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Abstract: Multi-view learning is a machine learning app0roach aiming to exploit the knowledge
retrieved from data, represented by multiple feature subsets known as views. Co-training is considered
the most representative form of multi-view learning, a very effective semi-supervised classification
algorithm for building highly accurate and robust predictive models. Even though it has been
implemented in various scientific fields, it has not adequately used in educational data mining
and learning analytics, since the hypothesis about the existence of two feature views cannot be
easily implemented. Some notable studies have emerged recently dealing with semi-supervised
classification tasks, such as student performance or student dropout prediction, while semi-supervised
regression is uncharted territory. Therefore, the present study attempts to implement a semi-regression
algorithm for predicting the grades of undergraduate students in the final exams of a one-year online
course, which exploits three independent and naturally formed feature views, since they are derived
from different sources. Moreover, we examine a well-established framework for interpreting the
acquired results regarding their contribution to the final outcome per student/instance. To this purpose,
a plethora of experiments is conducted based on data offered by the Hellenic Open University and
representative machine learning algorithms. The experimental results demonstrate that the early
prognosis of students at risk of failure can be accurately achieved compared to supervised models,
even for a small amount of initially collected data from the first two semesters. The robustness of the
applying semi-supervised regression scheme along with supervised learners and the investigation of
features’ reasoning could highly benefit the educational domain.

Keywords: educational data mining; student grade prediction; semi-regression; early prognosis;
interpretation; COREG algorithm

1. Introduction

Educational data mining (EDM) has emerged in the past two decades as a highly-growing
research field concerning the development and implementation of machine learning (ML) methods for
analyzing datasets coming from various educational environments [1]. The key concept is to utilize
these methods, extract meaningful knowledge about students’ performance, and improve the learning
process enriching the insights that the tutor may obtain on time. These methods are grouped into five
main categories [2]: Prediction, clustering, relationship mining, discovery with models, and distillation
of data for human judgment. The main research interest has been centered on predictive problems
primarily concerned with three major questions [3]: (1) What outcome of students will be predicted?
(2) Which ML methodology is the most effective for the specific problem? (3) How early can such a
prediction be made?
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Most of the EDM research is mainly focused on implementing supervised methods utilizing only
labeled datasets. To this end, a plethora of classification and regression techniques have successfully
been applied for predicting various learning outcomes of students, such as dropout, attrition, failure,
academic performance, and grades, to name a few. In addition, the main interest concentrates on
building efficient predictive models at the end of a course using all available information about
students [4]. However, it is of practical importance to provide both accurate and early-step predictions
at minimum cost [5]. A review of recent studies and developments in the field of EDM reveals
that there is an urgent demand for accurate identification of students at risk of failure as soon as
possible during the academic year, since early intervention activities and strategies can be implemented.
Preventing academic failure, enhancing student performance, and improving learning outcomes is of
utmost importance for higher education institutions that intend to provide high-quality education [6].
Some new directions that have recently been formatted concern the recognition of errors during the
composition or the writing of code assessment, usually based on self-attenuation mechanisms for
providing high quality automated debugging solutions to undergraduate and post-graduate students,
as well as the exportation of remarkable insights about the obstacles that are met by them during
such tasks [7].

Apart from supervised methods, semi-supervised learning (SSL) has gained a lot of attention
among scientists in the past few years for solving a wide range of problems in various domains [8].
SSL methods exploit a small pool of labeled examples together with a large pool of unlabeled ones for
building robust and highly-efficient learning models. However, SSL has not adequately used in the
educational domain as easily identified after a thorough literature review. Nevertheless, some notable
studies have emerged recently dealing with semi-supervised classification (SSC) tasks, such as student
performance prediction or student dropout, while semi-supervised regression (SSR) is uncharted
territory. The primal difference between SSC and SSR is that the target attribute is categorical in the
former case, while a pure numeric quantity has to be predicted in the latter case. A recent literature
review of SSR depicts the most important works in this field [9], separating them into approaches with
a common strategy to solve their task, while more related works have been demonstrated on behalf
of SSC [10].

Multi-view learning has also attracted the interest of this research community, distilling information
from separate views, original or transformed ones, while a search of more appropriate subspaces
into the initial feature set always remains a crucial learning task for boosting the performance of SSL
methods [11,12]. Adopting ensemble learners has also been an active research territory concerning
SSL [13], while some similar works have been demonstrated by our side [14,15]. Although some recent
advances have taken place—exploiting graph-based solutions [16–18], or deep learning neural networks
(DNNs) [19,20]—attempting to acquire more and more accurate predictions, or even robust ones in case
that noisy inputs/labels have violated the ideal case of compact training data [21], such mechanisms
introduce some important defeats:

• Increased computational issues regarding the size of the provided datasets;
• Operation under transductive mode with inefficient complexity for most real-life cases rejecting at

the same time the extraction of an inductive mechanism as a generic solution;
• Inability to facilitate interpretability of the exported decisions/predictions [22,23].

The main scope of the present study is three-fold. At first, we implement a well-known
semi-supervised regression algorithm that is based on multi-view learning, adopting several ML
learners into its main kernel, tackling with the early prediction of undergraduate students’ final exam
grades in a one-year distance learning course. Each student is represented in terms of a plethora
of features, which were collected from three different sources, thus producing three distinct sets
of attributes: Demographics, academic achievements, and interaction within the course Learning
Management System (LMS). Secondly, we investigate the effectiveness of the separate SSR variants that
are produced compared with their corresponding supervised performance on the examined EDM task.
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In this sense, the proposed model may serve as an early alert tool with a view to providing appropriate
interventions and support actions to low performers.

Finally, we apply a well-established framework for acquiring trustworthy reasoning scores
per included attribute/indicator into the original dataset. Hence, interpretable models are created,
providing carefully computed explanations about the predicted grades ranking the importance of each
indicator without any dimensionality reduction trick and avoiding overconsumption of computational
resources under specific cases. To the best of our knowledge, this is the first completed study towards
this direction [24], which hopefully will provide the basis for further research in the field of EDM, as it
is stated in the relevant and conclusory Sections.

The remainder of this paper is organized as follows. In the next section, we discuss the need
for explainable artificial intelligence (XAI) solutions to the field of EDM, highlighting some of the
most important approaches in interpreting decisions/predictions of various learning models and the
assets of the selected interpretability framework. Section 3 presents a brief overview of relevant
studies in the EDM field and some recently published works related to the SSR task. The research
goal is set in Section 4, together with an analysis of the dataset used in the experimental procedure.
The total pipeline for applying a well-known COREG algorithm (CO-training REGressors) [25] as
an SSR wrapper along with several ML learners and some DNNs variants is provided in Section 5,
also describing the two distinct explaining mechanisms that are based on the computation of Shapley
values [26]. The experimental process and results are presented in Section 6. Finally, our conclusions
are drawn in Section 7, which also mentions some promising improvements to this seminal work.

2. Interpretability in Machine Learning

Consider the problem of predicting the final exam grade of students enrolled in a distance
learning course using ML. In this case, a supervised algorithm is trained over a set of labeled data
(the target attribute values are known), and an ML model is produced (supervised learning), which is
subsequently deployed for predicting the grade of a previously unknown student for given values
of the input attributes (features of students). The predictive model does not know why the student
received the specific grade, while, at the same time, it fails to grasp the difference between anticipated
grades and actual performance. Decision-makers are often hesitant to trust the results of these
models, since their internal functions are primarily hidden in black-boxes [27]. This is quite reasonable,
since people outside of the ML field neither can understand the manner that outputs are exported,
nor are confident on just consuming some pure decisions without accompanying them with some
consistent proofs. There is also a well-known trade-off regarding the predictive ability and the
interpretability of ML algorithms, which unfortunately deters the co-existence of both these properties
to be highly qualified under the same ML algorithm, in general. Since predictive models play a decisive
role in the decision-making process in higher education institutions, the ability to comprehend these
models seems to be indispensable. Thus, the interpretability of provided solutions usually needs to be
filtered through XAI tools [28,29].

Model interpretability is the process of understanding the predictions of an ML model. In fact,
it is the key point to build both accurate and reliable learning models. In traditional ML problems,
the objective is to minimize the predictive error, while interpretability is focused on extracting more
valuable information from the model [30]. Commonly, it aims to address questions, such as (Figure 1):

- What each attribute represents?
- Why was a specific prediction was made by the model?
- Which are the key factors of a specified prediction?
- Why a specific student was assigned a failing grade?
- Can we describe what the model has learned?
- How confident are we for the decisions of the model?
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Although several published works have appeared in the literature of XAI recently, the majority of
them make assumptions that are not actually consistent with the specifications of an educational task.
For example, dimensionality reduction or feature transformations (e.g., semantic embeddings) may
lead to incorrect conclusions or reasoning factors that ignore some of the underlying relationships that
may be crucial for the real-life problem [31]. Furthermore, DNNs and their variants that operate by
manipulating raw-data directly have highly attracted the interest of the XAI community, leading to
solutions that are not applicable to our numerical source data. However, this fact does not exclude
DNNs from being used as accurate black-boxes to such kind of problems, adopting mainly some
model-agnostic approaches [32]. A representative work was done by Akusok et al. [22] exploiting
extreme learning machines (ELM) trained on sampled subsets of the initial training set for increasing
the output variance of the learning model, and later, explaining the information gained thought this
strategy via proper confidence intervals for specific confidence levels. Both artificial and real-life
datasets were evaluated, performing robust behavior without inducing much computational effort.

Besides DNNs, conventional ML algorithms need to overcome the long-standing obstacle of
explainable predictions. One of the most popular libraries is LIME (local interpretable model-agnostic
explanations) [33], which offers explanations based on local assumptions regarding the contribution
of the examined learning model. A proper function that measures the interpretability and the local
fidelity is defined, which is optimized using sparse linear models that are fed with perturbed samples
from the region of interest. Global patterns are taken into consideration in the [32]. A framework of
teacher-student models was proposed in Reference [34], where the corresponding explanations are
obtained through adopting some additional models that mimic the behavior of the target black-box
model and compare their performance on ground-truth trained models to clarify possible bias factors or
reveal cases where the missing information has corrupted the final predictions. Because of the behavior
of the adopted models, the confidence intervals are also produced for determining the importance of
the detected differences.

Linear models and ensemble of trees were used in the previous work, while a solution that exploits
some unsupervised mechanisms internally and focuses on exporting small, comprehensible, and more
reliable rules exploiting ensemble of tress was proposed by Mollas et al. [35]. Both quantitative and
qualitative investigation of the proposed LionForests approach has been taken place regarding Random
Forest (RF) over binary classifications tasks, which is categorized as a local-based one. Another work
that investigates classification tasks, but specializes in interpreting convolutional neural networks
(CNNs) was recently demonstrated in Reference [36], where the Layer wise Relevance Propagation
strategy was applied for extracting meaningful information when usual image transformations of
audio signals are given as input. This process has been widely preferred for such networks, trying to
propagate the computed weights of the total network to the input nodes, transforming them to
important indications.

As it regards the adopted XAI framework by our side in the context of this work, Shapley values
that stem from coalitional game theory constitute the basic concept that a more recent approach,
named as Shapley additive explanations (SHAP), seems to satisfy better our research scope [37]. First,
it is based on well-established theory and operates without violating a series of axioms: Efficiency,
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symmetry, dummy, and additivity. Without providing any extended analysis, we mention that
Shapley values provide helpful insights by measuring the contribution of each feature into the original
d-dimensional feature space F ∈ Rd. Although this process demands quadratic computations regarding
the size of F, it is an accurate and safe manner for revealing the actual contribution of each feature
taking into consideration all the underlying dependencies of the measured values, thus assigning a
combined profile of both local and global explanations. The exact formula for computing the total
contribution of a random feature i ∈ F through all the necessary weighted marginal contributions is
given here:

contributioni =
∑

S⊆F\i

|S|!(d− |S| − 1)!
d!

(payoutS∪i − payoutS) (1)

payoutF =

∫
model(F)dF f eature <F − EF(model(F)) (2)

where each pay-out integrates the predictions of the selected model for any feature that belongs to
the feature space F, while the rest ones are replaced by their mean value. In total, the Shapley values
express the contribution that corresponds to each feature regarding the difference of the predicted value
minus the average predicted value. Modifications that are more carefully implemented for obtaining
the SHAP values reducing the overhead of the original procedure based on statistical assumptions
or exploiting the nature of the base learner. Two such variants were adopted for facilitating the total
efficacy of our methodology [26].

3. Related Work

Semi-regression has not been sufficiently implemented in the domain of EDM, as evidenced
by a thorough study of the pertinent literature. Apparently, SSL classification algorithms cannot be
directly applied for regression tasks, due to the nature of the target attribute, which is a real-valued
one. Nevertheless, some recent and notable studies are discussed below.

Nunez et al. [38] proposed an SSR algorithm for predicting the exam marks of fourth-grade
primary school students. The dataset comprised a wide range of students’ information, such as
demographics, social characteristics, and educational achievements. At first, the Tree-based Topology
Oriented Self-Organizing Maps (TTOSOM) classifier was employed for building clusters exploiting
all available data. These clusters were subsequently used for training the semi-regression model,
which proved quite effective for handling the missing values directly without requiring a pre-processing
stage. The experimental results demonstrated that the proposed algorithm achieved better results in
terms of mean errors, compared to representative regression methods. Kostopoulos et al. [39] designed
an SSR algorithm for predicting student grades in the final examination of a distance learning course.
A plethora of demographic, academic, and activity attributes in the course Learning Management
System (LMS) were employed, while several experiments were carried out. The results indicated the
efficiency of the SSR algorithm compared to familiar regression methods, such as linear regression
(LR), model trees (MTs), and random forests (RFs).

Bearing in mind the aforementioned studies and their findings, an attempt is made in the present
study to implement an SSR algorithm for predicting the grades of undergraduate students in the final
exams of a one-year online course offered by the Hellenic Open University. The main contribution of
our research concentrates mainly on the following points:

• Semi-regression,
• Early prognosis, and
• Interpretation of features.

We also include some related works that concern the SSR field, which tackle problems from
different domains. Besides the COREG algorithm [25], which inspired most of the upcoming SSR works
on how to exploit unlabeled data for performing SSL methods for predicting numeric target attributes,
the use of a co-training scheme did not found great acceptance for SSR works. We highlight just the direct
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expansion of COREG designed by Hady et al., via inserting the co-training by Committee for Regression
(CoBCReg) scheme [40], which tries to encompass the use of more than one regressors for reducing
noisy predictions, as well as the co-regularized least squares regression approach (CoRLSR) [41].
The latter one sets a risk minimization problem on the combined space of labeled and unlabeled data
through proper kernel methods, focusing mainly on proposing some variants—a semi-parametric
and a non-parametric—that scale linearly on the size of the unlabeled subset. The predictive benefits
of adopting the co-training scheme without using any sophisticated feature split, just a random one,
were remarkable.

More recently, a local linear regressor was employed by Liang R.-Z. et al. [42], which was iteratively
applied for minimizing a joint problem on the neighborhood of each unlabeled examplFDe through
sub-gradient descent algorithms. The authors of this work transformed two datasets that stem from
unstructured data into structured problems and managed to outperform the compared algorithms
regarding each posed performance metric, managing a competitive behavior regarding the time
consumption. A multi-target fashion SSR model was presented in Reference [43], where the self-training
scheme was combined with an efficient ensemble decision tree-based algorithm. Several modifications
of the proposed scheme were examined, differentiated on the manipulation of the decisions that are
drawn from the corresponding ensemble learner. Although their approach depends heavily on a
reliability threshold which is domain-specific, a qualitative analysis was made over a dynamic selection,
managing to outperform the supervised baseline as well as a random strategy for selecting unlabeled
data for augmenting the initially collected data. Finally, an SSR method was used before applying an
SSL method in the field of optical sensors, where limited data were readily available. In that scenario,
a randomized method was used for generating unlabeled artificial data aiming at augmenting the
labeled subset, but their annotation with pseudo-values was still crucial [44]. Therefore, a typical SSR
strategy was applied before providing the finally created dataset to tackle the classification process.

4. Dataset Description

The dataset used in the research was provided by the Hellenic Open University and comprised
records of 1073 students who attended the ‘Introduction to Informatics’ module of the ‘Computer Science’
course during the academic year 2013–2014.

These records were collected from three different sources, the course database, the teachers,
and the course LMS, thus producing three distinct sets of attributes (Figure 2):

• The demographic set S1 = {Gender, NewStudent} (Table 1).
The distribution of male and female students was 76.5% and 23.5%, respectively. In addition,
87.5% of the students had enrolled in the course for the first time, while the rest failed to pass the
previous year’s final exams.

• The academic performance set S2 = {Ocsi, Wrii}2i=1 (Table 2).
The attribute named Ocsi refers to students’ absence or presence in the i-th optional contact session,
while the attribute named Wrii represents students’ grades (ten-point grading scale) in the i-th
written assignment, i ∈ {1, 2}. Four written assignments should be submitted during the academic
year, while a total sum

∑4
i=1 Wrii ≥ 20 was required for a student to undertake the final exam.

• The LMS activity set S3 = {Li, V1i, V2i, V3i, V4i, V5i, P1i, P2i, P3i, P4i}
2
i=1 (Table 3).

These attributes monitor student activity on the online LMS course (i.e., logins, views, and posts).

Table 1. Demographic attributes.

Attribute Name Description Values

Gender Student gender male, female
New Student A student enrolled in the course for the first time yes, no
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Table 2. Academic performance attributes, i ∈ {1, 2}.

Attribute Name Description Values

Ocsi Student presence in the i-th optional contact session absence, presence
Wrii Student grade in the i-th written assignment [0, 10]

Table 3. LMS activity attributes in the i-th time-period, i ∈ {1, 2}.

Attribute Name Description Values

Li Total number of student logins integer
V1i Number of student views in the pseudo-code forum integer
V2i Number of student views in the compiler forum integer
V3i Number of student views in the module forum integer
V4i Number of student views in the course forum integer
V5i Number of student views in the course news integer
P1i Number of student posts in the pseudo-code forum integer
P2i Number of student posts in the compiler forum integer
P3i Number of student posts in the module forum integer
P4i Number of student posts in the course forum integer
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Each instance of the dataset represents a single student (Figure 2) and is described by a vector of
attributes, such as x = (s1, s2, s3), where s1, s2, s3 correspond to the vector attributes of S1, S2, S3 sets,
respectively. Since the early prognosis of students at risk of failure is of utmost importance for higher
education institutions, the academic year was divided into four time-periods according to each written
assignment submission deadline (Figure 3). To this end, the notation V1i denotes the total number
of student views in the pseudo-code forum in the i-th period, i ∈ {1, 2}, and so forth. For example,
attribute P21 refers to the total number of student posts in the compiler forum in the first time-period
(i.e., from the beginning of the academic year until the first written assignment submission deadline).
Finally, the output attribute y ∈ [0, 10] represents the grade of students in the final examinations of the
course. Note that we examine two distinct scenarios, corresponding to the first one and the first two
time-periods, respectively.
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5. Proposed Semi-Supervised Regression Wrapper Scheme

Semi-Supervised Learning (SSL) is a rapidly evolving subfield of ML, embracing a wide range of
high-performance algorithms. Typically, an ML model h is built from a training dataset D = L∪U
consisting of a small pool of labeled examples L =

{
xi, yi

}l
i=1 and a large pool of unlabeled ones

U = {xi}
u
i=1, l << u, xi ∈ X, yi ∈ Y, L∩U = ∅, without human intervention [45]. Depending upon the

nature of the output attribute SSL is divided into two settings [9]:

• Semi-Supervised Classification (SSC).
The labels yi of the output attribute are discrete, i.e.,Y =

{
y1, y2, . . . , yn

}
.

• Semi-Supervised Regression (SSR).
The labels yi of the output attribute are real, i.e.,Y ⊆ R.

In our case, we employed an SSR scheme for exploiting the existence of both labeled and unlabeled
data trying to acquire accurate estimations of the target attribute—students’ final grade—based on
a set of readily available data. Thus, one or more regressors are trained iteratively via selecting the
most appropriate unlabeled data and annotating their missing target value in an automated fashion.
Of course, the initial hypothesis is formatted on the manually gather the subset of L. Furthermore,
the fact that the training set is split into two disjoint subsets, L and U, and that we aim at applying our
trained model on another subset—the test set—which does not overlap with the training set leads us
to an inductive SSR algorithm.

The most representative algorithm found in the literature that seems to satisfy our ambitions is
the COREG that was firstly proposed by Zhou [25]. Actually, this learning scheme constitutes the
analog of the co-training scheme also based on disagreement rule in the case of SSC [46], inserting a
local-based criterion for measuring the effectiveness of the candidate unlabeled instances into the
currently trained model for completing a regression task. Although various criteria have been designed
in the context of SSC [47,48], the corresponding essential stage during an inductive SSR algorithm has
not been highly studied by the related research community, following variants of the same criterion
proposed in the case of COREG or proposing some new metrics that are mainly used under single-view
works [44,49,50].

More specifically, the main concern of inductive SSR algorithms during the annotation of unlabeled
examples is their consistency with the already existing labeled instances. This property is examined by
measuring the next formula:

Consistencyx j =
∑
xi∈L

(
f (yi, h(xi)) − f

(
yi, ˆh(xi)

))
, ∀x j ∈ U (3)

where f is a suitable performance metric, yi is the actual value of the xi labeled example, while h(xi)

and ˆh(xi) denote the output of regressor h when is trained solely on the current labeled set and on the
augmented labeled set with the currently examined x j example, respectively. According to the COREG
algorithm, a local criterion is inserted for investigating if the consistency of each unlabeled example is
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beneficial for the current model per iteration. Thus, instead of examining the whole current L subset,
only the neighbors of each x j ∈ U are considered for measuring the corresponding consistency metric,
which is described in Equation (1). As it is discussed in the original work of the COREG, by maximizing
this variant—mentioned hereinafter as δx j ∀x j ∈ U—we reach safely either to the maximization of the
general consistency metric or we acquire a zero value. In the first case, we pick the j-th unlabeled
instance with a greater impact. Otherwise, we do not select any of them.

This strategy is similar to fitting an instance-based algorithm, like the k-Nearest Neighbors
(kNN) [51], for selecting the unlabeled instances to augment the current labeled set per iteration, as it
was preferred during the COREG approach. However, this fact does not hinder us from applying
different kinds of regressors on the augmented labeled set, thus exploiting possible advantages of other
learning models for capturing better the underlying relationships of the examined data. Based on our
search in the literature, such a study has not yet been done.

Moreover, the already mentioned augmented per iteration labeled subset does not contain
exclusively accurate values of the target attribute per its included instance, since during the training
stage pseudo-labeled instances are joining the initially labeled examples, and their estimated values
may differ from the actual one. This kind of noise into any SSL scheme may heavily deteriorate their
total performance, settling them as myopic approaches that cannot guarantee safe predictions and
violate the interpretation of the exported results.

Therefore, to alleviate the inherent confidence of COREG, we examine its efficacy on an EDM
task that supports the multi-view description, increasing, thus the diversity of the trained regressors.
Since the COREG algorithms is based on the co-training scheme, the feature space F of the original
problem D is split into two disjoint views: F = F1 ∪ F2. Although the random split has been proven
quite competitive in several cases [52,53], co-training scheme should work if these two views are
independent and sufficient.

The examined real-world problem brings a multidimensional and multi-view description that
encourages us to train each regressor on separate views and get trustworthy predictions that would
not harm our learning model regarding neither its predictiveness nor its interpretability despite the
limited labeled data. Algorithm 1 presents the pseudocode of the end-to-end SSR pipeline.

Algorithm 1. The extended framework of the COREG algorithm.

Framework: Pool-based COREG(D, selector1, selector2, regressor1, regressor2)
Input:
• Initially collected labeled L =

{
xi, yi

}l
i=1 and unlabeled U = {xi}

u
i=1 instances, where D = L∪U and L∩U = ∅

• F1, F2: provide the split of the original feature space F, where F = F1 ∪ F2 and F1 ∩ F2 = ∅
• Define Max_iter: maximum number of semi-supervised iterations and f : performance metric

Main process:
• Set iter = 1, consistentSet = ∅

• Train selectori, regressori on L(Fi) ∀i ∈ {1, 2}
• While iter ≤Max_iter do
• For each i ∈ {1, 2} do
• For each x j ∈ U do
• Compute δx j ( f ) based on selectori ∀i ∈ {1, 2}

• If δx j ( f ) > 0 : add j to consistentSet
• If consistentSet is empty do
• iter:= iter + 1 and continue to the next iteration
• else do
• Find the index j∗ of consistentSet s.t. j∗ = arg max

j
δx j

• Update U : U ← U –
{
x j∗

}
• For i {1, 2} do
• Update Li : Li ← Li ∪ { x j∗ , regressor ∼ i

(
x j∗

)
}, where ~i means the opposite index of the current

• Retrain selectori, regressori on L(Fi)∀i ∈ {1, 2}
• iter:= iter + 1

Output:
• Apply the next rule to each met xtest instance:

hCOREG(xtest) = 1/2 · (regressor1(xtest) + regressor2(xtest))
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6. Experimental Process and Results

To conduct our experiments, we exploited the sci-kit Python library along with its integrated
regressors and an implementation of computing the necessary Shapley values [37,54]. In order to
systematically examine the efficiency of the extended COREG variant over the problem of early
prognosis on student’s performance, various choices of instance-based selectors and different learning
model for the case of the regressors were chosen. Furthermore, we investigated two separate cases
of the total dataset based on the measured indicators: Regarding only the first semester (D1-first
scenario) and only the first two semesters (D2-second scenario). Thus, our predictions excuse the
characterization of the early prognosis task, providing in time predictions using indicators that stem
from the initial stages of an academic year. To be more specific, the size and the attributes of each view
per dataset-scenario are reported here:

• First scenario:
D1 = F1 ∪ F2

|F1| = 4, F1 = (gender, NewStudent, Ocs1, Wri1)

|F2| = 10, F2 = (L1, V11, V21, V31, V41, V51, P11, P21, P31, P41)

• Second scenario:
D2 = F1 ∪ F2

|F1| = 6, F1 = (gender, NewStudent, Ocs1, Wri1, Ocs2, Wri2)

|F2| = 20, F2 = (L1, L2, V11, V12, V21, V22, V31, V32, V41, V42, V51, V52, P11, P12, P21, P22, P31, P32, P41, P42)

Besides the multi-view role of our extended COREG framework, the diversity of the SSR algorithm
is enriched by the fact that each selectori cannot select during one iteration the same x j∗ instance,
while during the initial design of the COREG, randomly selected subsamples of the original U set
were selected per iteration. Although we also attempted to implement this strategy, our results were
constantly worse than the case of exploiting the full length of the original U set. This is probably due to
the relatively small size of our total problem D, which we hope to undertake during the next semesters
to enrich our collected data.

As it regards the choice of the investigated selectors and regressors for the extended COREG
framework, we mention here all the different variants/models that were included in our experiments:

• (selector1, selector2): We have selected kNN algorithm for detecting the appropriate neighbors
and fitting appropriate models. Following the original COREG scheme for injecting further
diversity between the two separate views, we kept different power parameter for the internal
distance that is exploited for formatting the neighborhood. Thus, we used Euclidean distance
and Minkowski of 5th power for first and second selector, respectively. Moreover, we examined
four separate cases based on the number of the nearest neighbors that are considered per case:
(k1, k2) ≡ (1, 1), (1, 3), (3, 1), and (3, 3).

• (regressor1, regressor2): A different pair of same models have been used for this choice. To be
more specific, we have used kNN with k = 3, a typical Linear regressor (LR), the Gradient Boosting
regressor which is an additive model that operates under a forward-stage manner with 2 different
loss functions: Least squares regression (ls) and ‘huber’—a hybrid between ls and least absolute
deviation—which are depicted as GB(ls) and GB(huber) and multi-layer perceptron that optimizes
the squared-loss function by using the ‘lbfgs’ quasi-Newton solver. The last regressor is denoted
as MLP, while its default hyperparameters were used: The ‘Relu’ as activation function and a
hidden layer with 100 neurons. Although some further modifications of the internal parameters
of each learner were investigated, as well as the combination of same learning models, but distinct
regressors per view (e.g., train GB(ls) on L(F1) and train GB(huber) on L(F2)), but neither this fact
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serves our ambitions nor any great improvement was achieved. More information could be found
in Reference [41].

As it concerns the rest required information about our evaluations, we set Max_iter equal to 100 and
the performance metric f ≡MSE (Mean Squared Error). Moreover, we applied a 5-fold-Cross-Validation
(5-fold-CV) evaluation process, while we held 100 instances out of the 1073 as the test set. Consequently,
the rest n = 973 instances constitute the D set, where the size of the L (l) and the U (u) subsets sum up to n.
Thus, we examined four different values of the initially labeled instances: 50, 100, 150, and 200, while all
of the rest instances were exploited from the first iteration as the U subset, since, as already mentioned,
a possible random sampling of the total U subset per iteration did not favor us. Finally, the scenario
under which our selectors exploit kNN algorithm with (k1, k2) = (1,1) did not manage to detect instances
that satisfy the restriction of consistency as described in Equation (3) in the majority of the conducted
experiments, and for this reason, was excluded by our results. The performance of the examined
COREG variants based on the mean absolute error (MAE) metric is presented in Tables 4 and 5.

Table 4. Relative improvement of mean absolute error (MAE) metric (±std) of the dataset based only
on the first semester during the best iteration per different combination of selector and regressor.

Size (L) Selectori Regressori
(k1, k2) 3NN LR GB (ls) GB (huber) MLP

50
(1,3) 3.63 (±2.46) 10.06 (±6.42) 6.83 (±0.89) 3.78 (±1.62) 8.93 (±6.00)
(3,1) 3.38 (±1.47) 10.51 (±8.12) 6.66 (±3.15) 5.07 (±1.09) 14.33 (±8.91)
(3,3) 3.37 (±3.49) 15.27 (±8.15) 7.22 (±2.72) 4.60 (±2.19) 18.18 (±11.08)

100
(1,3) 2.28 (±3.00) 2.02 (±1.34) 1.81 (±1.66) 5.08 (±1.64) 5.82 (±4.49)
(3,1) 2.33 (±1.70) 2.89 (±1.33) 1.95 (±1.63) 5.89 (±2.19) 6.14 (±5.11)
(3,3) 2.26 (±2.76) 3.21 (±2.46) 2.42 (±2.84) 7.05 (±1.87) 9.42 (±4.77)

150
(1,3) 2.52 (±1.47) 0.63 (±0.72) 5.43 (±2.85) 3.32 (±2.14) 3.73 (±2.47)
(3,1) 5.80 (±3/94) 1.07 (±1.62) 4.86 (±3.02) 3.44 (±1.28) 9.15 (±12.48)
(3,3) 1.88 (±0.52) 2.07 (±1.53) 6.97 (±5.35) 2.67 (±1.31) 8.97 (±15.04)

200
(1,3) 2.83 (±1.82) 1.16 (±1.06) 3.31 (±2.53) 3.40 (±2.76) 4.95 (±2.46)
(3,1) 4.04 (±3.41) 0.67 (±0.59) 2.93 (±2.56) 3.52 (±2.56) 3.05 (±1.94)
(3,3) 0.88 (±1.05) 0.45 (±0.57) 4.58 (±3.34) 5.41 (±2.39) 5.85 (±2.66)

Table 5. Relative improvement of MAE metric (±std) of the dataset based only on the first and second
semester during the best iteration per different combination of selector and regressor.

Size (L) Selectori Regressori
(k1, k2) 3NN LR GB (ls) GB (huber) MLP

50
(1,3) 5.79 (±1.89) 21.85 (±8.10) 4.47 (±2.70) 7.55 (±2.12) 12.51 (±7.92)
(3,1) 7.26 (±4.22) 22.65 (±7.89) 5.36 (±3.35) 7.70 (±3.99) 11.25 (±5.28)

(3,3) 2.81 (±2.06) 30.69
(±13.83) 7.28 (±5.17) 8.40 (±3.72) 18.17 (±7.16)

100
(1,3) 5.56 (±1.85) 8.30 (±6.64) 6.00 (±1.18) 4.64 (±4.52) 9.26 (±7.55)
(3,1) 3.65 (±2.72) 8.04 (±8.18) 6.62 (±2.61) 2.92 (±3.19) 6.91 (±2.8)

(3,3) 1.91 (±2.16) 11.91
(±13.15) 7.57 (±2.50) 2.76 (±2.57) 10.77 (±8.35)

150
(1,3) 8.00 (±2.54) 6.50 (±2.71) 4.16 (±2.44) 6.64 (±3.00) 16.36 (±9.00)
(3,1) 6.35 (±5.32) 6.03 (±2.90) 4.72 (±3.25) 6.47 (±3.87) 3.41 (±4.76)
(3,3) 1.85 (±2.54) 9.46 (±6.59) 5.46 (±3.83) 8.57 (±5.82) 15.41 (±10.79)

200
(1,3) 2.35 (±2.53) 1.48 (±1.19) 3.94 (±2.37) 3.86 (±2.52) 13.25 (±6.64)
(3,1) 1.80 (±1.02) 1.55 (±1.31) 3.88 (±2.76) 3.94 (±3.33) 7.21 (±6.20)
(3,3) 1.64 (±1.31) 2.61 (±2.56) 5.91 (±5.13) 5.27 (±2.44) 15.36 (±10.65)
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To be more specific, in these tables, we have recorded the relative improvement between the
performance of each regressor during the initially provided labeled set, and the iteration that recorded
the best performance until the criterion of either exceeding the Max_iter or not satisfying the consistency
is violated. The results indicate that there is a decrease in the MAE metric, whilst the number of labeled
instances is increased, as could be expected. Based only on the information regarding the first semester,
it is noticed that the best performers are LR and MLP for size(L) = 50, while the tree-based learners
achieved a more stable improvement over all the examined initially labeled subsets. Based on the
information regarding both the first and the second semester, it is observed that the best performers
are again LR and MLP for size(L) = 50, while they also performed greater improvement in the rest of
the examined scenarios against their behavior on the previous case.

Additionally, we observe that as the cardinality of the L subset increases, the relative improvement
of the investigated multi-view SSR approaches is decreasing in both cases during the majority of
the recorded results. Through this kind of information, we can understand better the benefits of
SSR approaches like COREG when multi-view problems are considered even under both limited
labeled data are provided, and the volume of the unlabeled data is also highly restricted, reducing,
thus the informativeness of this source of knowledge which is crucial for SSL scenario. Hence, the most
important asset of transforming the COREG approach into a multi-view SSR variant is the remarkable
reduction of the mean absolute error under strict conditions regarding the initially provided labeled
instances. Despite the fact that the supervised learning performance in that cases is usually poor, since it
heavily depends on the initially labeled data, both the insights that are obtained through the distinct,
independent views and the disagreement mechanism that interchanges information between regressors
that are fitted to these views lead to superior performance against it. Therefore, we believe that this
indication is our most important contribution: Proof that in a real-life scenario, the complementary
behavior of two separate views can be a trustworthy solution—even under highly limited labeled
instances and not a large pool of unlabeled ones.

Another key is the fact that by mining additional unlabeled instances, we would expect even
larger improvements in some cases, something that occurs by observing the fact that some approaches
achieved their best performance at the late iterations, while almost none approach recorded its best
performance during the early iterations. Thus, we are confident that by providing additional unlabeled
instances, even better improvements should be achieved. Another interesting point that should
be examined in the future is to insert a dynamic stage for terminating such a learning algorithm,
avoiding saturation phenomena. A validation set could be useful, but small cardinality in a real-life
dataset does not favor such a strategy.

Furthermore, in the majority of the presented results, we conclude that when the selectors coincide
with the two 3NN algorithms, larger improvements of the relative error are recorded, especially for the
more accurate models: GB-based variants and MLP. This happens due to the fact that in the majority of
the cases that one selector coincides with the 1NN algorithm, this view through its fitted regressor
does not detect any unlabeled instance that satisfies the consistency criterion. Hence, the other view
is not actually enriched via the existence of annotated unlabeled instances. However, in the case of
weaker regressors—3NN and LR—this behavior may be proven beneficial when noisy annotations take
place, reducing, thus the chances of degeneration. To be complete with our experimental procedure,
all our results are included in the following link: http://ml.math.upatras.gr/wp-content/uploads/2020/

11/mdpi-Applied-Sciences-math-upatras-2020.7z, where the index of the best position per examined
fold along with the improvement during the arbitrarily selected value of Max_iter are recorded per
regressor based on the separate views, as well as the finally exported one. Furthermore, the supervised
performance of the whole dataset D for both cases and each investigated regressor, as well as their
performance on all the four separate initial versions of the L size, are included—facilitating each
interested researcher about the efficacy of our approaches.

Regarding the interpretability of our results, we computed the Shapley values of each one of
the five distinct regressors. To safely conclude that the COREG scheme can produce trustworthy

http://ml.math.upatras.gr/wp-content/uploads/2020/11/mdpi-Applied-Sciences-math-upatras-2020.7z
http://ml.math.upatras.gr/wp-content/uploads/2020/11/mdpi-Applied-Sciences-math-upatras-2020.7z
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explanations under the existence of limited labeled data per different learner, we made the next
assumptions: We compared the purely supervised decisions of the total dataset evaluated with the
aforementioned 5-fold-CV process per learner with the corresponding decisions that are exported by
training the same regressor on the finally augmented L subset according to the adopted COREG scheme
having fixed the choice of selector to (3NN, 3NN) with the pre-defined distance metrics as mentioned
previously into this Section. Hopefully, in all the cases, we obtained similar enough decisions regarding
the importance weights assigned to each indicator, while we had a perfect match between the ranking
of the indicators. This fact verifies our main scope: To apply a multi-view SSR scheme that can
improve the initial predictiveness of the model despite the limited number of the provided instances,
acquiring at the same time trustworthy explanations about the importance of each included attribute.

Next, we present through suitable visualizations the SHAP values per case, exploiting the
implementation provided by the authors of Reference [55]. Before we step to this stage, a short
description is given regarding the two used approaches for computing these explainable weights that
approximate the actual, but still computationally hungry Shapley values. First of all, a kernel-based
approach was applied over all the five examined regressors (KernelSHAP), which is agnostic regarding
the applied learning model and introduces a linear model that is fitted over the sampled pairs of
(data, targets) and their generated weights. To generate these weights, several coalitions over the F space
is produced, while the marginal distribution instead of the accurate conditional distribution is sampled
for replacing the features that are absent during a random coalition. Although the assumptions here may
lead to poor results because of the randomly selected coalitions that ignore some feature dependencies,
the fact that a linear regression is applied during the last stage of the computation, additional strategies
may easily be implemented trying to smoothen possible defects of this approximation (regularization,
different learning model). On the other hand, a tree-based approach (TreeSHAP) has been applied in
the case of GB-based approaches trying to figure out possible discrepancies between the explanation of
this kind of learner. TreeSHAP constitutes an expansion of the KernelSHAP approximations, leading to
faster results and facilitating the learners that are based on Decision Trees, integrating aggregating
behavior through proper additive properties. Further information is provided in the original work [55].

We present here only the corresponding diagram of GB (ls) with both SHAP explainers, ignoring the
similar enough performance of GB (huber), since it is the only tree-based regressor. The SHAP
visualization plots (Figures 4–8) illustrate the attribute impact on the output of the produced regression
model (the attributes are ranked in descending order from top to bottom) and how the attribute values
impact the prediction (red color correlates to positive impact) in the first scenario using the D1 dataset.
Attributes Wri1 (grade in the first written assignment), Ocs1 (presence in the first optional contact
session), and V31 (number of views in the module forum) are the most important ones in all cases
regardless of the regressor employed. In addition, these attributes seem to positively influence the
target attribute (i.e., student grade in the final examinations). Therefore, high-achieving students in the
first written assignment, students with high participation rates in the first optional contact session,
and students with high view rates in the module forum achieve a higher grade in the final course exam.
Very similar results were produced regarding the second scenario using the D2 dataset. In this case,
attribute Wri2 (grade in the second written assignment) proved to be the most significant, along with
attribute V32 (number of views in the module forum).
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7. Conclusions

In the present study, an effort was made to build a highly-accurate semi-supervised regression
model based on multi-view learning for the task of predicting student grades in a distance learning
course. Additionally, we sought to gain insights and extract meaningful information from the model
interpreting the predictions made and providing computed explanations about the predicted grades.
The experimental results demonstrate the benefits brought by a natural split of the feature space.
Therefore, our work contributes a different perspective to the existing single-view methods by fully
exploiting the potential of different feature subsets by extending the COREG framework to the
multi-view setting. In addition, it points out the importance of specific attributes that heavily influence
the target attribute. Finally, the produced learning model may serve as an early alert tool for educators
aiming at providing targeted interventions and support actions to low performers.

Generating synthetic data could be proven a highly favoring technique for mitigating the problem
of limited labeled data. A recent demonstrated work has adopted such a strategy for training a boosting
variant of the self-training scheme in the context of SSC [56]. In that work, the aspect of Natural
Neighbors was preferred applying kNN algorithm as the base classifiers, and their obtained results
seem encouraging enough for trying to extend their work also in our case. Another future direction
could be applying pre-processing stages that may help us discriminate better the initially gathered
data. Combination of semi-supervised Clustering either with conventional learners or ensembles,
or even DNNs, as it has been validated in other real-life cases (e.g., geospatial data [57], medical image
classification [58]) reducing inherent biases and helping us to uncover better possible underlying data
relationships before the learning model could be found quite useful in practice. Another one possible
effect of Clustering has been highlighted in Reference [50], where this strategy facilitated the scaling of
a time-consuming learner over large volumes of unlabeled examples.

Finally, the strategy of transfer learning has been found great acceptance in the last years over
several fields and could be proven beneficial in the case of EDM tasks. The two different aspects of this
combination are expressed through either creating pre-trained models based on other learning tasks
or enriching the discriminative ability of selected regressors through separate source domains that
contain plentiful training data [59,60]. Combination of Active Learning with Semi-supervised learning
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might find great acceptance especially in cases that limited labeled data are provided, and the provided
budget for monetization costs is highly bounded [61]. The modification also of transductive approaches
for being considered under inductive learning scenarios seems a brilliant idea that compromises the
accuracy of the former category and the generalization ability of the second one. Such a study was
presented in Reference [62] and should be studied for SSR tasks.
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