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Abstract: We propose a novel generative adversarial network for class-conditional data augmentation
(i.e., GANDA) to mitigate data imbalance problems in image classification tasks. The proposed
GANDA generates minority class data by exploiting majority class information to enhance the
classification accuracy of minority classes. For stable GAN training, we introduce a new denoising
autoencoder initialization with explicit class conditioning in the latent space, which enables the
generation of definite samples. The generated samples are visually realistic and have a high
resolution. Experimental results demonstrate that the proposed GANDA can considerably improve
classification accuracy, especially when datasets are highly imbalanced on standard benchmark
datasets (i.e., MNIST and CelebA). Our generated samples can be easily used to train conventional
classifiers to enhance their classification accuracy.
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1. Introduction

In imbalanced datasets, training data are not uniformly distributed over the different classes.
Despite the imbalance, these datasets are widely used in many image classification problems because it
is nontrivial to gather data evenly for all classes. In many cases, we inevitably have to train conventional
classifiers using imbalanced datasets, which induces highly biased or imprecise classification results.
This problem occurs due to lack of consideration of the class ratio and the balance of the dataset.

Data augmentation can help mitigate this data imbalance problem by generating new synthetic
data for imbalanced classes and improving the balance between classes. However, conventional data
augmentation methods (e.g., mirroring, rotation, and geometric transformation) have several potential
problems. For example, translation and random cropping may run the risk of changing image labels.
Hlip or rotation may disrupt objects’ orientation-related features. In particular, for domain-dependent
applications such as medical image analysis, there is more severe bias between potentially generated
data (augment data) and training data than translational or positional variances.

Unlike geometric transformations, generative adversarial networks (GANSs) [1] can improve the
general balance among classes while remaining less affected by the application domain and dataset
characteristics. GANs generate minority class images that can be used to restore the balance of classes
in datasets. Because GANSs can generate realistic samples that are uncovered by original datasets,
they have shown outstanding performance in terms of data augmentation. However, despite their
capabilities, GANs have difficulty in stably optimizing their objective functions. In addition, if minority
data are very scarce, conventional GANSs still face generalization problems. To overcome the
aforementioned shortcomings of GANs for imbalanced datasets, Balanced GAN (BAGAN) [2] has been
proposed, which is specialized in imbalanced datasets. Based on autoencoder initialization and class
conditioning in the latent space method, BAGAN attempts to describe the minority class distribution
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using the data, which is jointly learned by majority and minority classes. However, BAGAN also
has several issues that need to be addressed. First, BAGAN cannot explicitly impose the class
condition in the latent space, which yields unintended class samples, especially when different class
regions are significantly overlapped with each other in the latent space. Second, the aforementioned
problem makes it difficult to use BAGAN to train deep neural networks, and BAGAN fails to optimize
the network.

In this paper, we solve the data imbalance problem for image classification tasks and propose
a novel data augmentation method based on GANs (i.e., generative adversarial network for
class-conditional data augmentation (GANDA)), which can produce minority class data for accurate
classification by leveraging majority class information effectively. To achieve stable learning in the
GAN framework, we present a new denoising autoencoder initialization. Using this technique,
we can leverage a more accurate representation of each class relatively in the generator latent
space. Moreover, we introduce a conditional one-hot code, which can be used to generate definite
samples. Experimentally, our proposed method can accurately generate minority samples from various
imbalanced datasets where the BAGAN method has failed to do so.

Our generated samples are visually realistic and have a high resolution (128 x 128 x 3). When our
generated samples are used for training conventional classifiers, the proposed GANDA significantly
enhances the classification accuracy of existing classifiers and shows state-of-the-art performance given
imbalanced datasets in various experiments. Figures 1 and 2 show the differences of the proposed
GANDA from conventional methods. The main contributions of this work are as follows.

O
— — 8 — Decoder > ,%
@)
O
x x'

Original input Reconstructed input

i €1 (51
C2 ]
A : " 7S
e~ N O
. @ Encoder — 0 Decoder e
Random noise
P )
/ @) .
/ x'

Reconstructed input

x
Original input

Figure 1. Conceptual comparison between balanced generative adversarial network (BAGAN)
autoencoder and the proposed generative adversarial network for class-conditional data augmentation
(GANDA) autoencoder. Random noises are inserted into an input image to diversify output
images. The conditional one-hot code is inserted into the proposed encoder and decoder to generate
definite samples.

e  We present a novel data augmentation method based on GANs. Our proposed method can
generate minority class data accurately in imbalanced datasets.

e  For stable GAN training, we present a new denoising autoencoder initialization technique with
explicit class conditioning in the latent space.
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e  We conduct various experiments showing underlying problems in conventional methodologies.
We experimentally show that majority class data can help generate minority class data and
considerably enhance its classification accuracy.
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Figure 2. Conceptual comparison between BAGAN generator and the proposed GANDA generator.

2. Related Work

2.1. Data Augmentation Methods

There are several approaches for data augmentation [3]. In traditional ways to augment
data, images are geometrically transformed or distorted using rotation, scaling, white-balancing,
or sharpening [4-6]. A relatively recent and powerful tool has been to use generative adversarial
networks such as ACGAN [7] and BAGAN [2]. ACGAN can adapt to select the target class to be
generated, but does not consider minority classes in image classification.

In contrast to ACGAN, our method directly targets the imbalanced dataset problem in image
classification tasks. Our idea mainly stems from BAGAN, which can jointly solve data generation and
image classification problems. However, the proposed GANDA produces more accurate classification
results and induces fewer overlaps among different classes in the latent space using our explicit class
conditioning. Please note that it is nontrivial to perform class conditioning in the latent space for data
augmentation because there are many very similar classes, and class overlaps can occur easily.
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2.2. Methods for Imbalanced Datasets

There are two representative ways that can be used to solve the imbalanced data problems.
One is to resample the data via either oversampling or undersampling [8-13]. A synthetic
minority oversampling technique (SMOTE) [14] combined oversampling and undersampling.
For oversampling, SMOTE applied data augmentation to minority samples to mitigate the overfitting
issue. However, oversampling is susceptible to overfitting problems, whereas undersampling usually
results in the loss of valuable information in majority samples. The second method is cost-sensitive
learning, which aims to avoid the aforementioned issues by assigning different costs for the
misclassification of the minority class [15-20]. For example, dynamic curriculum learning [21], or active
learning [22], has been proposed to tackle the problem of dataset imbalance. Some approaches [23,24]
view the class-imbalance problem within the meta-learning framework. Max-marginal learning [25]
directly enforced the max-margin constraints. Similar to this method, our method also attempts to
delineate the space between the classes more prominently. However, it is difficult to design proper cost
functions in different problem settings or environments in the aforementioned cost-sensitive learning.
To solve the imbalanced data problem, M2m [26] generated minority samples using majority samples.

In contrast to these methods, our proposed GANDA uses autoencoders and GANs to generate
minority class data. Please note that DOPING [27] originally aimed to detect anomaly events, but it can
be used for augmenting minority class data, because oversampling anomaly samples at the boundary
of the latent distributions is equivalent to augmenting minority class data. While DOPING also
adopted autoencoders and GANSs, the latent space is not tailored by class conditioning for more
accurate oversampling, which is not similar to our proposed method.

2.3. GAN-Based Methods

After the seminal work proposed by Ian Goodfellow et al. [1], GANs have been actively researched
to generate realistic fake data. For example, many studies have used GANs for imitation [28-30].
BAGAN [2] addressed imbalance problems by coupling autoencoders and GANS. It generated minority
class data and jointly performed classification tasks to drive the generation of desired minority classes.
BAGAN produced more accurate classification results compared to ACGAN [7], which separately
handled data generation and image classification tasks. However, SCDL-GAN [31] shows that
BAGAN cannot avoid mode collapse problems, in which its generator produces limited varieties
of samples. SCDL-GAN produced impressive results by using a Wasserstein-based autoencoder in the
representation of the class distributions.

In contrast, the proposed GANDA adopts explicit class conditioning to avoid mode collapse
problems and to more accurately generate the minority classes.

3. The Proposed Method

3.1. Difficulties in Autoencoder Initialization

We observe that conventional autoencoder initialization with implicit class conditioning in the
latent space can cause the latent space to train unstably [2]. In addition, conventional generators can
generate wrong samples even though the training converges successfully. We first examine why the
aforementioned problems occur through the following experiments. First and foremost, we carry
out t-SNE visualization for class-conditional codes in the latent space, which are determined by the
autoencoder initialization.

Figure 3a illustrates the t-SNE of the conventional autoencoder initialization using the MNIST
datasets. As shown in the figure, autoencoder initialization can maximize inter-class distance while
minimizing intra-class distance. In addition, it causes visually similar classes to become distributed
close to each other in the latent space. For example, the “9” (cyan) and “4” (red) classes share visually
similar characteristics; thus, they are positioned relatively closer than other classes. Using autoencoder
initialization, minority classes can also be recognized in the latent space if we examine the relative
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distance of other majority class data in the latent space. However, class-conditional noises learned
by autoencoder initialization can cause unintended effects in the latent space if there is no explicit
class conditioning. As shown in Figure 3a, many overlapped areas appear for visually similar classes,
which potentially produces wrong class samples. For example, “4” and “9” are two different but very
adjacent classes in the latent space. Thus, conventional approaches can frequently generate “9” when
sampling “4”.

latent embedding - tSNE

(c) Proposed class-conditional denoising auto-encoder

Figure 3. Difficulty in conventional autoencoder initialization.

To solve this problem, a denoising autoencoder [32] has been proposed to widen the gap between
different classes in the latent space by training robust features for different classes. Figure 3b shows the
t-SNE results using the denoising autoencoder. We qualitatively observe that denoising autoencoders
broaden the inter-class gap in the latent space and shrink the intra-class gap compared with original
autoencoders. However, the denoising autoencoder could not fully solve the inter-class overlapping
problem as there still exists overlapped areas among different classes. Thus, in terms of quantitative
measures, denoising autoencoders are similar to original autoencoders. In addition, if we handle
high-resolution images in a low dimensional latent space, the aforementioned problem still remains
and even worsens, as explained in the next section. Please note that Figure 3c illustrates t-SNE,
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which visualizes the proposed GANDA encoder representation. Although our GANDA uses a
class-conditional one-hot code, it effectively disentangles different classes in the latent space, as shown
in Figure 3c.

3.2. Difficulties in High-Resolution Data Generation

To show difficulties in high-resolution data generation, we conduct experiments using BAGAN
with autoencoder initialization on the CelebA dataset (128 x 128 x 3) and perform a simple binary
classification of males and females.

Figure 4 shows generated samples for females using class-conditional noise. As shown in the
figure, conventional methods typically generated correct samples but also created unintended samples.
Some samples even wrongly belong to the other class (male). We argue that this problem occurs because
class conditioning is not explicitly imposed for adjacent areas between classes in the latent space.

Figure 4. Difficulty in high-resolution data generation.

Moreover, this problem becomes even worse for minority classes, because we cannot accurately
represent their latent spaces due to the lack of class data. Figure 4 shows generated data with high
resolution using the CelebA dataset. As shown in the figure, conventional methods generated many
unintended class samples.

The problems of conventional approaches (e.g., BAGAN) can be summarized as follows.
First, the conventional autoencoding process does not explicitly regard the imbalanced datasets.
Therefore, it can incorrectly learn the latent space of the minority class compared to the majority
class. Second, conventional approaches utilize the majority class data to generate minority class
samples using implicit class conditioning in the latent space. Therefore, unintended class samples can
be generated. Finally, existing approaches experimentally produce inaccurate results in that samples
from other (majority) classes are used to generate images that belong to a certain (minority) class.

3.3. Class-Conditional GAN-Based DA

As shown in the experiments in Figure 3, autoencoder initialization can broaden the inter-class
gap in the latent space and shrunken the intra-class gap compared with original autoencoders.
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Thus, autoencoder initialization helps GANs to stably train imbalanced datasets. However, if samples
are generated only with class-conditional noises, the training becomes unstable due to the possible
overlaps between classes in the latent space. To settle this problem, we propose a variant of the GAN
architecture called GANDA. In GANDA, minority classes are effectively generated using data from
both majority and minority classes in imbalanced datasets to restore the balance of datasets. To generate
a specific class sample, the proposed method explicitly conditions the class label to our generator.
At the same time, class-conditional noises, which contain relative distances in the latent space with
other classes, is used to leverage other class information. As the training proceeds, our method
generates realistic minority classes and simultaneously improves the classification accuracy of both
majority and minority classes.

The proposed method consists of two main steps: conditional denoising autoencoder initialization
and adversarial learning. We describe each step in detail, as follows.
e Conditional denoising autoencoder initialization: We first add noise € to an input image x € RY,
which can diversify output images. Subsequently, we concatenate the noisy input image with a one-hot
label y = {c1,¢3,...,cn} and feed it into the encoder ¢ € R*?, in which class-aware latent features z
are extracted as follows,

z=¢(x+ey). M

The estimated latent feature is concatenated with the same one-hot label y once more to explicitly guide
the generation process. The concatenated feature is then fed into the decoder ¢ € RP*“, which results
in &’ as follows,

¥ =9(z,y). 2)

We train the proposed conditional denoising autoencoder using the reconstruction loss Lyecon:
Lyecon (X, x/) = [|x— x,| |2 ®)

To optimize the objective function in (3), we adopt the I, norm. Please note that the trained autoencoder
describes the distribution of the latent codes of the classes. Thus, we initialize a part of the discriminator,
D,, and generator, G, using the parameters of encoder ¢ and decoder 1, respectively.

o Adversarial learning: After conditional denoising autoencoder initialization, we train generator G
and discriminator D via adversarial training. Before the adversarial learning proceeds, we use the
encoder ¢ to determine the multinomial distribution of the class latent code in the training data. Then,
the generator is trained to produce a fake class sample £, by selecting the latent code z,, which is
extracted from the aforementioned multinomial distribution determined by ¢ and is concatenated
with the corresponding one-hot label y.

2y = G(zy|y). (4)
The discriminator classifies the generated sample as belonging to one of # classes or as being fake.

exp(li)

, 5
T exp(l) ®

D(x|y) = Pp(y = ilx,y) =

where [; denotes the j-th output of the discriminator. Please note that the discriminator can have
(n+ 1) outputs in total, where 7 is the number of class labels, and 1 is for the fake label. The objective
function for adversarial learning is as follows,

minmax V(D, G) = By, (x) [logD(x]y)]

+ IEzywpz(z\y) [log(l - D(G(Zy|y))]'

(6)
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The advantages of the proposed method can be summarized as follows. Our class conditioning
makes different classes to be well separated in the latent space even when minority class data
are scarce. Thus, class conditioning enables accurate data augmentation and classification of the
minority class data. Moreover, class conditioning can allow our method to safely use the features,
which are shared by different classes. For example, facial images of males and females include
common features like eyes, ears, mouth, and nose, where two classes could be differentiated by hair
length and make-up. Then, we can use the shared features from majority data (i.e., male) to generate
minority data (i.e., female), while accurately separating these two types of data in the latent space.
In Section 4.3, we verify that our method generates minority class data accurately using majority class
data. Please note that we can use the class information without additional cost in supervised learning.

4. Experiments

4.1. Implementation Details

Network architecture details: The proposed method consists of two main components for
conditional denoising autoencoder initialization and adversarial learning. For stable learning, we add
the spectral normalization layer [33] to the encoder (i.e., part of the discriminator) and imposed the
Lipschitz constraint. In addition, the decoder adopts transposed convolution layer, of which the
structure is same as that of the generator. For more details about the network architecture, please refer
to Table 1.

Table 1. Network architectures for the CelebA dataset (128 x 128 x 3). The slopes of all IReLU functions
were set to 0.1.

Name Input Size Output Size
Encoder 128 x 128 x 3,2 x 1 100 x 1
Conv + SN + IReLU 128 x 128 x 3 64 x 64 x 32
Conv + SN + IReLU 64 x 64 x 32 64 X 64 x 64
Conv + SN + IReLU 64 X 64 X 64 32 x32x128
Conv + SN + IReLU 32 x 32 %128 16 x 16 x 256
Conv + SN + IReLU 16 x 16 x 256 8 x 8 x 256
Conv + SN + IReLU 8 x 8 x 256 8 x 8 x 256
Conv + SN + IReLU 8 x 8 x 256 4 x 4 x 256
Conv + SN + IReLU 4 x4 x 256 4 x4 x 256
Flatten 4 x4 x 256 4096 x 1
Concat 4096 x 1,2 x 1 4098 x 1
Dense 4098 x 1 100 x 1
Decoder (Generator) 100 x 1,2 x 1 128 x 128 x 3
Concat 100 x 1,2 x 1 102 x 1
Dense + ReLU 102 x 1 1024 x 1
Dense + ReLU 1024 x 1 8192 x 1
Tconv + ReLU 8 x 8 x 128 16 x 16 x 128
Tconv + ReLU 16 x 16 x 128 32 x 32 x 128
Tconv + ReLU 32 x 32 %128 64 x 64 x 64
Tconv + ReLU 64 X 64 x 64 128 x 128 x 32
Tconv + Tanh 128 x 128 x 32 128 x 128 x 3
Discriminator 128 x 128 x 3,2 x 1 11 x1
Encoder (partial) 128 x 128 x 3,2 x 1 8 x 8 x 256
flatten 8 x 8 x 256 16384 x 1
Dense + Softmax 16384 x 1 11 x1

Hyperparameters: The proposed network is trained with a batch size of 32. We use the ADAM
optimizer with a fixed learning rate of 0.00005, p; = 0.5, and B, = 0.9999. For conditional
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denoising autoencoding, we train the encoder ¢ and decoder i with 150 epochs by using the L2
loss. For denoising, we use a standard normal function N(0, I) to make noise and combine the noise
with an input image using a weight of 0.5 to make a noisy image. If the standard deviation is high,
we can make heavy and diverse images with noises. We initialize the weights of the discriminator
(generator) with the encoder (decoder). Subsequently, we train the discriminator and generator via
adversarial learning using the sparse categorical cross-entropy loss function.

Datasets: We conduct experiments using the MNIST [34] and CelebA [35] datasets, where MNIST
contains around 50 K handwritten images of 28 x 28 in size with 10 different classes. For CelebA,
we randomly extract 10 K images of males and females, respectively, and resized them to 128 x 128
resolutions. We conduct the ablation test (i.e., in-depth analysis through evaluating the proposed
method in a component-wise manner) by changing the degree of class imbalance. For this experiment,
we use the MNIST and CelebA datasets. In the case of the MNIST dataset, we consider class 0 as a
minority class and removed 60%, 80%, 90%, 95%, and 97.5% of the training images for class 0. In the
case of the CelebA dataset, we treat class female as a minority class and removed 60%, 70%, 80%,
and 90% of the training images.

Evaluation metrics: To evaluate the image generation performance, two metrics are used, namely,
inception score (IS) [36] and Fréchet inception distance (FID) [37]. To evaluate the classification
performance, we use the average classification accuracy and validation score [38].

4.2. Ablation Study

To provide in-depth analysis and insights on the proposed GANDA, we conduct several
ablation studies.

Data augmentation from majority to minority classes: We experimentally show that the majority
classes can help augment minority classes in the proposed GANDA framework. For this experiment,
we examine latent code interpolation, which explains how the latent codes work in the GANDA
framework. As shown in the generated images in Figure 5, the conditional one-hot code ¢, for
y = {male, female} represents the main feature that determines a specific class, whereas the conditional
noise z, expresses the detailed features (e.g., hair length, clothing, and skin color). Therefore,
the experimental results demonstrate that the information obtained by learning majority classes
through the mapping of latent code z can also be used to express shared features of the minority
classes. Figure 6 shows images generated by autoencoding and the proposed method for the CIFAR10
dataset. As shown in Figure 6, our method qualitative outperforms conventional autoencoding
approaches in terms of diversity of samples.

Zfemale|

Zinale

Cfemale Cmale

Figure 5. Latent code interpolation.
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Degree of class imbalance: We verify the effectiveness of the proposed GANDA when there is a
very small amount of training data in a minority class. Table 2 shows the IS and FID scores when we
increase the degree of class imbalance by removing more training data from the minority class (from
60%, 80%, and 90%).

As shown in Table 2, even when we delete 90% of the training data from the minority class,
the proposed GANDA outperforms the baseline BAGAN in terms of IS and FID. Thus, our proposed
GANDA can augment minority class data accurately, which can be used for object classification.

Figure 6. Data augmentation using the CIFAR-10 dataset. For each block with three rows, the first,
second, and third rows contain real images, generated images using autoencoding, and generated

images using the proposed method, respectively.

Table 2. Comparison of the proposed GANDA with BAGAN on the CelebA dataset in terms of IS and
FID (IS: higher is better, FID: lower is better).

Method (Removal Ratio) ISt FID |
CelebA (real) 2.79 4+ 0.09 11.53
BAGAN (0.6) 1.89 £+ 0.02 79.79
BAGAN (0.7) 1.79 £ 0.03 82.20
BAGAN (0.8) 1.78 + 0.03 138.97
BAGAN (0.9) 1.83 £ 0.02 167.62
GANDA (0.6) 2.18 + 0.05 48.89
GANDA (0.7) 1.93 +0.03 65.32
GANDA (0.8) 1.93 =+ 0.02 71.45

GANDA (0.9) 1.84 £+ 0.02 91.86
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4.3. Data Augmentation Comparison

FID and IS: Table 2 quantitatively compares the proposed GANDA with other state-of-the-art
methods. Although the data imbalance worsened, the proposed GANDA generates better quality
samples than the baseline BAGAN.

High resolution: Figure 7 qualitatively compares the proposed GANDA with other state-of-the-art
methods [2] using the CelebA [35] dataset. The proposed GANDA produces more realistic
high-resolution images than BAGAN. The noise z obtained from class-conditioning in the latent
space can contain the shared features (e.g., hair length, clothing, and skin color). Thus, samples using
latent noise for the female samples can be used to generate males with long hair G(z female'cmale)r
while samples using latent noise for the male samples can be applied to produce short-haired
females G(zuate|€ femate)- In addition, skin color, dress, and background are irrelevant to gender.
Thus, the details do not change significantly, although the class changes.

|

= “

(c) GANDA with varying label codes
Figure 7. Qualitative comparison for high-resolution image generation using the CelebA dataset.
(a) Samples produced by BAGAN for the minority class (female). There are some unintended class
(male) samples. (b) Samples produced by GANDA for the minority class (female). All samples
represent intended class (female) appearance. (c) Samples synthesized by varying the label code
through the GANDA framework. The first two rows show samples by fixing z,,47¢ ~ N(Mmates Cmate)
and changing the one-hot label code c. The following third and fourth rows compare samples by fixing
Zfemale ~ N(Mfemales O female) and changing the one-hot label code c.
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4.4. Data Classification Comparison

Validation-score: We evaluate the classification performance using the validation score
(V-Score) [38]. The V-Score can measure the clustering accuracy. To calculate the V-Score, we need
to compute two terms, which are homogeneity and completeness. On one hand, homogeneity vy,
determines if each cluster has only the same label. On the other hand, completeness v, measures if
all data points of the same class label belong to the same cluster, which can be numerically evaluated
as follows,

{ 1, if H(C,K) =0,

Op = __ H(CK) .

1 H(C) otherwise. ”
1, if H(K,C) =0,

= Y1- ngﬁl(?, otherwise.

where C = {c1, -+ ,c,} denotes a set of classes, and K = {kq,---,k;,} denotes a set of clusters.
In (7), we normalize the conditional entropy H(C|K) and H(K|C) using H(C) and H(K), respectively,
to remove class size dependencies.

Then, the V-Score Vg is the weighted mean of v, and vy,

V/g _ (1 + ,B)Uhvc, (8)
P + vc

where parameter 3 can be adjusted to favor either homogeneity or completeness. In our experiment,
we set § to 1, giving the same weight to both metrics. The V-score results are obtained with the
proposed conditional denoising autoencoder initialization only and not with adversarial training
We apply the V-Score to the latent space obtained by the proposed conditional autoencoder and
compared the latent space of our GANDA to that of BAGAN. As shown in Table 3, our method
outperforms BAGAN. The performance improvements on V-Score can be obtained owing to explicit
class conditioning in the latent space. For this experiment, we use the k-means algorithm to cluster the
latent space and MNIST as the testing dataset, which consists of 10 classes. Please note that the number
of class labels, the number of classes, the size of the data, and the clustering algorithm are independent
of each other. Thus, the V-Score can accurately evaluate the quantitative classification performance.

Table 3. Comparison of the proposed GANDA with BAGAN in terms of V-Score.

V-Score (K-Means)

GANDA (conditional denoising autoencoder initialization) 0.779

BAGAN (denoising autoencoder initialization) 0.739

Classification score: Tables 4 and 5 show the effects of using the generated samples as augmented
data for classification tasks. We conduct this experiment by changing the removal ratio for the minority
class. For the MNIST [34] dataset, we compare the existing methods (i.e., Vanilla GAN [1], ACGAN [7],
and BAGAN [2]) with the proposed GANDA. Our GANDA outperforms state-of-the-art methods in
various removal ratios. The CelebA [35] dataset consists of very high-resolution images, where the
proposed GANDA also outperforms state-of-the-art methods. The classification accuracy in Tables 4
and 5 are not empirically affected by slight changes in the specific network architecture in Table 1.
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Table 4. The average accuracy (%) of the minority class achieved by the ResNet-18 classifier trained
with the augmented MNIST dataset whose balance is restored after removing a portion of the minority
class images.

60 80 90 95 97.5

Plain 99.13 98.87 98.62 96.51 95.4
Vanilla GAN [1] 98.96 98.92 98.35 96.64 95.12
ACGAN [7] 99.21 98.73 98.43 96.72 95.96
BAGAN [2] 99.38 98.87 98.67 97.75 96.2
GANDA (ours) 99.79 99.48 99.18 97.63 96.42

Table 5. The average accuracy (%) of the minority class achieved by the ResNet-18 classifier trained
with an augmented subset of the CelebA dataset whose balance is restored after removing a portion of
the minority class images.

60 70 80 90
Plain 92.52 91.54 89.24 83.94
BAGAN 93.55 90.33 88.49 82.73
GANDA (ours) 94.59 93.67 90.79 85.73

5. Conclusions

In this paper, we proposed a novel generative adversarial network for the image classification
using class conditional data augmentation (i.e., GANDA). The proposed GANDA effectively restores
data imbalance in the GAN framework. For this, we presented a denoising autoencoder initialization
technique with explicit class conditioning in the latent space, which provides a good initial point for
GANSs while effectively utilizing the information learned from majority class data to generate minority
class data. We demonstrated the effectiveness of proposed method on the classification tasks using
imbalanced datasets. The proposed GANDA outperforms other state-of-the-art methods.
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