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Abstract: As well as many modern devices, thermal accelerometers (TAs) need a sophisticated
mathematical simulation to find the ways for their performance optimization. In the paper, a novel
approach for solving computational fluid dynamics (CFD) problems in the TA’s cavity is proposed
(MQ-RFM), which is based on the combined use of Rvachev’s R-functions method (RFM) and the
Galerkin technique with multiquadric (MQ) radial basis functions (RBFs). The semi-analytical RFM
takes an intermediate position between traditional analytical approaches and numerical methods,
such as the finite-element method (FEM), belonging to the family of the so-called meshless techniques
which became popular in the last decades in solving various CFD problems in complex-shaped
cavities. Mathematical simulation of TA by using the MQ-RFM was carried out with the purpose
to simulate the temperature response of the device and to study and improve its performance.
The results of numerical experiments were compared with well-known analytical and numerical
benchmark solutions for the circular annulus geometry and it demonstrated the effectiveness of the
MQ-RFM for solving the convective heat-transfer problem in the TA’s cavity. The use of solution
structures allows one to take a relatively small number of expansion terms to achieve an appropriate
accuracy of the approximate solution satisfying at the same time the given boundary conditions
exactly. The application of the MQ-RFM gives the possibility to obtain semi-analytical solutions to the
diffusion-convection problems and to identify the main thermal characteristics of the TA, that allows
one to improve the device performance.

Keywords: natural convection; Galerkin method; R-functions method; multiquadric RBF;
thermal accelerometer; cylindrical annulus

1. Introduction

Many modern devices, in particular, sensors based on microelectromechanical systems (MEMS),
need a sophisticated mathematical simulation to find the ways of their optimization. Among them
are thermal accelerometers (TAs) [1] which principle of operation is based on the effect of fluid or gas
convection in closed cavities under the influence of external forces of inertia. It is very important to
estimate the scale factor and bias stabilities of TAs under an external thermal slope, and to test different
types of cavity geometry (cylindrical, rectangular, hexagonal, etc.) to achieve the best performance of
the device.

To solve the aforementioned problems, it is necessary to simulate diffusive and convective heat
and mass transfer in arbitrarily shaped enclosures, which in turn is a problem of great importance due
to a large number of its practical applications. Since analytical solutions exist for a very narrow class of
simple-shaped domains only, a majority of modern computational fluid dynamics (CFD) techniques
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were developed which are based mainly on the use of the finite-difference and finite- element methods
(FDM and FEM) [2–4], boundary-element methods [5], and spectral element methods [6]. Their main
drawback is the cumbersome representation of grid solutions in complex- shaped domains, as well as
the difficulties connected with the approximation of boundary conditions. For the function of
pressure or for the vorticity function in dimensionless form, boundary conditions are not specified at
all and require special approximations. In addition, sometimes it is difficult to interpret analytically
the solutions obtained at a number of mesh knots and to evaluate errors.

Recently, a number of meshless (or mesh-free) techniques were proposed for solving convection-diffusion
problems with arbitrarily shaped cavities [7–9]. They became popular due to their simplicity, flexibility,
and independence from a complicated domain geometry. One of the most effective meshless techniques
is the Rvachev’s R-function method (RFM) [10]. It allows the given boundary conditions to be satisfied
exactly at all boundary points by means of the appropriate transformation of the basic functions.
With R-functions, it became possible to construct the functions with prescribed values and derivatives at
specified locations. Furthermore, the constructed functions possess desired differential properties and
may be assembled into a solution structure for the posed boundary value problems. The semi-analytical
method of R-functions takes an intermediate position between traditional analytical approaches and
numerical tools. Many practical problems in different areas of mathematical physics, in particular,
heat conductivity [11], are being solved effectively by using RFM.

Application of the RFM in combination with the Galerkin technique for solving CFD problems
in arbitrarily shaped domains was investigated earlier [12–14]. Different bases were applied in these
works, both spectral (polynomial) and local (B-splines), and good results were achieved for fields
evaluated in domains of simple geometry without localized inhomogeneities. In [15], an approach
combining the RFM and the Petrov–Galerkin method with bases of algebraic polynomials was presented
and applied to the simulation of thermal convection fields inside a closed rectangular cavity.

However, when applying the RFM, if a domain consists of two parts, for example, “inner” and
“outer”, which characteristic dimensions are not comparable, one needs to take either a large higher
power of approximating polynomials (in spectral methods) that worsens computational stability, or a
very small regular or irregular mesh width for bases of compactly supported functions. Therefore, in the
latter case, the RFM loses its main benefits and can be practically considered as a conventional grid
method such as FDM or FEM.

Here, a novel technique is proposed (MQ-RFM), based on the RFM with multiquadric (MQ) radial
basis functions (RBFs) [16,17]. These functions are very popular as “building blocks” in different
meshless methods intended for solving CFD problems [18,19]. Multiquadrics have a simple algebraic
representation and, like algebraic or trigonometric polynomials, are spectral ones, i.e., not compactly
supported. On the other hand, the basis of MQs can be simply formed on a usual regular mesh in
the way similar to the bases of compactly supported bilinear or high-order splines. For the first time,
the idea of using the RFM in combination with RBFs for solving linear boundary value problems for
partial differential equations (PDEs) was proposed in [20], where irregular mesh was constructed on
the base of the Voronoi diagrams.

In this work, the standard model of circular annulus geometry is studied which earlier was extensively
investigated experimentally [21–23], analytically [24,25], and numerically [26–33]. This model is the
basic one for studying the TA behavior and performance [34–36]. The distance between the heater
and detectors was found providing an optimum sensitivity of the sensor.

The results of numerical experiments confirm the effectiveness of RFM applied for solving the
convective heat-transfer problem in the TA’s cavity and also demonstrate good accordance with the
results obtained experimentally, analytically, and numerically with the help of FEM simulation [34,36].
The use of RFM solution structures and MQ-RBFs defined on a simple regular mesh allows one to take
a relatively small number of expansion terms to achieve an appropriate accuracy of the approximate
solution satisfying the given boundary conditions exactly. The application of the MQ-RFM gives a
possibility to obtain the semi-analytical solutions to the diffusion-convection problems and identify
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main thermal characteristics of the TA of more complicated geometry [37], that allows one to improve
the device performance.

2. Thermal Accelerometer and Its Principle of Operation

The principle of operation of a TA is based on the effect of fluid or gas convection in a closed
cavity under the influence of external forces of inertia. The device (Figure 1) includes a heating element
H that creates around itself a symmetrical thermal field. The thermal sensors are located on opposite
sides of this element.
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moving mechanical parts, convective accelerometers have high reliability, low cost of production, as 
well as the ability to withstand and measure high loads caused, for example, by shock action. 
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3. Statement of the Problem and Governing Equations 

Figure 1. The general scheme (a) and microstructure design (b) of a thermal accelerometers (TA).

In the absence of an external acceleration along the sensitive axis X, the system is balanced
and the heat detectors generate the same signal (Figure 2a). In presence of an external acceleration,
the temperature profile changes, which results in the temperature difference dT between the sensors S1
and S2, depending on the amplitude of the acceleration (Figure 2b). Nonzero temperature difference
between the heat sensors converts the input impedance to the output electrical signal.
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Figure 2. The principle of operation of a TA. (a) without acceleration, (b) with acceleration.

This type of accelerometer has several important advantages over conventional sensors for
acceleration based on microelectromechanical systems (MEMS). In particular, due to the absence of
moving mechanical parts, convective accelerometers have high reliability, low cost of production, as well
as the ability to withstand and measure high loads caused, for example, by shock action.

To find the optimal parameters of the device: the type of gas and its pressure, the size and geometry
of the cavity, the material and the size of the heating element and heat sensors, etc., it is necessary to
solve the boundary value problem described by a system of the Navier–Stokes differential equations.
This problem can be solved analytically only for a limited class of simple regions (cylinder, sphere),
and in the general case, a numerical simulation is required.
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3. Statement of the Problem and Governing Equations

Usually, the temperature distribution inside the 3D cavity of the device is almost uniform in
the direction along the heater and sensors. Thus we need to solve the 2D heat-transfer problem in
the middle cross-section of the cavity. One of the most important models of the TA is the circular
annulus model (Figure 3a) [34,36] because for such a domain the analytical solution to the heat diffusion
problem is known as well as the asymptotic solution of the diffusion-convection problem [24,25].
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We consider the Boussinesq approximation with the assumption of the steady state incompressible
flow inside an arbitrary 2D closed cavity Ω ⊂ R2 (Figure 3b), when all constants, except density, do not
depend on temperature. Without loss of generality, we take the domain with boundary composed
of two parts: ∂ΩC, ∂ΩH, with given constant temperatures TC and TH on each of them respectively.
Let external acceleration Γ be applied towards the positive direction of sensitivity axis OX.

The dimensionless governing equations for the two-dimensional convective heat and mass transfer
inside Ω have the following form:

1
Pr∇

2θ−
(
U ∂θ
∂X + V ∂θ

∂Y

)
= 0;

∇
2ζ−

(
U ∂ζ
∂X + V ∂ζ

∂Y

)
= −Gr ∂θ∂Y ;

∇
2ψ = −ζ; U =

∂ψ
∂Y , V = −

∂ψ
∂X ,

(1)

where θ = (T − TC)/(TH − TC) is the dimensionless temperature; T is the temperature; ψ is the stream
function; ζ is the vorticity; X = x/L, Y = y/L are dimensionless coordinates; L is the specific dimension;
U = uL/ν; V = vL/ν are dimensionless components of velocity; u, v are horizontal and vertical
components of velocity; ν is the kinematic viscosity; Gr = Γβ(TH − TC)L3/ν2 is the Grashof number;
Γ is the acceleration; β is the temperature volume expansion coefficient; Pr = cpµ/λ is the Prandtl
number; µ is the dynamic viscosity; λ is the heat conductivity; cp is the specific heat at constant pressure.

Therefore, on ∂Ω the following dimensionless boundary conditions are given:

∂ΩC : θ = 0;
∂ΩH : θ = 1;

∂Ω : ψ =
∂ψ
∂n = U = V = 0,

(2)

where n is the outward normal to boundary ∂Ω.
Boundary conditions for the vorticity function ζ are not defined explicitly and are usually

approximated by its Taylor series expansion in the neighborhood of the boundary.
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4. Generalized Numerical Procedure

First of all, before applying common variational techniques considered in [38,39], we should pass
from inhomogeneous boundary conditions (2) to homogeneous ones by introducing the new function:

θ̃ = θ−Φ, (3)

where Φ is a continuous function which is equal to unity on the part ∂ΩH and vanishes on ∂ΩC.
Function Φ can be constructed in the way similar to that for the traditional Lagrange interpolation
polynomial but here instead of interpolation points we take corresponding segments of the boundary.
This technique also is called the transfinite interpolation [40].

Hereinafter, to avoid cumbersome designations, we shall denote:

θ ≡ θ̃.

Thus, we get:
1
Pr∇

2θ−
(
U ∂θ
∂X + V ∂θ

∂Y

)
= − 1

Pr∇
2Φ + U ∂Φ

∂X + V ∂Φ
∂Y ;

∇
2ζ−

(
U ∂ζ
∂X + V ∂ζ

∂Y

)
= −Gr ·

(
∂θ
∂Y + ∂Φ

∂Y

)
;

∇
2ψ = −ζ; U =

∂ψ
∂Y , V = −

∂ψ
∂X ;

(4)

∂Ω : θ = ψ =
∂ψ

∂n
= U = V = 0. (5)

Equations of System (4) can be solved iteratively:

1
Pr∇

2θ(k) −
(
U(k−1) ∂θ(k)

∂X + V(k−1) ∂θ(k)
∂Y

)
= − 1

Pr∇
2Φ + U(k−1) ∂Φ

∂X + V(k−1) ∂Φ
∂Y ;

∇
2ζ(k) −

(
U(k−1) ∂ζ(k)

∂X + V(k−1) ∂ζ(k)
∂Y

)
= −Gr

(
∂θ(k)

∂Y + ∂Φ
∂Y

)
;

∇
2ψ(k) = −ζ(k); U(k) =

∂ψ(k)

∂Y , V(k) = −
∂ψ(k)

∂X ; (k = 1, 2, . . .).

(6)

Initial approximations ζ(0), ψ(0), U(0), V(0) must be given. If ζ(0) = ψ(0) = U(0) = V(0) = 0,
then after the first step (k = 1) we obtain the solution to the stationary heat diffusion problem
without convection.

The iterative process (6) stops when some convergence conditions are fulfilled, for example,∣∣∣∣∣∣θ(k+1)
− θ(k)

∣∣∣∣∣∣
L2(Ω)∣∣∣∣∣∣θ(k+1)

∣∣∣∣∣∣
L2(Ω)

≤ ε << 1. (7)

In a number of variational and projection techniques [6,38,39], approximations to θ(k) at each
iterative step are found in the form of truncated generalized Fourier series with respect to functions of
some basis

{
fn
}N
n=0:

θ(k) ≈
N∑

n=0

c(k)n fn, (8)

where c(k) = (c(k)0 , c(k)1 , . . . , c(k)N ) are undefined coefficients.
In addition to their differentiability, all functions fn must vanish on the boundary, i.e.,

∂Ω : fn = 0, n = 0, . . . , N. (9)

From Equation (9) it follows that approximation (8) at any iterative step will also satisfy the
homogeneous boundary condition (5) for θ exactly.
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Leonid Kantorovich [38] proposed the following technique for constructing a functional basis
satisfying Equation (9). First we should take an arbitrary basis system of functions {χn}

N
n=0. There may

be algebraic or trigonometric polynomials, splines, etc. Then a functionω(X, Y) is constructed such that
ω > 0 inside Ω; ω < 0 outside Ω ∪ ∂Ω; ω = 0 and |∇ω|2 , 0 on ∂Ω. For simple domains, for example
circular, these functions are trivial, but the common approach to obtaining analogous expressions for
arbitrary domains was developed by V. Rvachev [10]. This approach (the R-functions method—RFM)
will be considered in the next section.

Then we take the new system of functions

fn ≡ ωχn, n = 0, . . . , N, (10)

which, due to the properties of the function ω, satisfy the conditions (9).
Taking into account Equation (9), Equation (8) can be written as:

θ(k) ≈
N∑

n=0

c(k)n fn = ω
N∑

n=0

c(k)n χn. (11)

To strictly obey conditions (5) for the stream function, we must take another basis
{
ω2χn

}N

n=0
with

undefined coefficients e(k) = (e(k)0 , e(k)1 , . . . , e(k)N ):

ψ(k)
≈

N∑
n=0

e(k)n ω fn = ω2
N∑

n=0

e(k)n χn. (12)

Then the velocity components will be expressed as

U(k) =
N∑

n=0

e(k)n
∂(ω fn)
∂Y

, V(k) = −
N∑

n=0

e(k)n
∂(ω fn)
∂X

. (13)

Substituting Equation (12) into the left-hand side of the third equation of system (4), we obtain a
vorticity function expansion:

ζ(k) ≈
N∑

n=0

d(k)n ∇
2(ω fn). (14)

The latter expression may be considered as a representation of the vorticity function with respect
to the set of basic functions ∇2(ω fn) with a set of unknown coefficients d(k) = (d(k)0 , d(k)1 , . . . , d(k)N ):

d(k)n = −e(k)n , n = 0, . . . , N. (15)

Thus, it is necessary to solve recurrently only two equations of System (6) to find coefficients c(k)n

and d(k)n . It should also be noted here that Equation (14) provides us an expression for the vorticity
functions without the necessity to approximate additionally its boundary values.

At each iteration, the realization of various numerical techniques requires different procedures of
reducing an original problem to a corresponding system of linear algebraic equations (SLAE) with
respect to unknown vectors c(k) and d(k). Here we propose to use an approach on the base of the
Petrov–Galerkin procedure [6].

At the first step, we find the components c(k)n by the Galerkin technique. Substituting Equation (11)
into the first equation of (6), we obtain the residual:

δ
(k)
θ

=
N∑

n=0

c(k)n

(
1
Pr
∇

2 fn −U(k−1) ∂ fn
∂X
−V(k−1) ∂ fn

∂Y

)
− F(k−1)

θ
. (16)
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Here the right-hand part is

F(k−1)
θ

= −

(
1
Pr
∇

2Φ −U(k−1) ∂Φ
∂X
−V(k−1) ∂Φ

∂Y

)
.

One must choose the set of coefficients c(k)n minimizing residual (16). In the Galerkin scheme,
the orthogonality of δθ to all functions of the system

{
fn
}N
n=0 in space L2(Ω) is required, i.e.,∫

Ω

δ
(k)
θ

fmdσ = 0, m = 0, . . . , N, (17)

where dσ ≡ dXdY.
Substituting Equation (16) in Equation (17), we get the SLAE with respect to elements of the

vector c(k):

(A +
^
A
(k−1)

)c(k) = b +
^
b
(k−1)

, (18)

where components of matrices A,
^
A
(k−1)

and vectors b,
^
b
(k−1)

are determined respectively as:

am,n = 1
Pr

∫
Ω

fm∇2 fndσ = − 1
Pr

∫
Ω
∇ fm∇ fndσ,

^
a
(k−1)
m,n = −

∫
Ω

fm
(
U(k−1) ∂ fn

∂X + V(k−1) ∂ fn
∂Y

)
dσ;

bm = − 1
Pr

∫
Ω

fm∇2Φ dXdY = 1
Pr

∫
Ω
∇ fm∇Φ dσ,

^
b
(k−1)

m = −
∫
Ω

fm
(
U(k−1) ∂Φ

∂X + V(k−1) ∂Φ
∂Y

)
dσ;

m, n = 0, . . . , N.

(19)

Some optimization of Equation (19) can be done to decrease the time for computations.
Then we pass to finding coefficients of expansion (14). Analogously to the previous case, we write

the corresponding residual for the second equation of the System (6) as:

δ
(k)
ζ

=
N∑

n=1

d(k)n

(
∇

2
∇

2(ω fn) −U(k−1) ∂
∂X
∇

2(ω fn) −V(k−1) ∂
∂Y
∇

2(ω fn)
)
− F(k)

ζ
, (20)

where

F(k)
ζ

= −Gr ·
(
∂θ(k)

∂Y
+
∂Φ
∂Y

)
.

To find coefficients d(k)n , we make an orthogonal projection of the residual (20) to all functions of
the basis

{
fn
}N
n=0 that is the main idea of the Petrov–Galerkin method [6]:∫

Ω

fmδ
(k)
ζ

dσ = 0, m = 0, . . . , N. (21)

Finally we obtain the following SLAE for d(k):

(W +
^
W

(k−1)
)d(k) = z +

^
z
(k)

, (22)
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where
wm,n =

∫
Ω

fm∇2
∇

2(ω fn)dσ;

^
w
(k−1)
m,n = −

∫
Ω

fm
(
U(k−1) ∂

∂X∇
2(ω fn) + V(k−1) ∂

∂Y∇
2(ω fn)

)
dσ;

zm = −Gr
∫
Ω

fm ∂Φ
∂Y dσ;

^
z
(k)
m = −Gr

∫
Ω

fm ∂θ(k)

∂Y dσ, m, n = 1, . . . , N.

(23)

Integrals in Equations (19) and (23) can be evaluated numerically, and differential operators are
approximated with their finite-difference analogs.

5. R-Functions Method and Transfinite Interpolation

The RFM [10] allows all prescribed boundary conditions to be satisfied exactly at all boundary
points. The R-functions are real-valued functions that behave as continuous analogs of logical Boolean
functions. With R-functions, it became possible to construct functions with prescribed values and
derivatives at specified locations. Furthermore, the constructed functions possess desired differential
properties and may be assembled into a solution structure that is guaranteed to contain solutions to the
posed boundary value problems. For example, the homogeneous Dirichlet conditions may be satisfied
exactly by representing the solution as the product of two functions: (i) a real-valued R-function that
takes on zero values at the boundary points; and (ii) an unknown function that allows one to satisfy
(exactly or approximately) the differential equation of the problem.

A function f (x, y) is called an R-function if its sign is completely determined by the signs (but not
magnitudes) of its arguments.

The most popular system of R-functions is the system with R-operations (R-conjunction,
R-disjunction, and R-negation) defined in the following way:

x∧ y ≡ x + y−
√

x2 + y2,
x∨ y ≡ x + y +

√
x2 + y2,

x ≡ −x.
(24)

The above R-functions correspond to the Boolean logic functions ∧, ∨, ¬ in a piecewise sense
and allow constructing normalized implicit functions for complex-shaped geometric objects. Let the
geometric domain Ω = B(ΩC, ΩH) be constructed as a Boolean (union and intersection) combination
of primitive regions ΩC, ΩH, defined by real-valued functional inequalities ωC(x, y) > 0, ωH(x, y) > 0
respectively. If f is an R-function corresponding to the Boolean function B, then the implicit function of
the resulting geometric domain is immediately given by Ω = [ f (ωC,ωH) > 0]. The function f (ωC,ωH)

is negative outside of Ω and the equation f (ωC,ωH) = 0 defines the boundary ∂Ω of the domain Ω.
It is known that the equation of the boundary ∂Ω ( f = 0) is called normal if the value of f (x, y)

is equal to the Euclidean distance from the point (x, y) to the boundary ∂Ω. Similarly a function f
that coincides with the normal function only on the boundary ∂Ω is called normalized and has a
property that:

∂ f
∂n

∣∣∣∣∣
∂Ω

= −1. (25)

If both implicit functions, ωC,ωH, are normalized on the boundaries ΩC, ΩH respectively then
all of the R-functions above preserve this property, and the function f (ωC,ωH) is normalized on the
whole boundary ∂Ω.
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With the help of R-functions, it is possible to make the transfinite interpolation, i.e., to construct a
continuous expression satisfying different conditions on boundary parts∂ΩC, ∂ΩH. Here, the “bonding”
operation for boundary conditions must be used. For example, the function:

Φ =
θHωC + θCωH

ωC +ωH
(26)

satisfies the conditions
Φ|∂ΩC = θC, Φ|∂ΩH = θH. (27)

The latter expression is a generalized analog of the Lagrange interpolation formula and allows us
to pass from inhomogeneous boundary conditions to homogeneous ones.

The detailed justification of the RFM with Galerkin technique in connection with solving the
natural convection problem in enclosure regions is presented in [12,41,42]. In particular, the natural
convection in presence of local heat is investigated in [12]. This justification is based on variational
principles [43] and is appropriate for the wide class of bases composed of both spectral and compactly
supported functions.

It is convenient to take normalized functions due to the fact that with them it is easier to evaluate
some important differential characteristics of the solution, in particular, the Nusselt number, Nu. The local
Nusselt number at a point of boundary ∂Ω is expressed as:

Nu|∂Ω = −
∂θ
∂n

∣∣∣∣∣
∂Ω

. (28)

Taking into account Equations (3) and (11) and properties of the normalized function ω, we can
write that:

Nu|∂Ω = − ∂
∂n

(
ω

N∑
n=0

c(k)n χn + Φ
)∣∣∣∣∣∣
∂Ω

= −

(
∂ω
∂n

N∑
n=0

c(k)n χn +ω
N∑

n=0
c(k)n

∂χn
∂n + ∂Φ

∂n

)∣∣∣∣∣∣
∂Ω

=

(
N∑

n=0
c(k)n χn −

∂Φ
∂n

)∣∣∣∣∣∣
∂Ω

. (29)

Substituting Equation (26) into Equation (29) and taking into account properties of the normalized
functions ωC,ωH, we get:

∂Φ
∂n

∣∣∣∣∣
∂Ω

=
∂
∂n

(
θHωC + θCωH

ωC +ωH

)∣∣∣∣∣∣
∂Ω

=
1

ωC +ωH

[(
θH

∂ωC
∂n

+ θC
∂ωH

∂n

)
−Φ

(
∂ωC
∂n

+
∂ωH

∂n

)]∣∣∣∣∣∣
∂Ω

.

Therefore on each part of the boundary ∂Ω we have the simple expressions:

∂Φ
∂n

∣∣∣∣∣
∂ΩC

= (θC − θH)
1
ωH

∣∣∣∣∣
∂ΩC

,
∂Φ
∂n

∣∣∣∣∣
∂ΩH

= (θH − θC)
1
ωC

∣∣∣∣∣
∂ΩH

, (30)

and

Nu|∂ΩC =
N∑

n=0

c(k)n χn|∂ΩC
+ (θH − θC)

1
ωH

∣∣∣∣∣
∂ΩC

, Nu|∂ΩH =
N∑

n=0

c(k)n χn|∂ΩC
+ (θC − θH)

1
ωC

∣∣∣∣∣
∂ΩH

. (31)

Average Nusselt numbers on boundaries ∂ΩC, ∂ΩH are found by integration of local Nusselt
numbers along corresponding contours:

Nu
∣∣∣
∂ΩC

=
1
|∂ΩC|

∫
∂ΩC

Nuds, Nu
∣∣∣
∂ΩH

=
1
|∂ΩH |

∫
∂ΩH

Nuds. (32)
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6. Numerical Experiment

Consider the model boundary value problem in circular annulus (Figure 3a) with boundary conditions:

X2 + Y2 = Ri : θ = 1, ψ =
∂ψ
∂n = U = V = 0;

X2 + Y2 = Ro : θ = ψ =
∂ψ
∂n = U = V = 0.

(33)

The common way to obtain a function describing the boundary of the domain shown in Figure 3b
is the use of R-conjunction operation:

ω = ωC ∧ωH = ωC +ωH −

√
ω2

C +ω2
H. (34)

For the circular annulus, expressions for “hot” and “cold” parts of the boundary can be written
as follows:

ωH(X, Y) = −
1

2Ri

(
R2

i −X2
−Y2

)
, ωC(X, Y) =

1
2Ro

(
R2

o −X2
−Y2

)
. (35)

Here, the normalizing terms 1/(2Ri/o) are taken to provide the normalized functions ωC,ωH

whose values, as well as values of ω, are close to the distances to corresponding boundaries at points
located in their vicinity.

At first glance, for such a simple domain as shown in Figure 3a, by analogy with the approach
proposed in [38,39], one would take instead of Equation (34) another expression:

ω = ωCωH = −
(
R2

i −X2
−Y2

)(
R2

o −X2
−Y2

)
. (36)

However, this way of constructing the function ω is restricted by the narrow class of domains
(eccentric circular annuli, elliptic annuli, etc.) and it is inappropriate, for example, for annular domains
with more complicated inner boundaries (triangular, rectangular, et al. [44,45]). Additionally, due to
the fact that the function (36) is not normalized, namely,

∂ω
∂n

∣∣∣∣∣
∂ΩC

= ωH |∂ΩC ,
∂ω
∂n

∣∣∣∣∣
∂ΩH

= ωC|∂ΩH
,

we shall obtain more complicated formulae for the local Nusselt numbers than Equation (31) while the
application of functions (35) yields the following expressions:

Nu|∂ΩC =
N∑

n=0
c(k)n χn|∂ΩC

+ 2Ro
θH−θC
R2

o−R2
i

, Nu|∂ΩH =
N∑

n=0
c(k)n χn|∂ΩH

+ 2Ri
θC−θH
R2

o−R2
i

;

Nu
∣∣∣
∂ΩC

=
N∑

n=0
c(k)n

∫
∂ΩC

χnds + 2Ro
θH−θC
R2

o−R2
i

, Nu
∣∣∣
∂ΩH

=
N∑

n=0
c(k)n

∫
∂ΩH

χnds + 2Ri
θC−θH
R2

o−R2
i

.

With the help of the transfinite interpolation (26), we pass to the problem with homogeneous
boundary conditions:

Φ =
ωC

ωH +ωC
. (37)

In this work, we take the basis of multiquadric RBF (MQ-RBF) which is often used in various
meshless techniques [18,19]:

χn(X, Y) =

√(
X −Xi(n)

)2
+

(
Y −Y j(n)

)2
+ α2, (38)

where
(
Xi(n)Y j(n)

)
are the centers of functions χn and α is their shape parameter. For simplicity we

take
(
Xi(n)Y j(n)

)
as knots of a regular two-dimensional square mesh with widths hX = hY = α.



Appl. Sci. 2020, 10, 8373 11 of 17

Instead of the latter representation we may construct 2D MQ-RBF by means of the tensor product:

χn(X, Y) =

√(
X −Xi(n)

)2
+ α2 ·

√(
Y −Y j(n)

)2
+ α2. (39)

We used both formulae, (38) and (39), and numerical experiments demonstrated that from the
point of view of computation costs and accuracy they are almost equivalent.

To define the appropriate parameters of our technique, we tested it on the problem of the stationary
heat diffusion problem in the annulus cavity, whose stationary axisymmetric analytical solution is:

T(r) = TC + (TH − TC)

1−
ln

(
R−1

i

)
ln

(
RoR−1

i

) . (40)

Figure 4 illustrates temperature isolines for stationary heat transfer problem in circular annulus with
differentratiosbetweeninnerandouterradii, whichare ingoodaccordancewiththesolution(40). Only36basic
functions were taken with centers in knots of the square regular mesh. Numerical integration was
realized by the two-dimensional method of trapezoids on the regular rectangular mesh of 32 × 32 nodes.
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Figure 4. Temperature isolines for different ratios: Ri = Ro/2.6 (a); Ri = Ro/10 (b).

The geometrical and thermophysical parameters were as follows:

Ro = 1.5 mm; TH = 535 K, TC = 300 K;

ρ = 0.54 kg/m3, cp = 1000 J/(kg ·K), ν = 3.2 · 10−5 m2/s, β = 1.5 · 10−3 K−1.

Relative errors between approximate and exact solutions in L2-norm were ε ≈ 4 · 10−4 for
Ri = Ro/2.6 and ε ≈ 7 · 10−3 for Ri = Ro/10. Table 1 presents the relative error as a function of the
number of mesh nodes. The same resuls are shown in Figure 5 in logarithmic scale.

Table 1. Relative errors between approximate and analytical solutions as a function of the number of
mesh nodes along each direction (Ri = Ro/10).

Number of Nodes 2 4 6 8 10 12

Relative error 0.019 0.012 7.3 × 10−3 4.3 × 10−3 2.6 × 10−3 1.5 × 10−3



Appl. Sci. 2020, 10, 8373 12 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 16 

 
 

(a) (b) 

Figure 4. Temperature isolines for different ratios: i o / 2.6R R=  (a); i o / 10R R=  (b). 

The geometrical and thermophysical parameters were as follows: 

o 1.5 mm;R =  535 K, 300 K;H CT T= =   
3 5 2 3 1

p0.54 kg/ m , 1000 J/ (kg K), 3.2 10 m / s, 1.5 10 K .cρ ν β− − −= = ⋅ = ⋅ = ⋅   

Relative errors between approximate and exact solutions in 2L -norm were 44 10ε −≈ ⋅  for 

i o / 2.6R R=  and 37 10ε −≈ ⋅  for i o / 10R R= . Table 1 presents the relative error as a function of the 
number of mesh nodes. The same resuls are shown in Figure 5 in logarithmic scale. 

Then we studied the stationary convective-diffusive heat transfer. For this set of parameters, we 
have Pr ≈ 0.67. In the case of a circular annulus, the characteristic length L in the expression for the 
Grashof number is equal to iR , i.e., 3 2

iGr ( ) /H CT T Rβ ν= Γ − . 
To increase the accuracy, instead of an expression (37) for “bonding” function Φ, we can take 

immediately the stationary heat diffusion distribution (40): 

( )1 2 2
i

1
o i

ln
( , ) ( ) 1

ln( )C H C

R X Y
X Y T T T

R R

−

−

 + Φ = + − − 
 
 

.  

Table 1. Relative errors between approximate and analytical solutions as a function of the number of 
mesh nodes along each direction ( i o / 10R R= ). 

Number of Nodes 2 4 6 8 10 12 
Relative error 0.019 0.012 7.3·× 10−3 4.3·× 10−3 2.6·× 10−3 1.5·× 10−3 

 
Figure 5. Logarithmic plot of the relative error between approximate and analytical solutions as a
function of the number of mesh nodes along each direction (Ri = Ro/10).

Then we studied the stationary convective-diffusive heat transfer. For this set of parameters,
we have Pr ≈ 0.67. In the case of a circular annulus, the characteristic length L in the expression for the
Grashof number is equal to Ri, i.e., Gr = Γβ(TH − TC)R3

i /ν2.
To increase the accuracy, instead of an expression (37) for “bonding” function Φ, we can take

immediately the stationary heat diffusion distribution (40):

Φ(X, Y) = TC + (TH − TC)

1−
ln

(
R−1

i

√
X2 + Y2

)
ln(RoR−1

i )

.

Figures 6 and 7 illustrate temperature and streamfunction isolines for both configurations
respectively. Temperature distributions along the symmetry axis OX are shown in Figure 8.
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Our results were compared with a well-known asymptotic solution obtained by Hodnett [24] and
Mack and Bishop [25]:

T(r,ϕ) = T(r) + (TH − TC)Ra f
(

r
Ri

)
sinϕ. (41)

Here the first, “diffusive”, term is defined by Equation (40) and the second, “convective”, term is
expressed by a rather cumbersome formula for function f with a set of coefficients presented, for example,
in [24].

It observed a good correspondence between the results obtained by means of our semi-analytical
approach on the base of MQ-RFM and representation (41) (within the restrictions imposed on the
asymptotic solution: the inner cylinder radius Ri and the temperature difference (TH − TC)/TC should
be small enough). Our method demonstrated a very high rate of convergence. For example, in the case
Ri = Ro/2.6, the relative error between approximate and analytical solutions became less than 1 · 10−2

after only two iterations. Here, Nu
∣∣∣
∂ΩC
≈ 242.5, Nu

∣∣∣
∂ΩH
≈ 238.6, with relative errors between 1 · 10−2

and 3 · 10−2 respectively as compared with those evaluated with using expression (41) which gives us
Nu

∣∣∣
∂ΩC

= Nu
∣∣∣
∂ΩH

= 245.9.
The obtained temperature profiles are also in good accordance with both experimental and

numerical results obtained in the work of Garraud [36]. However, in her work, to obtain an appropriate
accuracy, either a uniform finite-element grid must be used with 11,000 nodes or an adaptive
non-uniform grid with 2000 nodes. At the same time, our approach provides a semi-analytical solution
with the same accuracy in the form of a series of 36 terms only with respect to very simple 2D MQ-RBFs (38).

Beside temperature profiles, the temperature difference between two opposite points along the
sensitivity axis OX was evaluated (Figure 9) to find an optimum relative position X∗ = X(∆Tmax) of
sensors of a TA with respect to the inner radius. The relative position is as follows:

X∗ −Ri
Ro −Ri

≈ 0.375.

The sensitivity S was evaluated as a function of temperature difference ∆Tmax from external
acceleration Γ = Γ(g), where g is acceleration of gravity (g ≈ 9.8 m/s2) (Figure 10). A linear part of
these dependence between Γ = 0 and Γ = 1000 g corresponds to the range of “small” and “medium”
accelerations and shortens as Ri decreases.
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It does not depend on Ra number and almost coincides with the theoretical estimation according
to Hodnett’s model (41) as well as to numerical and experimental data [36].
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 16 

 
Figure 10. Plot of maxTΔ  vs. external acceleration Γ = Γ(g) ( i o /10R R= ); the sensitivity S on the linear 

part between 0 and 1000 is about 0.128 °C/(m/s2). 

The same shape of the plots, with the steep linear slope in the range of “small” accelerations, 
maximum achieved at “medium” accelerations, and smooth deceleration at “high” accelerations, was 
observed experimentally [36]. In that work, the sensitivity S = 0.157 °C/g was measured in the interval 
between Γ = 0 and Γ = 500 g for the sensor with o 750 μmR = , 50 μmiR = . It should be noted that 
increase of acceleration to the values greater than some hundred g yields the turbulence phenomenon 
[46] which can explain partially the behavior of S(Γ) plot. However, the simplified RFM-Galerkin 
scheme proposed in this article has low accuracy for such case and requires further modification to 
simulate turbulent flows. The results shown in Figure 10 and corresponding to values Γ > 1000 g can 
only be considered qualitatively. 

7. Conclusions 

The new modification of the Galerkin method for solving stationary convection-diffusion 
problems in arbitrarily-shaped domains was proposed. It is based on the combined use of the RFM 
with Boolean representation of the domain boundary and the Petrov-Galerkin iteration procedure 
with multiquadric RBFs. Numerical experiments showed the high accuracy and high rate of 
convergence of the novel approach. The semi-analytical solution was obtained in a closed form of the 
series with respect to MQ-RBFs and it satisfied the boundary conditions exactly. The technique was 
applied to the well-studied benchmark problem of convection in the circular annulus, which is the 
simplest model of the thermal accelerometer. The obtained results were in good accordance with 
experimental data, numerical and asymptotic solutions. MQ-RFM can be applied directly for 
evaluation of thermal fields in more complicated domains and easily generalized to the case of other 
types of boundary conditions including mixed ones in different parts of the boundary. For analytical 
investigation of bandwidth, a transient study based on a combination of MQ-RFM and the Rothe 
method can be realized by analogy with [11]. As for solving 3D problems, it should be noted that, 
with the help of RFM it is possible to describe any 3D object geometry. However, we cannot directly 
transfer the technique described in the article to 3D problems due to difficulties in extending the 
vorticity-stream function formulation to the multidimensional case [47]. 
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Figure 10. Plot of ∆Tmax vs. external acceleration Γ = Γ(g) (Ri = Ro/10 ); the sensitivity S on the linear
part between 0 and 1000 is about 0.128 ◦C/(m/s2).

The same shape of the plots, with the steep linear slope in the range of “small” accelerations,
maximum achieved at “medium” accelerations, and smooth deceleration at “high” accelerations,
was observed experimentally [36]. In that work, the sensitivity S = 0.157 ◦C/g was measured in the
interval between Γ = 0 and Γ = 500 g for the sensor with Ro = 750 µm, Ri = 50 µm. It should be
noted that increase of acceleration to the values greater than some hundred g yields the turbulence
phenomenon [46] which can explain partially the behavior of S(Γ) plot. However, the simplified
RFM-Galerkin scheme proposed in this article has low accuracy for such case and requires further
modification to simulate turbulent flows. The results shown in Figure 10 and corresponding to values
Γ > 1000 g can only be considered qualitatively.

7. Conclusions

The new modification of the Galerkin method for solving stationary convection-diffusion problems
in arbitrarily-shaped domains was proposed. It is based on the combined use of the RFM with Boolean
representation of the domain boundary and the Petrov-Galerkin iteration procedure with multiquadric
RBFs. Numerical experiments showed the high accuracy and high rate of convergence of the novel
approach. The semi-analytical solution was obtained in a closed form of the series with respect to
MQ-RBFs and it satisfied the boundary conditions exactly. The technique was applied to the
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well-studied benchmark problem of convection in the circular annulus, which is the simplest model
of the thermal accelerometer. The obtained results were in good accordance with experimental data,
numerical and asymptotic solutions. MQ-RFM can be applied directly for evaluation of thermal fields
in more complicated domains and easily generalized to the case of other types of boundary conditions
including mixed ones in different parts of the boundary. For analytical investigation of bandwidth,
a transient study based on a combination of MQ-RFM and the Rothe method can be realized by analogy
with [11]. As for solving 3D problems, it should be noted that, with the help of RFM it is possible to
describe any 3D object geometry. However, we cannot directly transfer the technique described in the
article to 3D problems due to difficulties in extending the vorticity-stream function formulation to the
multidimensional case [47].
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