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Featured Application: The Climate conditions as factors in the equations and random values will
be incorporated into the featured application for future research model.

Abstract: The nature and characteristics of free-burning wildland fires have significant economic,
safety, and environmental impacts. Additionally, the increase in global warming has led to an increase
in the number and severity of wildfires. Hence, there is an increasing need for accurately calculating
the probability of wildfire propagation in certain areas. In this study, we firstly demonstrate that the
landscapes of wildfire propagation can be represented as a scale-free network, where the wildfire
is modeled as the scale-free network whose degree follows the power law. By establishing the
state-related concepts and modifying the Binary-Addition-Tree (BAT) together with the PageRank,
we propose a new methodology to serve as a reliable tool in predicting the probability of wildfire
propagation in certain areas. Furthermore, we demonstrate that the proposed maximum-state
PageRank used in the methodology can be implemented separately as a fast, simple, and effective
tool in identifying the areas that require immediate protection. The proposed methodology and
maximum-state PageRank are validated in the example generated from the Barabási-Albert model in
the study.

Keywords: wildfire; fire model; model performance; PageRank; binary-addition tree (BAT); states;
maximum-state; scale-free network; Barabási-Albert model

1. Introduction

The network research is very popular and has been applied to research in many fields [1–38].
Recently, wildfires have seen unbelievable growth in size, frequency, and complexity. As defined
in [28], wildfire is a non-structure and non-prescribed that occurs in wildlands. Wildfires often ignite
close to wildland-human boundaries, resulting in severe damage to assets [28–30], air pollution [31,32],
loss of plants and forest [33–35], and high fatalities [36,37]. With global warming, a 1◦ increase in
the climatic temperatures causes a 15% growth in wildfires [38]; the wildfires in turn increase the
temperature, thereby further increasing the number of wildfires, forming an infinite loop [28,38].

Wildfire is a severe practical problem [28,38], and does not always occur in the same area, such as a
town or city, but expands to the neighboring areas, and is affected by weather conditions, e.g., wind, rain,
etc., and location surface, such as forest or lake [36]. Hence, unlike the traditional path problem [39],
which states that all events occur in a path, and the spanning tree problem [40], which has fixed
destinations, the wildland fire problem requires a new algorithm to estimate its occurrence and the
possible results of its propagation [32–34].

Several deterministic and probabilistic models have been proposed to predict the wildfire
propagation from node-to-node (cell/city/area) [28–38]. Among them, graph-based methodologies,
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including the path-based and tree-based methodologies, are popular [32–34]. Furthermore, many
probabilistic wildfire propagation models have been proposed based on the continuous-time Markov
chain [41].

The path-based algorithms [32–34] focus on identifying the deterministic or stochastic paths
with the shortest distance, minimal travel time, or high probability. The tree-based algorithms
emphasize on one-source to many-targets and one ignition to many different and known nodes,
rather than the one-source to one-target, i.e., from ignition to another target, which is the basis
of path-based algorithms [39,40]. The tree-based algorithms include all cellular automata-related
algorithms. Furthermore, the path-based and tree-based algorithms require the final destination
information [32–34,39,40].

Free-burning wildfire propagation exhibits extremely inconstant and chaotic behaviors [32,35,41].
In this study, we demonstrate that the wildfire propagations can be modeled as a scale-free
network [42,43], which is a common and effective method to depict complex systems. To the best of
our knowledge, this is the first time that the wildfire propagations are modeled as scale-free networks
among the existing literature.

Many practical and important networks are scale-free networks where the node degree [42–45],
i.e., the number of edges connected to a node, follows an asymptotical power-law distribution [44].
A model of the scale-free network is a scale-free model [42]. Several examples of the study and
use of scale-free networks are available and include the sharing of information among nodes in the
network via links, such as the world wide web, protein-interaction networks, metabolic networks for
eukaryotes and bacteria, co-authorship/collaborative network, and power grid of the western United
States [42–45].

Among the different models of scale-free [45] networks, the Barabási-Albert model [45] is the
most popular with numerous variations and generalizations [45]. Hence, the Barabási-Albert model is
used to model the propagation characteristic property of the wildland fire and generate test data to
validate the performance of the proposed algorithm.

The Binary-Addition-Tree (BAT) proposed by Yeh [46] is similar to the depth-first-search
(DFS) [22,47,48], breadth-first-search (BFS) [49–51], universal generating function methodology
(UGFM) [22,43–53], etc. However, BAT is easier to understand and convenient to code. The most
important advantage of BAT is its flexible unique search procedure, and its valuable and easy
implementation [46]. Hence, it has been adapted to solve the proposed wildfire propagation.

This study aims to calculate the probability of the wildfire propagation areas and quickly
determine the areas that require immediate protection. Using the proposed novel state concepts and
traditional PageRank, whose details are provided in Section 2.3, this study proposes an innovative
methodology based on BAT [46] and PageRank [54,55] to predict the probable areas affected by the
wildfire propagation that is modeled using the scale-free network generated from the Barabási-Albert
model [45] and assess the risk of wildfire spread. Furthermore, the proposed maximum-state PageRank
is implemented to quickly identify the node that requires immediate protection.

The rest of this study is organized as follows. An overview of the wildfire propagation models,
scale-free networks [42–45], Barabási-Albert model [45], and BAT [46] are presented in Section 2.
The pseudo-code, details of the BAT in solving the given problem, and discussion regarding the
novelty of the proposed BAT, innovative states, state PageRank, state probability, and maximum-state
PageRank are presented in Section 3. An experiment is presented in Section 4 to demonstrate the
applicability of the proposed BAT. Furthermore, the analytical results are reported in this section.
Section 5 concludes and summarizes the discussion.

2. Overview of Wildfire Propagation, Scale-Free Network, Barabási-Albert Model, and BAT

Viegas [56] indicated that there are many factors involved in the wildfire, and there are no general
models yet available to perform this task with a sufficient degree of accuracy and reliability. There is a
wide range of fire propagation models, ranging from the empirical to the physical [57,58]. The wildfire
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propagation area estimation problem was modeled as a scale-free network using the Barabási-Albert
model [45] and solved by modifying the BAT [46]. Therefore, before deliberating the proposed BAT,
a general background of the wildfire propagation [28,38], scale-free network [15–45], Barabási-Albert
model [45], and BAT [46] are presented in this section.

2.1. Wildfire Propagation

The landscape is mapped into an undirected binary-state network G(V,E), where V is the set of
nodes representing towns, cities, forests, etc., and E is the set of undirected links connecting the nodes in
V, such that two neighboring nodes are connected by an undirected link. Each node exhibits two states:
with or without wildfire, and each link is assumed to be always perfect without any possible failure.

For example, Figure 1 illustrates a landscape network representing eight areas labeled 0–7 with
15 links connecting these nodes, e.g., nodes 3 and 7 are neighboring areas as there is a link between the
two nodes.

Figure 1. Example network.

The scale-free network grows independent of the number of nodes, i.e., the size of the network
and underlying structure remains the same. The propagation of wildfire satisfies this property, and is
thus considered as a scale-free model in this study. In this subsection, the model of the wildfire
propagation is further modeled as a scale-free model with three prospects: ignition and spread of
wildfire, probability of burning, and fire head intensity.

The ignition and spread of wildfire exhibit a high correlation with heat diffusion, which is a
general observed natural phenomenon [59] and can be studied as a scale-free network. Heat diffusion is
observed from high-temperature regions to lower temperature regions and this phenomenon is observed
in the propagation of wildfire. Therefore, recently, heat diffusion has been implemented to model
numerous networks whose information or flow is shared and propagated on online social networks.

From the MedSpread model, the probability of burning is defined in [31] as

P = (1 − e−r)p (1)

where r is the spread rate and p is the fire intensity, representing the relation between the fire spread
and the probability of burning. Equation (1) is similar to the power functions.

The fire head intensity q (kW/m) is the rate of energy release per unit length of the fire head
(kW/m). Regardless of the depth of the fire and fuel characteristics, q is calculated as follows [36]:

q = 260 L2.174 (2)

where L is the flame length (m). Equation (2) is a power function.
Any model that follows the power law can be considered as a scale-free model, as reported in [44].

From the aforementioned heat diffusion and Equations (1) and (2), the wildfire propagation can be
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modeled as a scale-fee network. Hence, we adopt the scale-free model to estimate the possible affected
areas during wildfire propagation.

2.2. Scale-Free and Barabási-Albert Model

In scale-free networks [42–45], the node degree follows a power-law distribution [44], such that
the network size is independent of the scale. Hence, the node degree is the core of a scale-free network.
Two different nodes are observed in scale-free networks: hub nodes and non-hub nodes, wherein the
degrees of the nodes are greater than and less than a certain threshold, respectively [44].

The scale-free networks adopted here are generated from a minimal model called the
Barabási-Albert model proposed by Barabási and Albert in 1999 [45]. Inspired by the observation that
World Wide Web (WWW) exhibits power-law (or scale-free) degree distributions, the Barabási-Albert
model [45] was proposed as the first scale-free model in developing the network based on the following
two steps:

STEP B1. Growth: Nodes are individually added into the network such that the network size,
i.e., the number of nodes, increases over time.

STEP B2. Preferential attachment: The probability of the newly added node being connected with an
old node is dependent on the degree of the old node.

Growth and preferential attachment are extremely common in existing real-life networks. Growth
indicates that the network grows from time to time by adding new nodes, and preferential attachment
describes the growth of the network, i.e., the connection between new nodes and old nodes [45].
Furthermore, STEP B2 indicates that the degree of nodes follows the power law and preferential
attachment is a probabilistic mechanism [45].

We assume that the number of nodes is n: 0, 1, 2 . . . , (n − 1), Deg(i) is the degree of node i,
and Pr(i) is the probability that a new node is connected to node i. STEP B2 is based on Pr(i) to predict
the probability of the new node being added to the network in connection with node i. Pr(i) can be
defined as

Pr(i) =
Deg(i)

n−1∑
j=0

Deg( j)
(3)

It can be seen from Equation (3) that in the scale-free network, most of the nodes are non-hub
nodes with a few links. Based on Step B2, a few high-degree non-hub nodes can gradually transform
into hubs because new nodes are more likely to connect with them [45]. This is called a rich-get-richer
phenomenon [42–45]. In other words, the number of edges among all nodes approximately follows the
power law property [44].

Table 1 presents the adjacency matrix [60] that can be used to determine the degree of each node
in Figure 1, which is used as an input to the proposed method.

Table 1. Adjacency matrix for Figure 1.
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The normalized adjacency matrix presented in Table 2 is calculated by dividing the element values
in Table 1 by their degrees. The normalized adjacency matrix is required to calculate the PageRank
values discussed in the next section. The original concept of BAT is first proposed and used in Table 2
of [61] without naming it.

Table 2. Normalized adjacency matrix based on each column.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0.166667 0 0.2
1 0 0 0 0 0 0.166667 0.166667 0.2
2 0 0 0 0 0 0.166667 0.166667 0
3 0 0 0 0 0 0.166667 0.166667 0.2
4 0 0 0 0 0 0.166667 0.166667 0.2
5 0.5 0.333333 0.5 0.333333 0.333333 0 0.166667 0
6 0 0.333333 0.5 0.333333 0.333333 0.166667 0 0.2
7 0.5 0.333333 0 0.333333 0.333333 0 0.166667 0

2.3. PageRank

In recent years, numerous algorithms have been proposed to rank the importance of nodes in
scale-free networks. Among these algorithms, PageRank used by Google in their search engine was
historically the first and most well-known algorithm [54,55]. Simply follows the basic property of a
scale-free network, whereas PageRank assumes that many important nodes (websites) are expected to
receive more links from other nodes (websites) [54].

The PageRank of a node (page/website) i after obtaining a degree, as listed in Table 1, is given as
follows [44]:

PR(i) = (1 − d) + d × [PR(i1)/Degout(i1) + . . . +PR(in)/Degout(in)] (4)

where

• i1, i2, . . . , ini are nodes with links to node i
• damping factor d is a number between 0 and 1 and it accounts for the (1 − d) chance of jumping

into an arbitrary node.
• Degout(j) is the out-degree number of a node, i.e., the number of links going from node j.

As an important node refers to other important nodes that are linked to it, the steps of the
PageRank algorithm [53] are listed in Algorithm 1.

Algorithm 1 PageRank Algorithm [53]

Input A scale-free network G(V, E) with node set V = {0, 1, . . . , (n − 1)} and link set E.
Output Probability distribution, i.e., the PageRank value, PR(i) for all nodes i ∈ V.
1: Let time t = 0. Set the initial PR(i) as 1/n for node i and i = 0, 1, . . . , (n − 1).
2: Update PR(i) based on Equation (4) for all i ∈ V.
3: Redistribute PR(i) equally among the other nodes for all nodes i with Degout(i) = 0.
4: if there is no change in PR(i) for i = 0, 1, 2, . . . , (n − 1) then go to Stop.
5: else if let t = t + 1 return to line 2.

Line 1 initializes all node rankings with equal weights. Line 2 implements the basic concept of the
PageRank defined in Equation (4) to update the node ranking recursively by adding the weight of every
node that is linked to it and dividing it by the number of links emanating from the referring node [54].
The redistribution in line 3 is based on an underlying assumption that users will continue to search
WWW if they enter a node (webpage in [54]) without exiting the link, i.e., a dead end. The procedure is
repeated to update the rough PageRank value of each node in line 3 to converge to a constant number.
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The output value PR(i) for all nodes i in the PageRank algorithm indicates the probability
distribution of a user clicking on webpages (nodes) randomly to arrive at any particular webpage
(node) [54,55]. Hence, the PR(i) can be adapted to estimate the probability that a wildfire randomly
ignites and propagates in an area. Thus, to model the growth of wildfire propagation and describe the
related burning areas, PageRank is adopted to measure the importance of nodes (areas) and is then
transformed to the appropriate probability, which is used in the proposed dynamic BAT.

2.4. BAT

BAT was first proposed by Yeh [46] in 2020. It is a simple tree based on binary addition, and is
used to generate all the possible binary-state vectors whose values of state coordinates are either 0 or
1. Experimental results have confirmed that BAT is better than the conventional Inclusion-Exclusion
method, which is based on depth-first-search (DFS) [22,47], and the conventional Inclusion-Exclusion
method is better than the Sum-of-disjoint product method, which is based on the breadth-first-search
(BFS) [22,23,48,49]. Hence, BAT outperforms BFS and DFS in terms of the required computer memory
and efficiency [46].

The flexibility of BAT highlights the malleability of its searchability and the ease of modification
and customization with various practical applications [46]. Therefore, we customized it for the
problems considered in this study.

Let us assume that Yk is the kth obtained vector with m coordinates and the ith coordinate Yk(i) is
the state of link ai ∈ E in Yk. The original BAT is link-based and all coordinates in its calculated vectors
are the states of the links. In the original link-based BAT, Yk+1 is generated after adding 1 to Yk by
treating Yk as a binary number whose ith digit is equal to Yk(i). The overall pseudocode of BAT is
shown in Algorithm 2.

Algorithm 2 BAT Algorithm [46]

Input A binary-state network G(V, E) with two states, either 0 or 1, to each link and V = {0, 1, 2, . . . , n − 1}
Output All possible non-duplicate link-based state vectors.
1: Let SUM = 0, vector index k = 1, and Y1 = Y be a zero vector with m coordinates which represented the states
of the related links.
2: Let coordinate index i = m.
3: If Y(i) = 0, let Y(i) = 1, k = k + 1, Yk = Y, SUM = SUM + 1 then go to line 5.
4: Let Y(i) = 0. If i > 1, let i = i − 1 then go to line 3.
5: If SUM = m, halt, and Y1, Y2, . . . , Yk are all possible state vectors return line 2.

Algorithm 2 begins with a zero vector, as shown in line 1. All the other vectors are generated by
adding 1 in accordance with the binary addition in sequence in the form of a loop from the line 2 to the
line 4. The algorithm stops when SUM = m, i.e., all the coordinates are 1, in line 5 [46].

Considering m = 5, we have the zero vector Y1 = (0, 0, 0, 0, 0) whose binary number is 00000.
Using the aforementioned pseudocode from the line 2 to the line 4., the first five vectors are easily
obtained and represented in binary numbers as follows:

00000 + 1 = 00001, (5)

00001 + 1 = 00010, (6)

00001 + 1 = 00011, (7)

00011 + 1 = 00100. (8)

It can be seen from Equations (5)–(8), Y2 = (0, 0, 0, 0, 1), Y3 = (0, 0, 0, 1, 0), Y4 = (0, 0, 0, 1,
1), and Y5 = (0, 0, 1, 0, 0). Similarly, all the vectors obtained in BAT are presented in Table 3, where
Columns Bi represent the binary numbers of the obtained vector Yi [46].
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Table 3. Yi value obtained in the proposed Binary-Addition-Tree (BAT) [20].

Bi Yi i Bi Yi

1 00000 (0, 0, 0, 0, 0) 17 10000 (1, 0, 0, 0, 0)
2 00001 (0, 0, 0, 0, 1) 18 10001 (1, 0, 0, 0, 1)
3 00010 (0, 0, 0, 1, 0) 19 10010 (1, 0, 0, 1, 0)
4 00011 (0, 0, 0, 1, 1) 20 10011 (1, 0, 0, 1, 1)
5 00100 (0, 0, 1, 0, 0) 21 10100 (1, 0, 1, 0, 0)
6 00101 (0, 0, 1, 0, 1) 22 10101 (1, 0, 1, 0, 1)
7 00110 (0, 0, 1, 1, 0) 23 10110 (1, 0, 1, 1, 0)
8 00111 (0, 0, 1, 1, 1) 24 10111 (1, 0, 1, 1, 1)
9 01000 (0, 1, 0, 0, 0) 25 11000 (1, 1, 0, 0, 0)
10 01001 (0, 1, 0, 0, 1) 26 11001 (1, 1, 0, 0, 1)
11 01010 (0, 1, 0, 1, 0) 27 11010 (1, 1, 0, 1, 0)
12 01011 (0, 1, 0, 1, 1) 28 11011 (1, 1, 0, 1, 1)
13 01100 (0, 1, 1, 0, 0) 29 11100 (1, 1, 1, 0, 0)
14 01101 (0, 1, 1, 0, 1) 30 11101 (1, 1, 1, 0, 1)
15 01110 (0, 1, 1, 1, 0) 31 11110 (1, 1, 1, 1, 0)
16 01111 (0, 1, 1, 1, 1) 32 11111 (1, 1, 1, 1, 1)

The value of each coordinate is either 0 or 1 in the binary-state network, with five coordinates in
each vector. Hence, there are 25 = 32 different vectors. Thus, all the possible state vectors are obtained
without duplications in BAT [46].

3. Novel Dynamic BAT and States

The conventional path- and tree-like problems demonstrate well-defined destinations [32–34].
However, the propagation of the wildland fire problem considered in this study, its final destinations,
and the number of destinations is unknown. Hence, it is difficult to estimate its possible occurrences in
comparison with the conventional path and tree-like problems. The states and focus of the proposed
algorithm are discussed in this section.

3.1. States and Maximum-State

A state of a node, i.e., node i ∈ V, is a node subset in V(i), and these nodes in a state are all possible
wildfires via node i. Hence, a state represents a possible wildfire that spreads from node i. A state has
the following two properties:

1. the state of node i can be an empty node subset because it is possible that no area is affected by
the wildfire in node i,

2. these nodes in each state are subsets of V(i) because the neighbor areas can face a wildfire spread
from node i.

Hence, the possible state of each node, i.e., node i, is a node subset in V(i) representing the possible
areas of the wildfire spread during the same period. For example, in Figure 1, the states of node 0 are ∅
{5}, {7}, and {5, 7}, which are node subsets in V(0). These states denote that a wildfire is possible in node
0 and does not spread, spread to node 5 but does not spread to node 7, spread to node 7 but does not
spread to node 5, and spread to nodes 5 and 7, respectively.

The maximum-state is the state with the maximal number of nodes in V(i), i.e., V(i) is the
maximum-state and the number of states is equal to the number of all possible node subsets of V(i).
The degree, adjacent node subset, and the number of combinations denoted by the notation C(i) for
node i in Figure 1 are listed in Table 4 C(i) = 2|Deg(i)| and the maximum-state label of node i is 2|Deg(i)|

−

1, where |•| is the number of elements in set •.
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Table 4. Deg(i), V(i), C(i), and PR(i) values of node i.

i Deg(i) V(i) C(i) PR(i) PR(V(i)) 1 - PR(V(i))

0 2 {5, 7} 4 0.074066 0.357809 0.642191
1 3 {5, 6, 7} 8 0.101160 0.549056 0.450944
2 2 {6, 7} 4 0.073398 0.357809 0.642191
3 3 {5, 6, 7} 8 0.101160 0.549056 0.450944
4 3 {5, 6, 7} 8 0.101160 0.549056 0.450944
5 6 {0, 1, 2, 3, 4, 6} 64 0.194502 0.642191 0.357809
6 6 {1, 2, 3, 4, 5, 7} 64 0.191247 0.734687 0.265313
7 5 {0, 1, 3, 4, 6} 32 0.163307 0.568793 0.431207

3.2. State Labels

Let us assume that Sk(i) is the state corresponding to the kth state label of node i for i ∈ V and
k = 0, 1, . . . , 2|Deg(i)|

− 1. For example, from Table 3, S0(0) = ∅, S1(1) = {5}, S3(2) = {6, 7}, S7(3) = {5, 6, 7},
S2(4) = {6}, S4(5) = {0, 1}, S3(6) = {3}, and S6(7) = {1, 3}, respectively.

Each state has a unique state label. The first eight combinations of node i = 0, 1, . . . , 7 in Figure 1
based on V(i) are listed in Table 5, where the first column and first row denote the node label and state
label, respectively.

Table 5. The first eight combinations of node i based on V(i) and Rules 1–3.

Node
State

0 1 2 3 4 5 6 7

0 ∅ {5} {7} {5, 7}
1 ∅ {5} {6} {7} {5, 6} {5, 7} {6, 7} {5, 6, 7}
2 ∅ {5} {6} {6, 7}
3 ∅ {5} {6} {7} {5, 6} {5, 7} {6, 7} {5, 6, 7}
4 ∅ {5} {6} {7} {5, 6} {5, 7} {6, 7} {5, 6, 7}
5 ∅ {0} {1} {2} {0, 1} {0, 2} {1, 2} {0, 1, 2}
6 ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
7 ∅ {0} {1} {3} {0, 1} {0, 3} {1, 3} {0, 1, 3}

The state label is a number denoting a state’s location among all the related states of each node.
A state label is called a decimal state label or binary state label if it is represented by a decimal number
or binary number, respectively. To recognize the state represented by a state label without losing any
states, the notation used in BAT is adapted here to represent the state and state label of a node, i.e., i ∈ V,
based on the following rules:

1. the number of digits is equal to Deg(i) in the binary state label;
2. the nodes in the states of i are arranged in the decreasing order of their node labels in V(i);
3. the ith digit in the binary state label is equal to 0 or 1 if the ith node is included or excluded in the

state, respectively.

The state label is a decimal state label if there is no further clarification. For example, in Figure 1,
the degree of node 0 is 2, i.e., Deg(0) = 2, and its adjacent node subset is {7, 5}, i.e., V(0) = {7, 5} (listed in
the order of decreasing node labels by Rule 2). From Rules 1 and 3, these states ∅, {5}, {7}, and {5, 7}
can be represented in the binary numbers 00, 01, 10, and 11, respectively, where the first/second
digit in the binary numbers represents the state of node 7/5 based on the node listed order in V(i).
The corresponding decimal numbers of these binary numbers are state labels, i.e., state labels 0, 1, 2,
and 3 are node subsets ∅, {5}, {7}, and {5, 7} because 0 = 00, 1 = 01, 2 = 10, and 3 = 11, respectively.

3.3. State Vectors

A state vector is a vector recording the sequence of the wildfire spread and its corresponding
coordinates record the state labels of possible states of related nodes. In this study, the number of
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coordinates in a state vector depends on the situation and is not constant. Furthermore, the nodes that
are included in the vector and the coordinates representing these nodes are dependent on each other.

To identify the node with a state in the state vector, each coordinate is denoted by a two-dimensional
tuple in a ratio such that the numerator is the current state label of the node shown in the denominator,
i.e., 7/5 implies that node 5 is in the state (label) 7. For example, X = (1/3, 1/5, 0/0) is a state vector
including nodes 3, 5, and 0 with state labels 1, 1, and 0, respectively; and X* = (4/3, 1/5, 0/6) is another
state vector including nodes 3, 5, and 6 with state labels 4, 1, and 0, respectively.

An important advantage is that the origin and destination nodes of the wildfire spread listed in
the state vector can be easily identified. For example, from X = (1/3, 1/5, 0/0), we can identify that the
wildfire is spread from nodes 3 to 5, then from nodes 5 to 0, and stops in node 0 because S1(3) = {5},
S1(5) = {0}, and S0(0) = ∅ from (1/3, 1/5, 0/0). Similarly, from X* = (4/3, 1/5, 0/6), the wildfire starts from
node 3, spreads to nodes 5 and 6 at the same time, and then spreads from node 5 to 0 and does not
spread from node 6.

3.4. State Pagerank, State Probability, and Maximum-State Pagerank

In the Barabási-Albert model [45] discussed in Section 2.2, the preferential attachment in emphasizes
that the probability of a node obtaining a connection is proportional to its node degree. Hence, here,
we define the occurrence spread probability of possible states, called the state probability.

After obtaining the PageRank values [44] of all nodes using the algorithm presented in Section 2.3
and the possible states of each node provided in Sections 3.1–3.3, the next step is to calculate the state
PageRank and state probability.

The state PageRank and state probability represent the PageRank value and occurrence probability
of the related state, respectively. We assume that PR(Sk(i)) is the state PageRank of state Sk(i) and
Pr(Sk(i)) is the probability to obtain Sk(i), where node i ∈ V and k = 0, 1, . . . , 2|Deg(i)|

−1. PR(Sk(i)) is
calculated based on the PageRank of all nodes in the corresponding state of node i in terms of the
probability of a node obtaining a connection proportional to its node degree, i.e.,

PR(Sk(i)) =
∑

|S j(i)|=1 and S j(i)⊆Sk(i)

PR(S j(i)). (9)

Because the summation of the probability of all possible states is equal to one, we can normalize
the related PageRank values as shown in the following equation:

Pr(Sk(i)) =
PR(Sk(i))

2|Deg(i)|−1∑
i=0

PR(Sk(i))

(10)

where
PR(S0(v)) = 0.5 ×Min{W(Sk(i)) | for | Sk(i)| = 1 and k = 0, 1, . . . , 2|Deg(i)|

− 1}. (11)

From the preferential attachment in the Barabási-Albert model [18], a newly added node is free to
connect to any node in the network; however, the probability of connecting to a degree-two node is
twice that of connecting to a degree-one node. Hence, we have Equations (9)–(11).

For example, for node 0 in Figure 1, the PageRank values of states 0–3 are 0.0816538, 0.194502,
0.163308, and 0.357809, respectively, where the PageRank value of state 0 is set to be the smallest
among the states with one single node, i.e., binary states 01 and 10 (decimal states 1 and 2). From the
PageRank values, we have the occurrence probabilities of states 0–3 of node 0:

0.10241600 = 0.0816538/(0816538 + 0.194502 + 0.163308 + 0.357809) (12)

0.24395900 = 0.194502/(0.0816538 + 0.194502 + 0.163308 + 0.357809) (13)
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0.20483300 = 0.163308/(0.0816538 + 0.194502 + 0.163308 + 0.357809) (14)

0.44879200 = 0.357809/(0.0816538 + 0.194502 + 0.163308 + 0.357809). (15)

The PageRank values and probabilities of the first eight states of each node are listed in Tables 6
and 7.

Table 6. PageRank values of the first eight states of each node.

i 0 1 2 3 4 5 6 7

0 0.0816538 0.194502 0.163308 0.357809
1 0.0816538 0.194502 0.191247 0.385748 0.163308 0.357809 0.354554 0.549056
2 0.0956233 0.194502 0.191247 0.385748
3 0.0816538 0.194502 0.191247 0.385748 0.163308 0.357809 0.354554 0.549056
4 0.0816538 0.194502 0.191247 0.385748 0.163308 0.357809 0.354554 0.549056
5 0.0366988 0.0740667 0.10116 0.175227 0.0733977 0.147464 0.174558 0.248624
6 0.0366988 0.10116 0.0733977 0.174558 0.10116 0.20232 0.174558 0.275718
7 0.0370333 0.0740667 0.10116 0.175227 0.10116 0.175227 0.20232 0.276387

Table 7. Probabilities of the first 8 combinations of each node.

i 0 1 2 3 4 5 6 7

0 0.10241600 0.24395900 0.20483300 0.44879200
1 0.03584640 0.08538720 0.08395830 0.16934600 0.07169290 0.15708000 0.15565100 0.24103800
2 0.11027700 0.22430800 0.22055400 0.44486200
3 0.03584640 0.08538720 0.08395830 0.16934600 0.07169290 0.15708000 0.15565100 0.24103800
4 0.03584640 0.08538720 0.08395830 0.16934600 0.07169290 0.15708000 0.15565100 0.24103800
5 0.00178264 0.00359777 0.00491382 0.00851160 0.00356528 0.00716305 0.00847910 0.01207690
6 0.00155856 0.00429615 0.00311711 0.00741326 0.00429615 0.00859229 0.00741326 0.01170940
7 0.00405280 0.00810559 0.01107060 0.01917620 0.01107060 0.01917620 0.02214120 0.03024680

3.5. The New BAT

In general, BAT can identify all possible state vectors (cases) that satisfy certain predefined
conditions, e.g., a connected path, required amount/information flows, etc., between two specific node
subsets in networks, i.e., one source-node to one target-node, one source-node to many target-nodes,
many source-nodes to many target-nodes, and many source-nodes to one target-node [46]. However,
to satisfy the real-time wildfire propagation conditions, the number of coordinates, the node representing
a coordinate, and the state label for a node are unknown.

To meet the convenience of the conventional BAT for the practical problem discussed in this study,
a novel dynamic BAT is proposed by implementing dynamic trees with dynamic lengths, flexible node
orders, and different states.

We assume that the wildfire starts in the node (area) i, and we aim to identify all the possible scenarios
where the wildfire spreads to at least Narea areas and their corresponding probabilities. The procedure of
the proposed BAT in determining the scenarios and probabilities are listed in Algorithm 3.

The number of coordinates in the state vectors may be different in the proposed BAT and the
nodes connected may be present in the same state vectors as shown in Table 8.

For example, in Table 8, the initial state vector is X = (1/3) if node 3 is the first identified area with
a wildfire. The initial state vector always includes the first burned node and its state label starts from 1,
as shown in line 3. Then, X = (1/3, 0/5) due to S1(3) = {5} and node 3 does not reach its maximum-state.
Furthermore, the other areas that are not the first identified area must begin with state 0, as shown in line 5.

If Narea = 2, we obtain a possible state vector because the wildfire in node 3 is propagated to a
neighbor area, i.e., node 5, by line 6. If Narea > 2, we should increase the state of node 5 by one because
the current state of node 5 is zero, i.e., it does not reach another node. The aforementioned analysis is
based on line 3 and is similar to that of the conventional BAT.
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Algorithm 3 New-BAT Algorithm.

Input G(V, E), V(i), Sk(i), and the node s where the wildfire is first identified, for all k = 0, 1, . . . , 2|Deg(i)|
− 1 and

i ∈ V.
Output the probability Pr(s, Narea) that the wildfire spreads to at least Narea (≥1) areas (including the first area
of wildfire identified).
1: Let i = s be the node that the wildfire was first found, l = 0, the current sum of probabilities that the wildfire
are spread out to at least Narea areas R = 0, Tl = {i}, T−1 = ∅, the state label X(i) = 1.
2: If X(i) = 2|Deg(i)|

− 1, i.e., node i reaches its the maximum-state then go to line 11.
3: Let X(i) = X(i) + 1 and T* = {j | j ∈ [V(i) − Tl]}.
4: If T* = ∅ then go to line 7.
5: Let Tl = Tl-1 ∪ T*, X(j) = 0 for all j ∈ T*, and Pl = P(l−1) × Pr(SX(i)(i)).
6: If |Sl| ≥ Nneighbor, let R = R + Pl then go to line 3.
7: Let new node i be the node right after the current node i in Tl then go to line 4.
8: If there is no such node in line 7 then go to line 3.
9: Let l = l − 1, i be the node right before the current node i in Tl, and go to line 2. If there is no such node i, halt,
and Pr(s, Narea) = R is the final probability that the wildfire can be spread out at least Narea areas.

Table 8. Proposed BAT procedure to obtain the first state vector with five coordinates.

l i V(i) Label 1 Label 2 X(i) T# Tl = Tl−1∪S# X Probability *

0 3 {7, 6, 5} 1 001 1 {5} {3, 5} (1/3) p3,{5}
1 5 {6, 4, 3, 2, 1, 0} 0 000000 0 ∅ {3, 5} (1/3, 0/5) p3,{5}p5,∅
2 5 {6, 4, 3, 2, 1, 0} 1 000001 1 {5,7} {3, 5, 0, 7} (1/3, 1/5) p3,{5}p5,{0}
3 0 {7, 5} 0 00 0 ∅ {3, 5, 0, 7} (1/3, 1/5, 0/0) p3,{5}p5,{0}p0,∅
4 7 {6, 4, 3, 2, 1, 0} 0 000000 0 ∅ {3, 5, 0, 7} (1/3, 1/5, 0/0, 0/7) p3,{5}p5,{0}p0,{7}p7,∅
5 7 {6, 4, 3, 2, 1, 0} 1 000001 1 ∅ {3, 5, 0, 7} (1/3, 1/5, 0/0, 1/7) p3,{5}p5,{0}p0,{7}p7,{1}

1 decimal labels 2 binary state labels * pi,I = Pr(Sj(i)) = Pr(X(i)), where node subset I is the jth state of node I and
X(i) = j.

The proposed BAT procedure to obtain the first state vector with five coordinates, i.e., where the
number of wildfire areas Narea is at least five, is provided and listed in Table 8.

3.6. Overall Procedure of the Proposed Method

The overall pseudo-code for the proposed method, based on the New BAT in Section 3.5 along
with the novel state concepts discussed in Sections 3.1–3.4, in estimating the number of the wildfire
propagation areas is presented in Algorithm 4.

Algorithm 4 The overall procedure of we proposed methof.

Input The map including all areas we are interested in estimating the wildfire propagation
Output The total probabilities of the wildfire propagation areas.
1: Build the network model for the area map by letting the city/down/important area to be node and links to
connect these areas that are neighbor to each other.
2: Generate and normalize the adjacency matrix based on each column.
3: Calculate the PageRank values for each node based on the degree of nodes as shown in Equation (4).
4: Find out all node subsets of each node as discussed in Section 3.1.
5: Calculate the state PageRank values (including the maximum-state PageRank values) and state probabilities
based on Section 3.4.
6: Use the maximum-state PageRank values to decide which areas need to protect in the beginning, middle,
and final stages of the wildfire propagation.
7: Use the proposed the New BAT provided in Section 3.5 to calculate Pr(i, Narea) for all nodes i and Narea = 1,
2, . . . , |V|.
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4. Experimental Results

The scale-free network illustrated in Figure 1 is used to validate the proposed algorithm in
estimating the occurrence probability of the wildfire propagation areas, i.e., Pr(i, Narea) for i = 0, 1,
. . . , (n−1) and Narea = 1, 2, . . . , |V| = n without loss generality. In the experiment, we consider all
occurrence probabilities for Narea = 1, 2, . . . , 8 by assuming that the ignition area begins in nodes 0, 1,
. . . , 7, respectively. Hence, there are 64 tests included.

The proposed algorithm was coded in Python, and all 64 tests were run on Spyder, and performed
on the Notebook on Windows 10 with an Intel Core i7-8650U CPU at 1.90 GHz and 2.11 GHz with
16 GB RAM.

Let R1 = R0.85 and R2 = R0.15 be the related probability for d = 0.85 and 0.15, respectively.
The experimental results are listed in Tables 9 and 10, illustrated in Figures 2–6 which are analyzed in
the following subsections.

Table 9. Deg(i), V(i), Comb(i), and PR(i) values of node i.

i Narea Vector Number Runtime R1 = R0.85 R2 = R0.15 R1-R2

0 1 1 0.000 1.0000 1.0000 0.0000
2 5 0.000 0.8976 0.8919 0.0057
3 191 0.003 0.8938 0.8864 0.0074
4 1106 0.011 0.8895 0.8811 0.0084
5 18036 0.377 0.8863 0.8776 0.0087
6 356664 6.448 0.8776 0.8689 0.0087
7 7510836 84.470 0.8283 0.8253 0.0031
8 87742588 1131.378 0.5518 0.5654 −0.0136

1 1 1 0.000 1.0000 1.0000 0.0000
2 13 0.000 0.9642 0.9612 0.0030
3 324 0.007 0.9620 0.9586 0.0034
4 2607 0.022 0.9586 0.9547 0.0040
5 36276 0.324 0.9524 0.9487 0.0038
6 773828 6.779 0.9349 0.9325 0.0025
7 13814130 152.826 0.8530 0.8617 −0.0087
8 122668428 1591.609 0.5144 0.5412 −0.0268

2 1 1 0.000 1.0000 1.0000 0.0000
2 5 0.000 0.8897 0.8904 −0.0007
3 255 0.016 0.8875 0.8872 0.0003
4 1654 0.031 0.8840 0.8832 0.0008
5 21394 0.527 0.8782 0.8776 0.0005
6 415994 8.519 0.8647 0.8649 −0.0003
7 8604502 117.473 0.8158 0.8213 −0.0055
8 95178046 1374.070 0.5484 0.5675 −0.0191

3 1 1 0.000 1.0000 1.0000 0.0000
2 13 0.000 0.9642 0.9612 0.0030
3 324 0.000 0.9620 0.9586 0.0034
4 2607 0.031 0.9586 0.9547 0.0040
5 36212 0.347 0.9524 0.9487 0.0038
6 771940 7.105 0.9349 0.9325 0.0025
7 13797962 167.760 0.8530 0.8617 −0.0087
8 122821892 3518.926 0.5144 0.5412 −0.0268

4 1 1 0.000 1.0000 1.0000 0.0000
2 13 0.000 0.9642 0.9612 0.0030
3 324 0.004 0.9620 0.9586 0.0034
4 2607 0.026 0.9586 0.9547 0.0040
5 36180 0.346 0.9524 0.9487 0.0038
6 771732 7.075 0.9349 0.9325 0.0025
7 13791562 156.802 0.8530 0.8617 −0.0087
8 123244356 1742.573 0.5144 0.5412 −0.0268
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Table 9. Cont.

i Narea Vector Number Runtime R1 = R0.85 R2 = R0.15 R1-R2

5 1 1 0.000 1.0000 1.0000 0.0000
2 252 0.003 0.9949 0.9963 −0.0014
3 594 0.006 0.9865 0.9892 −0.0027
4 8664 0.075 0.9798 0.9834 −0.0036
5 119914 1.082 0.9696 0.9753 −0.0057
6 2050424 18.796 0.9426 0.9540 −0.0113
7 26321044 339.085 0.8306 0.8604 −0.0298
8 183961358 2505.281 0.4628 0.5074 −0.0446

6 1 1 0.000 1.0000 1.0000 0.0000
2 125 0.002 0.9984 0.9976 0.0008
3 355 0.005 0.9956 0.9942 0.0014
4 5216 0.077 0.9916 0.9904 0.0012
5 70006 1.172 0.9815 0.9811 0.0004
6 1153321 18.114 0.9573 0.9596 −0.0023
7 14700763 178.070 0.8552 0.8706 −0.0154
8 120803944 1547.187 0.4911 0.5204 −0.0292

7 1 1 0.000 1.0000 1.0000 0.0000
2 124 0.002 0.9900 0.9918 −0.0018
3 456 0.007 0.9787 0.9810 −0.0022
4 7998 0.160 0.9725 0.9753 −0.0028
5 130986 1.845 0.9650 0.9689 −0.0039
6 2571160 35.229 0.9452 0.9528 −0.0077
7 29212442 461.061 0.8386 0.8641 −0.0255
8 179307046 2957.642 0.4680 0.5105 −0.0425

Table 10. Node ranks based on Table 9 and PageRank values.

i
Narea 1 2 3 4 5 6 7 8 PR 1-PR

0 1 7 7 7 7 7 7 1 8 1
1 1 4 4 4 4 4 2 3 4 3
2 1 8 8 8 8 8 8 2 7 1
3 1 4 4 4 4 4 2 3 4 3
4 1 4 4 4 4 4 2 3 4 3
5 1 2 2 2 2 3 6 8 2 7
6 1 1 1 1 1 1 1 6 1 8
7 1 3 3 3 3 2 5 7 3 6

Figure 2. The probability of R1 for Narea = 1, 2, . . . , 8 in nodes 0, 1, . . . , 7.
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Figure 3. The probability of R2 for Narea = 1, 2, . . . , 8 in nodes 0, 1, . . . , 7.

Figure 4. Runtime for Narea = 1, 2, . . . , 8 in nodes 0, 1, . . . , 7.

Figure 5. Maximum-state PageRank values.
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Figure 6. Node ranks based on maximum-state PageRank values.

4.1. General Results

The probability of one burned area, i.e., Narea = 1, is 100% because there is always an ignition
area in the wildfire propagation, e.g., Pr(i, Narea = 1) = 100% for all node i and d = 0.85 and 0.15 as
presented in Table 9.

From Table 9, the probability including R1 = R0.85 and R2 = R0.15 is decreased which is also
further shown in Figures 2 and 3 for Figures representing the stages of how a network grows/densify,
the number of state vectors is increased, and runtime is increased, which is also further shown in
Figure 4 for Figures representing the stages of how a network grows/densifies with an increased Narea.
In addition, from Figures 2 and 3, the probability including R1 = R0.85 and R2 = R0.15 is dramatically
decreased when Narea increases to 8. The aforementioned observation satisfies the real-life phenomena.
Moreover, the number of state vectors and runtime are exponential for Narea because the degree
distribution in scale-free networks follows the power law.

4.2. Pr(i, Narea) and Deg(i)

From Table 9, the values of R0.85–R0.15 have a higher chance of being positive excepted for i = 5
and 7 and larger Narea. Hence, the related probabilities d = 0.85 (i.e., R0.85) are often better than those
of d = 0.15 (i.e., R0.15).

Furthermore, from Table 9, if the adjacent node subsets of two different nodes are the same, e.g.,
V(i) = V(j), we have Pr(i, Narea) = Pr(j, Narea) for all Narea. For example, for nodes 1, 3, and 4 in Figure 1,
V(1) = V(3) = V(4), and their probabilities of having at least Narea = 1, 2, . . . , 8 burned areas are identical:
1.0000, 0.9642, 0.9620, 0.9586, 0.9524, 0.9349, 0.8530, and 0.5144 for d = 0.85, respectively, i.e., Pr(i, Narea)
= Pr(j, Narea) for i, j = 1, 3, 4, and all values of Narea.

However, the total number of possible state vectors is different for a particular number of Narea.
For example, for nodes 1, 3, and 4, V(1) = V(3) = V(4), the number of vectors for nodes 1, 3, and 4 are
different for 5 ≤ Narea, e.g., the 36276, 36212, and 36180 correspond to nodes 1, 3, and 4 when Narea = 5.

It can be seen from Figure 2 for d = 0.85, the higher degree node seems to have a higher probability
in lower Narea but lower probability in higher Narea. For example, nodes 5 and 6 exhibit a degree of 6,
which is the highest among all the nodes in Figure 1. Pr(i = 6, Narea) is always the highest among all
other nodes for Narea = 1, 2, . . . , 7 areas, but Pr(i = 6, Narea = 8) ranks third from last. Similarly, Pr(i = 5,
Narea) is less than Pr(i = 6, Narea) and its Pr(i = 5, Narea = 8) is the least. On the contrary, Pr(i = 2, Narea)
is always the least for Narea = 1, 2, . . . , 7 but that of Pr(i = 2, Narea = 8) is not the least.

Hence, it is necessary to extinguish wildfires in the areas with a higher degree in the beginning.
However, the nodes with a lower degree for larger Narea in the final stage of wildfire propagation
require further attention.

4.3. Pr(i, Narea) and the Maximum-State PageRank

Moreover, the nodes with a better ranking in PageRank show the better ranking in the probability
of smaller Narea; in contrast, these nodes with better ranking in 1 − (their PageRank values), i.e.,
the least PageRank values, show the better ranking in the probability of larger Narea. This is because
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the higher degree of nodes always shows higher values of PageRank and better Pr(i, Narea) for smaller
values of Narea.

For example, in Table 10, Figures 3, 5 and 6, A, B, . . . , H denote nodes 0, 1, . . . , 7 in Figure 1,
node 6 exhibits the best maximum-state PageRank and its values of Pr(6, Narea) correspond well
for Narea = 1, 2, . . . , 7; node 1 exhibits the least maximum-state PageRank values and its Pr(0, Narea)
correspond well for Narea = 8.

Hence, it is recommended to protect the areas with better maximum-state PageRank values at the
beginning of the wildfire propagation and those with the least maximum-state PageRank values later.
The observations further confirm the conclusion in Section 4.2.

4.4. Maximum-State PageRank

The proposed new BAT can calculate the correct value of Pr(i, Narea) for all nodes i and Narea, i.e.,
the probability of the number of wildfire propagation areas, as presented in Table 9. However, the node
degree distribution follows the power law, and the computation burden is increased following the
power law based on the size of the scale-free network and the value of Narea. The aforementioned
obstacle may overcome the requirement for a high-performance computer or GPU for a larger-size
scale-free network.

The aforementioned analysis shows that the number of wildfire propagation areas is highly
dependent on the proposed concept: maximum-state PageRank is the summation of all PageRank
values in the maximum state of the related node, described in Sections 4.2 and 4.3.

Hence, in the aforementioned procedure, the computation burden may be avoided if we wish
to identify the area that requires protection to reduce the wildfire propagation, i.e., we can consider
PRmax(i) if Pr(i, Narea) is not required.

5. Conclusions

In this study, our goal is to develop a novel, easily programable method to calculate the probability
of the number of wildfire propagation areas.

First, we identify the possible wildfire landscapes from a scale-free network. These landscapes
are modeled as a scale-free network generated from the Barabási-Albert model. Then, the PageRank
algorithm is employed to calculate the distribution probability of each node. The probability of wildfire
propagation areas is calculated based on the identified spread states that provide all possible states of
each node and a new BAT to intelligently determine all scenarios of wildfire landscapes.

From the computational experiments conducted in 64 tests, the proposed BAT demonstrates the
capability of systematically calculating the possible area numbers in wildfire propagation.

The proposed methodology presents analytical results. The proposed novel maximum-state
PageRank values used in the algorithm can be separated to quickly determine the nodes (area) that
reduce the probability of the wildfire propagation throughout, including at the beginning, middle,
and end of the wildfire propagation. Without imposing a computational burden or affecting the final
analytical results, the proposed novel maximum-state PageRank serves as a reliable and efficient tool
in predicting wildfire propagation areas.

These results indicate that the proposed BAT, including the concept of the maximum-state
PageRank, can be extended to large-scale problems. In the future, we will seek cooperation opportunities
among the results of this study, the government, and private companies to apply the results of this
study to practical cases. Besides which, the Climate conditions as factors in the equations and random
values will also be incorporated into the research model in future studies.
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