of instances in the training set. Even though it is possible to employ a big data set and high
dimensional feature vectors in LSTM networks, the training and the processing speed (frame per
second) of classification in real time may become dramatically low. In order to solve this problem,
dimension reduction is an inevitable preprocessing stage to speed up the LSTM network. However,
dimension reduction leads to loss of information, which causes low accuracy in the classification.

In previous study [10], we have experimented that LSTM’s accuracy is dramatically lower than the
other classifiers when the dimension reduction is applied to the feature vectors. Besides, rotation invariance
has been achieved up to 90 degrees by training the users in different posture angles by providing 45 degrees
of freedom in training session. Additionally, it requires too much time and effort to train the users, which is
not automatic by the system and the posture angles are sometimes different on different users that creates
lower performance in the classification. On the other hand, in previous study [10], 3D angles among the
joints were employed as the feature vector, which are calculated with respect to global coordinate system’s
axes. Therefore, scale and rotation invariance could not be achieved truly, which caused low performance
in LSTM classification with low dimensional feature vectors. The construction of rotation invariance in
previous study [10] is illustrated in Figure 1.

Figure 1. Construction of rotation invariance in previous study [10].

In order to solve these problems, in this study, which firstly presented briefly in [30], a scale and
rotation invariant human activity recognition system based on body relative direction in egocentric
coordinates is proposed. In the proposed system, Kinect depth sensor is employed to obtain skeleton
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joints. Instead of using joint angles, the angle of each limb with X, Y, and Z axes of the proposed
local coordinate system is employed as feature vector. Since angles are used, proposed system is
already scale invariant. In order to provide rotation invariance, body relative direction in egocentric
coordinates is calculated. The 3D vector between right hip and left hip is used to get the horizontal
axis and its cross product with the vertical axis of global coordinate system is assumed to be the depth
axis of the proposed local coordinate system.

As the system parameters, 8 number of limbs and their corresponding 3D angles with X, Y, and Z axes
of the proposed coordinate system are employed as the feature vector. Since human activity recognition
requires a period of time to recognize the action, n number of frames in a queue structure is employed as
the period of action, which finally yields 8 × 3 × n features for each frame of the Kinect video. Even if the
n = 10, which is assumed to be very small period, it creates 240 number of features at each frame of the
video. Queue accumulation and formation of feature vectors are illustrated in Table 1.

Table 1. Queue accumulation and formation of feature vectors.

Frame No
Angle (π) Between Class

Label
Classification Status

Limb Vectors and Egocentric Axes

# X Y Z – –

1 0.93 0.13 0.54 – Queue is not full

2 0.28 0.87 0.63 – Queue is not full

3 0.87 0.06 0.71 – Queue is not full

4 0.41 0.93 0.95 – Queue is not full

5 0.17 0.22 0.25 – Queue is not full

6 0.95 0.48 0.23 – Queue is not full

7 0.71 0.55 0.49 – Queue is not full

8 0.83 0.30 0.39 – Queue is not full

9 0.15 0.05 0.43 – Queue is not full

10 0.07 0.56 0.98 Standing Classification between frames 1–10

11 0.42 0.01 0.29 Standing Classification between frames 2–11

12 0.97 0.26 0.91 Lifting Classification between frames 3–12

13 0.60 0.82 0.08 Lifting Classification between frames 4–13

14 0.04 0.42 0.48 Punching Classification between frames 5–14

15 0.42 0.51 0.36 Punching Classification between frames 6–15

16 0.06 0.99 0.31 Clapping Classification between frames 7–16

17 0.47 0.96 0.26 Clapping Classification between frames 8–17

18 0.45 0.40 0.84 Walking Classification between frames 9–18

19 0.06 0.68 0.78 Walking Classification between frames 10–19

As seen in Table 1, every single limb vector forms 3 number of angles with the egocentric axes.
Since 8 number of limb vectors are employed in the system, each frame creates 8 × 3 = 24 number
of angles. Later, these 24 number of angles are accumulated to the employed queue data structure
within the system. In Table 1, queue size is 10 and First-In-First-Out (FIFO) structure of the queue
allows us easy allocation of data frame by frame. In other words, queue keeps the last n = 10 items
in memory and this allows us instantaneous classification in each frame. Depending on the queue
size, which is assumed to be n, system will store 8 × 3 × n number of angles within each frame
after the queue is fully filled. Considering the case of n = 10, system will create 8 × 3 × 10 = 240
number of features (angles) in each frame. This is a big number for real-time LSTM classification.
Therefore, several dimension reduction methods such as averaging filter, Haar wavelet transform
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(HWT), and discrete cosine transform (DCT) are applied to reduce the dimension size and eliminate
the high-frequency noise. Flow chart of the proposed system is illustrated in Figure 2.

Figure 2. Flow chart of the proposed human activity recognition system.

In case of averaging filter, kernel size (queue size) determines the percentage of compression.
If the total number of features in feature vector is 240 and kernel size (queue size) is 10, then, it reduces
the number of features to 24, which is 90% compression. In case of HWT and DCT, low-frequency HWT
and DCT coefficients are selected and high-frequency coefficients are discarded. In frequency domain,
low frequency HWT and DCT coefficients are indexed towards the left while high frequency coefficients
are indexed towards the right in one dimension. Therefore, a compression rate is employed as the
system parameter to select the low-frequency coefficients. If the compression rate is 0.90, it means that
the first 10% of the HWT and DCT coefficients are selected to be used as feature vector in the classifier.
If the number of features is set to 240, the corresponding number of HWT and DCT coefficients is
also 240, which is reduced to 24 when the compression rate is set to 0.90 in system settings. Finally,
RNN-LSTM network is employed to recognize five classes of human activities, namely, walking,
standing, clapping, punching, and lifting.

2.1. Egocentric Coordinate System Relative to Human Body Direction

In previous study [10], global coordinate system was used in which rotation invariance has been
achieved up to 90 degrees by training the users in different posture angles by providing 45 degrees of
freedom in training session. Additionally, it requires too much time and effort to train the users which
is not automatic by the system and the posture angles are sometimes different on different users which
creates lower performance in the classification.

In this study, an egocentric coordinate system, which is relative to human body direction,
is presented. Similar with the previous study [10], Kinect depth sensor is employed to obtain skeleton
joints. Since angles are used, proposed system is already scale invariant. In order to provide rotation
invariance, body relative direction in egocentric coordinates is calculated. The 3D vector between right
hip and left hip is used to get the horizontal axis, and its cross product with the vertical axis of global
coordinate system is assumed to be the depth axis of the proposed local coordinate system. Different
from the previous study [10], 3D joint angles are not being used, instead, 8 number of limbs and their
corresponding 3D angles with X, Y, and Z axes of the proposed coordinate system are employed
as the feature vector. In order to construct egocentric coordinate system, X axis is assumed as the
normalized vector between the right hip and left hip. Additionally, Y axis is assumed as the vertical
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unit vector of general coordinate system. Since horizontal and vertical axes are known, the depth axis
Z is constructed by taking the cross product of these two vectors.

Proposed egocentric coordinate system, employed limb vectors, and constructed 3D vectors are
illustrated in Figure 3, Figure 4, and Figure 5 as follows:

Figure 3. Egocentric coordinate system relative to human body direction.

Figure 4. Extracted 8 number of limb vectors [10].
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Figure 5. Limb vector and its 3D angles with X, Y, and Z axes in egocentric coordinate system.

Mathematically speaking, let û is an unit vector denoted as
→
u = uû and

→
u = ux î + uy ĵ + uzk̂,

where î = (1, 0, 0) is the unit vector along the X axis, ĵ = (0, 1, 0) is the unit vector along the Y axis,
and k̂ = (0, 0, 1) is the unit vector along Z axis. The third vector, which is orthogonal to both

→
u and

→
v ,

is found by the cross product of two vectors:
∣∣∣∣→u ×→v ∣∣∣∣ = uv sinθ, where θ is the angle between

→
u and

→
v .

The calculation comes from the basic dot product formula shown below. The cosine angle between two
vectors is actually the dot product of two vectors, which are normalized by dividing their components
with the magnitude of each vector as follows:

cosθ =

(
→
u ·
→
v
)

(
||
→
u ||||
→
v ||

) (1)

Since all the axes (X, Y, and Z) and limb vectors are normalized, it is easy to find the angle between
each limb vector and X axis, Y axis, and Z axis separately. Finally, arccosine of the dot product gives
the 3D angle between two vectors in a range of [0,π].

2.2. Dimension Reduction with DCT

Discrete cosine transform (DCT) is a spatial to frequency domain transformation method,
which represents a sequence of data in the form of a sum of cosine functions that oscillate at
different frequencies. The DCT is an orthonormal transform in which y = Cx and x = C−1y are defined
in [31] as follows:

y(k) =
√

2
Nα(k)

N−1∑
n=0

x(n) cos (2n+1)kπ
2N ;

k = 0, 1, . . .N − 1
(2)

x(n) =
√

2
N

N−1∑
k=0

α(k)y(k) cos (2n+1)kπ
2N ;

n = 0, 1, . . .N − 1
(3)

α(0) =
1
√

2
; α(k) = 1; k , 0. (4)

Similar to Haar wavelet transform (HWT) and discrete Fourier transform (DFT), DCT concentrates
the signal energy on a small number of low-frequency DCT coefficients. In the frequency domain,
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compression (dimension reduction) is achieved by keeping the low-frequencyomponents (the most
useful information) and discarding the high-frequency components that normally represent noise.
Therefore, performing DCT can reduce the data size and noise level.

Table 2 demonstrates an example for the construction of DCT coefficients in frequency domain
and indicates the lossy inverse transform as follows.

Table 2. Lossy discrete cosine transform (DCT) operations for sample inputs.

Input Vector DCT Coefficients Inverse DCT Transform

72 227.68398 71.99998

167 39.59834 167.00004

15 37.25152 14.99992

138 5.45163 138.00001

19 −31.71883 19.00003

43 −0.63242 42.99998

51 30.07613 51.00003

120 −89.54173 120.00009

10 −41.78117 9.99995

85 −111.25713 85.00000

In the above table, an input vector composed of 10 number of angle values ranging from 0 to π are
passed through DCT (discrete cosine transform) and resulting DCT coefficients in frequency domain
are illustrated. Additionally, in order to show how the inverse DCT is a lossy method, the resulting
values after inverse DCT are also illustrated in the table.

According to the table, values after inverse DCT operation are not exactly same with the input
values, which indicates that DCT is a lossy compression method. On the other hand, frequency levels
are sorted in ascending order from low frequency to high frequency in the frequency domain. In this
regard, dimension reduction is achieved by keeping the low-frequency information and discarding the
high-frequency information in the frequency domain. In other words, instead of employing the input
vector in spatial domain, low-frequency DCT coefficients in frequency domain are used as the feature
vector. By this method, the most useful information is kept and unnecessary information is discarded,
which reduces not only the feature dimension but also the noise level at the same time.

2.3. Deep Learning with RNN-LSTM Network

Different from the conventional neural network, LSTM (long short-term memory) network is
designed to learn long-term interactions and recall information for long period of time by avoiding the
long-term dependency problem. It was first proposed in [32] with a unique four layered communication
structure, which consists of blocks of memory called cells where two number of states are transmitted
to the next cell as the cell state and the hidden state. The cell state is the basic element of data stream,
which provides forward transmission with little change in the data due to some linear transformations.
Additionally, data can be manipulated (adding or removal of data) from the cell state by means
of the sigmoid gates, which are actually designed as the series of matrix operations with varying
individual weights. On the other hand, LSTMs are well known for their excellent performance on
time series classification. LSTMs are capable of learning long-term dependencies and also prevent
back-propagated errors from vanishing or exploding, thus avoiding the vanishing gradient problem.

Recurrent Neural Networks (RNNs) have the capability to capture temporal information from
both sequential and spatial sequential data. Therefore, RNN-based LSTMs can simulate long windows
of activity by replacing RNNs with LSTM storage locations [33,34]. The downside of RNNs is the
problem of gradient explosion and decay, which interferes with the network’s ability to model the
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wide temporal relationships between input from a long contextual window and human activity [35].
The structure of the LSTM neural network is shown in Figure 6 as follows.

Figure 6. Structure of the long short-term memory (LSTM) neural network.

In the above figure, Xt is current input, Ct−1 is memory from the LSTM unit, ht−1 is output of
last LSTM unit, Ct is new updated memory, ht is current output, σ is sigmoid layer, tanh is Tanh layer,
b is bias, × is scaling of information, and + is adding information. The equations of a typical LSTM
network are given below:

ft = σ
(
W f [ht−1, Xt] + b f

)
(5)

it = σ(Wi[ht−1, Xt] + bi) (6)

Nt = tanh(Wn[ht−1, Xt] + bn) (7)

Ct = Ct−1 ft + Ntit. (8)

Sigmoid function σ is employed for determining which information is not necessary and should
be eliminated from the network. Therefore, it gets two arguments as the old output ht−1 at time t− 1
and new input Xt at time t. Forget gate ft, which is a vector of values between 0 and 1, is employed to
decide whether the old output should be modified or partially eliminated for each cell state Ct−1 with
weight matrices W f and bias b f . For each new input, sigmoid layer and tanh function are employed
to determine the importance of information by giving 1 for update operation and 0 for ignorance.
Additionally, values to be updated are quantized with weights between −1 and 1 depending on their
level of importance. Finally, new cell state Ct is updated from the old cell state Ct−1 using the prior
information obtained from the network.

LSTM’s have two disadvantages, i.e., requires high dimensional feature vectors and high number
of instances in the training set. Even though it is possible to employ a big data set and high dimensional
feature vectors in LSTM networks, the training and the processing speed (frame per second) of
classification in real time may become dramatically low.

3. Experimental Results

Different from the previous study’s dataset [10], the dataset for this research was recreated by
Kyungsung University, Department of Electronics Engineering since previous study’s dataset does not
include global coordinate system’s axes information, which is a must to create our proposed model.
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Although there exists plenty of publicly available datasets [36–39], none of them includes the global
axes’ coordinates, which is an obligatory information to create our proposed egocentric coordinate
system. For the coding of the proposed system, previous study’s C# code [10] was updated with the
proposed method’s implementation. For this purpose, Microsoft Visual Studio 2019 was chosen as the
C# coding editor. Additionally, several external libraries such as Microsoft Kinect SDK 2.0, Vitruvius,
and Accord.NET were used. On the other hand, Python 3.8.3 with TensorFlow was also used for the
LSTM network performance evaluation.

The dataset created for this study contains information regarding 10 number of users who differ
in height, weight, and clothing. Each activity for each person was logged twice to create a training set
and once to create a test set. This is because the test sequences contain different angle variations of the
same activity that are used to judge the accuracy of the proposed system under real-life conditions.
RNN-LSTM model was employed on the dataset generated from the proposed coordinate system,
which was separated into 70:30 for training and testing for the k-fold cross-validation. For the k-fold
cross-validation, k was selected as 10. Since each person runs the activity at a different pace, the number
of instances for each activity is different. Number of instances in the training and testing datasets
employed in our experiments are listed in Table 3.

Table 3. Number of instances in the training and testing datasets.

Activity
Number of Instances Number of Instances

(Training Dataset) (Testing Dataset)

Standing 3355 1409

Walking 3388 1570

Clapping 3619 1397

Lifting 3645 1339

Punching 3476 1543

Total 17,483 7258

A sample snapshot from experimental environment is demonstrated in Figure 7 as follows.

Figure 7. A snapshot from C#-based experimental environment.

In previous study [10], we have experimented that LSTM’s accuracy is dramatically lower
than the other classifiers when the dimension reduction is applied to the feature vectors. Although
high-dimensional feature vectors can be used in LSTM networks, the training duration may become
high and classification speed (frames per second) can be significantly low in real time. In order to
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solve this problem, dimension reduction is an inevitable preprocessing stage to speed up the LSTM
network. However, dimension reduction leads to loss of information which causes low accuracy in
the classification.

In this study, an egocentric coordinate system is presented to boost the performance of LSTM in
low-dimensional feature space. For this purpose, in the experimental setup, RNN-LSTM network is
employed to recognize five classes of human activities, namely, walking, standing, clapping, punching,
and lifting. Several compression methods such as averaging filter, Haar wavelet transform (HWT),
and discrete cosine transform (DCT) are employed to reduce dimension in feature vectors. This is
an essential operation to attain real-time processing speed. Besides, the effect of queue size on
the performance of LSTM classification is observed with varying values. Table 4 summarizes the
experiment’s selected parameters as follows.

Table 4. Selected parameters for system settings.

Category Parameter Value

Setup

Time step 10
Window size 100

Batch size 64
Epochs 75

Design Hidden layers 32
Neurons 30

Training Activation function Soft-max
Bias weight 1.0

Learning
Optimizer Adam

Learning rate 0.0025
Loss rate 0.0015

Additionally, in case of employing DCT compression rate of 90% (24 number of features),
Figure 8 shows the graph of accuracy for both training and testing cost. The confusion matrix
obtained after the cross-validation is presented in Figure 9. Besides, employed performance
metrics are listed in Table 5.

Figure 8. Training and testing progress over 75 epochs.
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Figure 9. Confusion matrix.

Table 5. Performance metrics employed in the experiments.

Abbreviation Description

TPR Sensitivity or Recall or True Positive Rate

TNR Specificity or True Negative Rate

PPV Precision or Positive Predictive Value

NPV Negative Predictive Value

FPR False Positive Rate or Fall-out

FNR False Negative Rate or Miss Rate

FDR False Discovery Rate

FOR False Omission Rate

ACC Accuracy

F1 F-measure or F1 Score

In addition, experimental and benchmarking results are shown in Table 6, Table 7, and Table 8.
Finally, the relationship between the LSTM’s accuracy and DCT vector size (n) is listed in Table 9 and
illustrated with a graph in Figure 10, and evaluation of the experimental and benchmarking results is
done at the end.

Table 6. Cross-validation results of LSTM classifier based on the employed performance metrics.

Metrics/Classes Standing Walking Clapping Lifting Punching Average

TPR 62.667 85.217 100.00 100.000 91.667 87.910

TNR 99.775 99.469 99.157 100.000 99.899 99.660

PPV 91.262 85.965 5.556 100.000 96.117 75.780

NPV 98.615 99.436 100.00 100.000 99.773 99.565

FPR 0.225 0.531 0.843 0.000 0.101 0.340

FNR 37.333 14.783 0.000 0.000 8.333 12.090

FDR 8.738 14.035 94.444 0.000 3.883 24.220

FOR 1.385 0.564 0.000 0.000 0.227 0.435

ACC 98.432 98.946 99.157 100.000 99.68 99.243

F1 74.308 85.59 10.526 100.000 93.839 72.853
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Table 7. Benchmarking of cross-validation results of LSTM classifier with different feature vectors.

Feature Vector Accuracy (%) F-1 (%) Precision (%) Recall (%)

Dimension reduction with averaging
(Previous Coordinate System) 65.7 73.9 78.1 67.9

Dimension reduction with averaging
(Proposed Coordinate System) 85.1 65.4 68.3 71.5

Dimension reduction with HWT
(Previous Coordinate System) 75.7 79.3 81.6 74.3

Dimension reduction with HWT
(Proposed Coordinate System) 93.5 68.7 71.3 80.2

Dimension reduction with DCT
(Previous Coordinate System) 83.1 85.4 87.6 82.7

Dimension reduction with DCT
(Proposed Coordinate System) 99.2 72.9 75.8 87.9

Table 8. Benchmarking of experimental results of LSTM classifier with different feature vectors.

Feature vector Accuracy (%) F-1 (%) Precision (%) Recall (%)

Dimension reduction with averaging
(Previous Coordinate System) 53.8 48.1 53.7 45.3

Dimension reduction with averaging
(Proposed Coordinate System) 68.1 62.9 65.2 69.0

Dimension reduction with HWT
(Previous Coordinate System) 57.1 56.1 59.4 55.1

Dimension reduction with HWT
(Proposed Coordinate System) 72.5 63.6 66.1 71.6

Dimension reduction with DCT
(Previous Coordinate System) 61.6 63.4 68.2 62.6

Dimension reduction with DCT
(Proposed Coordinate System) 83.9 66.7 71.4 74.5

Table 9. Benchmarking of accuracies of previous and proposed method in varying DCT vector sizes.

DCT Accuracy (%) Accuracy (%)

Vector Size (Previous Method) (Proposed Method)

1 5.3 17.9

2 17.1 24.5

4 25.4 31.8

8 32.7 45.2

12 41.6 68.3

16 49.7 75.5

20 55.1 79.4

24 61.6 83.9

30 64.3 85.4

40 65.7 87.2

48 66.3 88.1

60 67.8 89.4

80 68.5 90.1

120 69.3 90.5

240 70.2 91.7
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Figure 10. Graph of accuracies of previous and proposed method in varying discrete cosine transform
(DCT) vector sizes.

According to experimental results, DCT yields the highest accuracy among other dimension
reduction methods. As expected, HWT yields lower accuracy than DCT and gives higher accuracy
than averaging filter. Both cross-validation with training data and performance measurement with
testing data indicate that accuracy is increasing by the increment of feature vectors’ size. Additionally,
increment slope smoothly decreases by the increment of feature vectors’ size. However, an optimum
threshold in terms of compression rate is required in order to judge the system whether it is applicable
in real time. Therefore, the compression rate of 90% (240 number of features are reduced to 24) is chosen
as the optimum value of compression, which yields 83.9% accuracy while it is being used with DCT.
Here, it is assumed that accuracy greater than 80% is applicable and reasonable in real-time applications.
On the other hand, the compression rate can be lowered to get higher accuracies depending on the
performance of hardware in which the HAR system is running. If the performance of hardware is
high enough to process the LSTM classification in real time without dimension reduction, proposed
method yields 91.7% accuracy without dimension reduction, whereas previous method can achieve
70.2% accuracy only. This also proves that proposed method is dramatically (around 30%) better than
previous method in terms of keeping higher information in feature vectors, which results in yielding
higher accuracies in all the cases.

4. Conclusions

Human activity recognition (HAR) is a common time series classification task, which requires
high accuracy with high processing speed in real-time applications. LSTM networks are widely used
in time series classification problems, whereas they require big training data and high-dimensional
feature vectors to get optimum performance, which dramatically increase the training duration and
reduces the processing speed. Dimension reduction methods are generally employed to process LSTMs
in low dimensional feature space, which usually yields low performance. In previous study [10],
LSTM showed dramatically the worst performance with low dimensional feature vectors among
the other machine learning classifiers, which are not deep learning-based methods. The reason
for that was the discrimination power of the feature vectors constructed using the 3D joint angles
in global coordinate system was very weak to get high accuracy in LSTM network. In order to
boost the performance of LSTMs in low dimensional feature space, in this paper, a novel egocentric
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coordinate system is presented. Based on the body relative direction of the users in the camera
vision, proposed method provides a scale and rotation invariant human activity recognition system,
which employs LSTM network with low-dimensional 3D posture data. In the proposed framework,
Kinect depth sensor is employed to obtain skeleton joints. Since angles are used, proposed system is
already scale invariant. In order to provide rotation invariance, body relative direction in egocentric
coordinates is calculated. The 3D vector between right hip and left hip is used to get the horizontal
axis and its cross product with the vertical axis of global coordinate system assumed to be the
depth axis of the proposed local coordinate system. Instead of using 3D joint angles, 8 number of
limbs and their corresponding 3D angles with X, Y, and Z axes of the proposed coordinate system
are employed as the feature vector. In terms of dimension reduction, averaging filter, HWT (Haar
wavelet transform) and DCT (discrete cosine transform) are employed with varying kernel sizes.
Sliding kernel’s functionality is achieved using a specific queue data structure. Finally, extracted
features are trained and tested with LSTM (long short-term memory) network which is an artificial
recurrent neural network (RNN) architecture. Experimental results indicate that DCT compression has
the minimum loss of information among other dimension reduction methods and proposed framework
dramatically increases the discrimination power of feature vectors. Using the proposed egocentric
coordinate system, LSTM achieves outstanding results with 83.9% accuracy with an optimum DCT
compression rate of 90%. Additionally, a benchmarking study is performed with the previous study’s
method [10] in which the highest accuracy is obtained with 61.6% where rotation invariance is satisfied
while rotating by the 45 degrees of freedom in training session. Benchmarking results show that
proposed method overwhelms the previous method dramatically (approximately 30% in accuracy)
and yields excellent results. As the future work, other attempts to obtain different source of coordinate
input will be tested instead of using the Kinect camera, e.g., such as from CCTV real time video without
a depth sensor.
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