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Abstract: Cell counting is a fundamental part of biomedical and pathological research. Predicting a
density map is the mainstream method to count cells. As an easy-trained and well-generalized model,
the random forest is often used to learn the cell images and predict the density maps. However,
it cannot predict the data that are beyond the training data, which may result in underestimation.
To overcome this problem, we propose a cell counting framework to predict the density map by
detecting cells. The cell counting framework contains two parts: the training data preparation and the
detection framework. The former makes sure that the cells can be detected even when overlapping,
and the latter makes sure the count result accurate and robust. The proposed method uses multiple
random forests to predict various probability maps where the cells can be detected by Hessian
matrix. Take all the detection results into consideration to get the density map and achieve better
performance. We conducted experiments on three public cell datasets. Experimental results showed
that the proposed model performs better than the traditional random forest (RF) in terms of accuracy
and robustness, and even superior to some state-of-the-art deep learning models. Especially when
the training data are small, which is the usual case in cell counting, the count errors on VGG cells,
and MBM cells were decreased from 3.4 to 2.9, from 11.3 to 9.3, respectively. The proposed model can
obtain the lowest count error and achieves state-of-the-art.
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1. Introduction

In biomedicine and pathology, the number of cells is a significant indicator of cell analysis. Initially,
the counting task is executed by naked eyes and the result is sensitive to many objective factors, such as
the parameters of the microscope, the image contrast, non-uniform illumination, various shapes and
sizes, or the overlap of cells. In these circumstances, the counting task becomes more difficult and
time-consuming. Furthermore, the counting result may vary from person to person. To automate
the process of counting and make the task easier to be implemented, many algorithms have been
proposed. With the prior information about the appearances of cells, some morphology-based methods
extract cells from the background [1–3]. They can only handle well the images with separated cells.
To count the overlapped cells, the density-based model is proposed [4]. The density-based model
learns the relationship between the input cell image and density map which can be integrated to
obtain the number of cells. Considering the powerful feature representation, convolutional neural
networks (CNNs) are often used to learn the mapping from the source domain to the target domain.
The non-linear mapping makes it possible to fit any function. However, CNN has too many parameters
to set and it is not friendly to the non-professionals. More importantly, the backpropagation requires a
large number of floating point operations, which means it is almost impractical to train a network on
central processing unit (CPU) and graphics processing unit (GPU) support is necessary. By contrast,
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random forest (RF) has fewer parameters to set and it can be trained on CPU efficiently. In terms of
this, RF is more likely to be applied in practice. There have been some models and applications based
on RF [5,6]. Reviewing the algorithm of RF, it predicts by collecting the values of inputs that arrive at
the same leaf node. Namely, it is the statistics of the subset of inputs. When the cells in the testing
set are more crowded or less crowded than the cells in the training set, the density value is out of
the input scope. In this circumstance, the prediction will always be lower or higher than the ground
truth. Therefore, it is not proper to directly predict the density map via RF. To solve this problem,
we proposed a cell counting framework (CCF) based on RF to predict the density map by detecting
cells. First, we defined a probability map as the ground truth to make sure that the centroids of cells can
be detected even when cells are overlapped. With the well-prepared training data, cells can be detected
robustly by Hessian matrix on the output of RF. The proposed CCF contains multiple RFs that have
various decisions about the cell detection result. To decrease the risk of false detection, we averaged
all detection results and turn the average into the density map by Gaussian function. In this way,
the accuracy can be improved. Compared to the traditional counting methods based on detection [7]
or density map [5], our proposed CCF has the following advantages. (I) Cell detection is sensitive
to the output of RF. The proposed method combines various detection results to decrease the count
error and improves the robustness. (II) With the same number of decision trees (DTs), using multiple
small RFs can avoid overfitting better than using a large RF. (III) Traditional density map prediction
aims to recover the pixel-wise density value, so the pixel-wise error is aggregated which is related to
the total count error. Using RFs to predict the probability map to detect cells has a lower accuracy
requirement than the density map prediction. Besides that, we also extracted the feature patch with a
stride to reduce the computational overhead.

In summary, the contributions of this paper are as follows:

1. We defined a probability map to describe the cell locations. Compared to the maps generated
by the Gaussian function [4,8] or distance function [7], training data are more balanced and the
proposed probability map can better distinguish the cell centroids.

2. A dilated feature extraction was proposed to reduce the spatial redundancy and mitigate
computation overhead.

3. We proposed a CCF that contains multiple RFs. Different RFs will generate different probability
maps. Taking advantage of the proposed probability map, we suggested to locating the cells by
the eigenvalue of the Hessian matrix. After combining all the detection results, the overall count
error was decreased.

4. We validated the proposed model on three different kinds of cell datasets and the results prove that
our model is competitive to the CNN-based models and even better. In addition, the comparison
results between the proposed CCF and the individual RF prove that the CCF has lower bias and
variance than the individual RF.

2. Related Work

Since Lempitsky and Zisserman creatively put forward a learning framework for object counting [1],
the counting task has made great progress. They cast the counting task as the prediction of the objects’
distributions and placed a dot near the center of an object to represent the object. With the discrete and
sparse labels, it was tough to predict objects. To solve the problem, they defined a density function
to smooth the isolated labels. The ultimate task was to predict the pixel-wise density value and the
sum over the images was equal to the predicted count. In contrast, Fiaschi et al. proposed to learn
the mapping between the feature vector and density by a regression forest with structured labels [2].
This model is very efficient and is an open-source project in an interactive toolkit [3]. Oman et al.
attempted to count cells using two RFs [4]. One judged if there is any cell in the superpixel and the
other one predicted the number of cells in each superpixel.

The CNNs are also popular in the counting task. Xie et al. used a fully convolutional regression
network (FCRN) to estimate the density map and it performed well in both synthetic images and
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real images [5]. Cohen et al. proposed to count cells by redundant counting [6] and improved the
performance further. On the predicted density map, cells can be located by finding the local maxima
or applying the non-maxima suppression algorithm [7–9]. Zhu et al. took the fully convolutional
network (FCN) as the backbone and found the local maxima beyond the threshold on predicted
density maps, the detection result was regarded as the counting results [10]. Rad et al. combined
the U-Net [11] with the residual network [12] and multi-scale dilated network [13] to enlarge the
receptive fields and located the centroids of cells on predicted maps [14]. Xie et al. presented a CNN
to regress structured patches and the detections get more robust [15]. Another way to count cells is
by detecting cells one by one. Ma et al. detected objects by integer programming on the predicted
density map, which worked for small instances [16]. Akram et al. adopted two CNNs to segment cells,
whose by-product was the number of cells. The first CNN predicted cell proposals with bounding
boxes and the second CNN predicted the masks for segmented cells [17]. Xue leveraged the sparsity of
labels to encode the positions of cells by compressive sensing and recovered the positions by decoding
the prediction [18]. Recently, the attention mechanism [19,20] has been widely used to improve the
performances of CNN-based models. U-Net with a self-attention module (named SAU-Net) [21]
incorporates a self-attention module to explore the long-range dependencies between pixels by a huge
attention matrix.

Excluded the learning frameworks, some approaches based on traditional image processing
techniques can also count cells automatically. Maitra et al. used Hough transform to detect red blood
cells [22], but it was highly dependent on the shape of cells. Faustino et al. leveraged the luminance
information of fluorescence cells and treated the appearance as a topological surface, then analyzed
the gray histogram and divided the image into different connected components [23]. The count result
was obtained by selecting the target components. It is obvious that the method requires the particular
appearance of cells and thus it cannot handle the complex images. To count the cell clusters, researchers
tried to take advantage of the concavity where cells overlap to analyze how many cells the cluster
contains. Kothari et al. implemented the counting task in two steps [24]. The first was to extract the
cluster’s edge and the second was to separate the single cells by detecting concavities. The premise of
this work is the clear boundaries. The defocused cells or debris will degrade the detection. The distance
transform algorithm is a common way to segment cell clusters. However, it may fail when cells overlap
too much. Zhang et al. calculated the weights by curvature rather than distance and the cell cluster can
be segmented well [25]. The disadvantage is the edges of cell regions have to be detected first which
greatly influences the calculation of curvature weights. Jung et al. first applied distance transform
and viewed the result as a mixture of Gaussians, then adopted linear discriminant analysis (LDA) to
separate cells [26].

3. Method

Figure 1 shows the overview of the proposed CCF. First, the training data should be well prepared.
Based on the training pipeline, we constructed the probability map as ground truth that can help
detect cells. To improve computational efficiency, we proposed to extract features with a stride, as the
dilated convolution [27] does. The labeled data and the extracted feature vectors compose the training
data in pairs. Then, these individual RFs are trained with random and fixed training data subsets
and predict the probability map where the cells can be detected by Hessian matrix. All the detection
maps are averaged to generate the final density map. Both training data preparation and the detection
framework contribute to the high performance.
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Figure 1. The overview of the proposed cell counting framework (CCF). After the training data 
preparation, the random forests (RFs) can be trained. The probability maps are predicted first where 
the centroids of cells are easier to be detected. Take the decisions of all RFs into consideration, the 
final count result is decided by multiple detection maps rather than a detection map, which can 
improve accuracy and robustness.  

This section is divided into two parts to respectively introduce how the training data are 
prepared, how we detect cells on the predicted probability map and why the proposed CCF can 
improve accuracy and robustness. 

3.1. Training Data Preparation 

The training data consists of the label data and the feature vector. In this subsection, we will 
introduce the probability map, namely the ground truth, where the label data are sampled, and how 
the feature vector is generated. 

3.1.1. Ground Truth Generation 

As we have analyzed in Section 1, the RF has two drawbacks when predicting the density map. 
The one is that when training data are imbalanced the output will be inclined to majority data, and 
the other one is that the output is always limited in the range of input label data. Let’s take the most 
used Gaussian function as an example to explain it. Each cell is labeled by a dot and the ground truth 
is the convolution result of Gaussian function and the labeled dot map. Figure 2 is the ground truth 
and the histogram distribution of the labeled region. It can be observed that the data with high 
density values are in minority, which may result in underestimation. However, if the DT gets deeper 
to learn the minority data, there is a risk of overfitting. In addition, even the data are balanced, RF 
still cannot predict the data that are beyond the scope of the training data. In terms of accuracy, it is 
improper for RF to predict density map directly. 

(a) (b)  

Figure 2. The ground truth that is generated by the Gaussian function. (a) The density map. (b) The 
histogram. 

Figure 1. The overview of the proposed cell counting framework (CCF). After the training data
preparation, the random forests (RFs) can be trained. The probability maps are predicted first where
the centroids of cells are easier to be detected. Take the decisions of all RFs into consideration, the final
count result is decided by multiple detection maps rather than a detection map, which can improve
accuracy and robustness.

This section is divided into two parts to respectively introduce how the training data are prepared,
how we detect cells on the predicted probability map and why the proposed CCF can improve accuracy
and robustness.

3.1. Training Data Preparation

The training data consists of the label data and the feature vector. In this subsection, we will
introduce the probability map, namely the ground truth, where the label data are sampled, and how
the feature vector is generated.

3.1.1. Ground Truth Generation

As we have analyzed in Section 1, the RF has two drawbacks when predicting the density map.
The one is that when training data are imbalanced the output will be inclined to majority data, and the
other one is that the output is always limited in the range of input label data. Let’s take the most used
Gaussian function as an example to explain it. Each cell is labeled by a dot and the ground truth is the
convolution result of Gaussian function and the labeled dot map. Figure 2 is the ground truth and
the histogram distribution of the labeled region. It can be observed that the data with high density
values are in minority, which may result in underestimation. However, if the DT gets deeper to learn
the minority data, there is a risk of overfitting. In addition, even the data are balanced, RF still cannot
predict the data that are beyond the scope of the training data. In terms of accuracy, it is improper for
RF to predict density map directly.

To mitigate the above problems, we proposed a novel way to generate the ground truth which is
defined as the probability map.

First, we used a blob to label a cell rather than a dot. This can make sure that the distribution
of data is more identical after convolution. Second, the limited output of RF impedes the accuracy
of density map. Therefore, we chose to count cells by detecting the centroids of cells, rather than by
predicting density map directly. The convolution filter is designed as:

f (x, σ) = G(x, σ) + δ(x− xc) ∗G(x, σ) (1)

where, G is a Gaussian function, δ is a pulse function, σ controls the spread, and xc is the center of
the filter. Note that there is a δ(x) function in the convolution filter, which makes it different from the
Gaussian function.
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Figure 1. The overview of the proposed cell counting framework (CCF). After the training data 
preparation, the random forests (RFs) can be trained. The probability maps are predicted first where 
the centroids of cells are easier to be detected. Take the decisions of all RFs into consideration, the 
final count result is decided by multiple detection maps rather than a detection map, which can 
improve accuracy and robustness.  

This section is divided into two parts to respectively introduce how the training data are 
prepared, how we detect cells on the predicted probability map and why the proposed CCF can 
improve accuracy and robustness. 

3.1. Training Data Preparation 

The training data consists of the label data and the feature vector. In this subsection, we will 
introduce the probability map, namely the ground truth, where the label data are sampled, and how 
the feature vector is generated. 

3.1.1. Ground Truth Generation 

As we have analyzed in Section 1, the RF has two drawbacks when predicting the density map. 
The one is that when training data are imbalanced the output will be inclined to majority data, and 
the other one is that the output is always limited in the range of input label data. Let’s take the most 
used Gaussian function as an example to explain it. Each cell is labeled by a dot and the ground truth 
is the convolution result of Gaussian function and the labeled dot map. Figure 2 is the ground truth 
and the histogram distribution of the labeled region. It can be observed that the data with high 
density values are in minority, which may result in underestimation. However, if the DT gets deeper 
to learn the minority data, there is a risk of overfitting. In addition, even the data are balanced, RF 
still cannot predict the data that are beyond the scope of the training data. In terms of accuracy, it is 
improper for RF to predict density map directly. 
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Figure 2. The ground truth that is generated by the Gaussian function. (a) The density map. (b) The 
histogram. 

Figure 2. The ground truth that is generated by the Gaussian function. (a) The density map.
(b) The histogram.

Figure 3 is the generated probability map. Compare the histograms in Figures 2b and 3b, it can
be observed that data in Figure 3a are more equally distributed. In this way, the training data get
more balanced without any extra operations. Figure 4a is the probability map generated by Gaussian
function and Figure 4b is the probability map we defined. It can be noticed that when cells overlap the
centroids of cells in Figure 4a cannot be distinguished anymore but the centroids of cells in Figure 4b
still are highlighted which is helpful to locate cells.
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3.1.2. Dilated Feature Extraction

Following the previous RF-based work [2], we generated the feature maps by calculating Laplacian
of Gaussian, Gaussian gradient magnitude, and two eigenvalues of the structure tensor at scales 0.8,
1.6, 3.2, and the original image is also as a feature map. Therefore, there are 13 feature maps in all.
To take the pixels in a local vicinity into consideration, we used all pixels in an N×N patch to describe
the current pixel and the feature vector is N×N× 13 dimensions.

To learn context information as much as possible, the patch size should be large. However,
limited by the memory size, the RF is unsuitable to process the data with a high dimension. There is a
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conflict between the quantity of context information and the feature dimension. Inspired by dilated
convolution [27], we extracted features with a pixel stride. Assuming we extracted a 7× 7 patch as
shown in Figure 5a, the left branch is the full-size patch and the feature vector has 49 dimensions.
The right branch is the dilated extraction and the feature vector size is reduced to 25 dimensions.
The computation overhead is cut off by 50%. Actually, the features between the neighboring pixels
are similar, so the dilated feature extraction can not only improve computational efficiency but also
reduce redundancy. For a group of feature maps, the extracted positions in adjacent feature maps are
stagger, which makes the context and location in complementary and helps to leverage all the pixels in
the patch.
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Figure 5. Illustration of dilated feature extraction. (a) The comparison between full-size extraction
and dilated extraction. (b) The stacked feature maps contain both context information and
position information.

Different kinds of cells usually are various in size, it is impossible to use the same patch size to
extract feature vector for different kinds of cells. It is better to adjust the patch size, or the pixel interval,
or the image resolution to fit different cells’ scales.

3.2. Detection Framework

The detection framework shown in Figure 6 is the core work of our proposed method. It has
three steps. (1) Probability map prediction. Train RFs and make the predicted probability close to the
ground truth. (2) Detection map prediction. Take advantage of the defined probability map, cells are
detected by the eigenvalue of Hessian matrix. (3) Density map prediction. Based on the previous two
steps, there are multiple different detection maps and the proposed CCF considers each detection map
equally to generate the final density map.

The proposed model is an ensemble model whose base learner is the RF [2] with a robust detection.
Equipped with the robust detection, cells can be located on the predicted probability map. Each RF
plays as an expert and has its own decision about the detection result. Finally, the predicted density
map, whose sum is the number of cells, is the averaging of the all detection result.

3.2.1. Probability Map Prediction

For each base learner, the training data are sampled with replacement and then train the base
learner with all sampled data. Due to the different training data and random feature split, each RF has
a unique structure. Hence, they will output different probability maps even though the inputs are the
same for each RF. The probability maps reflect the coarse locations of cells and the centroids of cells are
supposed to be the local maxima. The probability map is used to detect the cell centroids to count cells
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in the next step, and it is easier than the methods [1,2] that counting cells by directly predicting the
density map.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18 
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3.2.2. Detection Map Generation

Many works try to detect cells by finding the local maxima. However, we found it is not robust
enough sometimes. Figure 7a shows the ground truth of a probability map we defined. In practice,
the predicted density map could not recover the distribution perfectly. There may be some noisy points
that are the local maxima but not the true centroids, which results in a false detection. To detect cells
more robustly, we presented a curvature-based detection algorithm. Supporting by the ground truth,
the centroids of cells are at peaks and values decrease along the radial, which can be well-captured by
the eigenvalues of Hessian matrix. This is the basis we detect cells. For a two-dimensional image I,
the Hessian matrix is given as:

H =

[
Ixx Ixy

Iyx Iyy

]
(2)

where Ixx, Ixy, Iyx, Iyy are the second partial derivatives of an image I. The eigenvalues of Hessian
matrix indicate the curvature and they are defined as

λ1 =
1
2

Ixx + Iyy +

√(
Ixx − Iyy

)2
+ 4I2

xy

 (3)

λ2 =
1
2

Ixx + Iyy −

√(
Ixx − Iyy

)2
+ 4I2

xy

 (4)

From Equations (3) and (4), it can be inferred that the λ1 and λ2 reflect the changes of gradient.
We use the signs of eigenvalues to ensure the cell regions and the values of eigenvalues to detect the
centroids of cells. At different points of the image I, the differences between λ1 and λ2 are shown in
Figure 7b,c.
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3.2.3. Density Map Generation 

The last step of the detection framework is averaging all detection maps predicted in the 
previous step. This step is very key to refine the count result because it benefits from the overall CCF 
including the well-prepared training data, the ensemble of RFs, and the detection based on the 
probability map. 

Figure 7. The eigenvalues of the Hessian matrix. (a) The ground truth, (b) The λ1 of Hessian matrix,
(c) The λ2 of the Hessian matrix.

Figure 8a explains the process of cell detection. First, we needed to set a threshold to segment
the cell region proposals from the probability map. Next, we would detect the centroids of cells in
the cell region proposals by curvature. The eigenvalues of the Hessian matrix reflect the curvature.
Figure 7b,c are the two eigenvalues λ1 and λ2 of Figure 7a. It can be observed that both λ1, and λ2 of A
are negative and λ1 and λ2 of B are opposite in sign which means it is not the centroid of cells. Hence
we use λ1 to further select the cell region proposals where λ1 should be negative, and the saddle points
like B are abandoned. Finally, the centroids of cells can be detected by local minima of λ1. The two cell
region proposals in Figure 8a indicates that λ1 < 0 can help to narrow the cell detection region further,
which makes the detection results more robust.
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3.2.3. Density Map Generation

The last step of the detection framework is averaging all detection maps predicted in the previous
step. This step is very key to refine the count result because it benefits from the overall CCF including
the well-prepared training data, the ensemble of RFs, and the detection based on the probability map.

Next, we will explain the reason why the average can refine the count. Four cases are listed
for discussion in Figure 9. The red circle represents the true cell region, the box represents the local
region belonging to different detection maps and the colorful patch is the corresponding detected cell.
The left of Figure 9a–d is the stack of detection maps, and the right is the averaged detection result
which is denoted as the lighter colors. Assuming there are 4 detection maps, and each detected cell
in the averaged detection map denotes 0.25 cells. (a) All the detection maps have a detected cell in
the cell region, so the result is that there is a cell. (b) Three detection maps have a detected cell in the
cell region and the result is 0.75 cells. (d) Two detection maps have a detected cell in the cell region
and the result is 0.5 cells. (c) Only one probability map detected a cell in the region, which means
the prediction is disapproved by most probability maps. Therefore, there are only 0.25 cells and the
detection is suppressed.
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In summary, the density map generation process can be described as:

Davg =
1
N

N∑
i=1

Di (5)

density map = G(σ) ⊗Davg (6)

where, N represents how many RFs the proposed CCF contains, Di denotes the detection result of the
i-th RF and Davg denotes the averaged detection result, and they all maintain the same resolution as
the input image. G is the Gaussian function and σ controls the degree of smoothness. ⊗means the
convolution operation.

The training and testing of RFs are independent. Therefore, the proposed model can be running
in parallel to improve computational efficiency.

4. Experiments and Results

4.1. Datasets

In this paper, we validated our proposed CCF on three public cell datasets. Three sample images
are shown in Figure 10. The VGG cells dataset [1] is a synthesis dataset that simulates the occlusion,
out-of-focus blur, non-uniform luminance, and various density in real images. The modified bone
marrow (MBM) cells dataset [6,7] is introduced by Kainz et al. [7] and it is about the bone marrow (BM)
from eight patients. Cohen et al. updated the annotations and divided the dataset from 11 images
to 44 images by cropping [6]. The images are filled with staining fragments that challenge to count.
The Adipocyte cells dataset [6,28] comes from the Genotype Tissue Expression Consortium [28] and
following Cohen’s setting [6], images are down-sampled to 150 × 150. The Adipocyte cells are adherent
severely and varies in size and shape drastically.

The three datasets are summarized in Table 1, where the average means the average number
of cells per image, the Ntrain and the Ntest denote the split of the dataset for training and testing
respectively. To reduce the computational overhead, we resized the images of MBM cells to 300× 300.
In this paper, we assigned 10 RFs to the proposed CCF and each RF consists of 20 DTs. For VGG cells
and Adipocyte cells, the max depth of DTs is limited in 20. Because of the small size of MBM cells,
the max depth of DTs is limited in 15.
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Table 1. The summary of three datasets.

Dataset Resolution Average Ntrain Ntest

VGG cells [1] 256× 256 174± 64 100 100
MBM cells [6,7] 600× 600 126± 33 30 14

Adipocyte cells [28] 150× 150 165± 44 100 100

4.2. Evaluation Metric

For each dataset, the training set and the validation set are sampled from the Ntrain split
training images randomly and equally. After the proposed model is trained, the testing images are
used to evaluate the performance of the proposed model. Same as the previous works [5,6,21,29],
the performance of the result was measured by mean absolute error (MAE), which is formulated as:

MAE =
1
N

N∑
i=1

∣∣∣ŷi − yi
∣∣∣ (7)

where, N is the number of test images, yi represents the true count and ŷi represents the predicted
count of the i-th image.

For each group training images, the experiment is repeated for 10 times. The mean MAE and the
standard deviation will be shown next.

4.3. Results and Discussion

In this subsection, we displayed the comparison results between the proposed CCF and
state-of-the-art methods on three datasets. In addition, we provided the primary density maps
that are generated by all RFs to show the effectiveness of CCF. The bias and variance on the whole test
sets are also compared to prove that CCF performs better than RF.

4.3.1. VGG Cells

Table 2 exhibits the comparison results on the VGG cells when N = 8, N = 16, N = 32,
and N = 50, where the training set and the validation set are sampled randomly from the split training
images, respectively. The methods from the first row to the third row are based on machine learning
models. It can be observed that CCF performs much better than them and even better than the
CNN-based models which are listed in the fourth row and fifth row. When the training data increases,
the count-ception model outperforms CCF and becomes the best model. Even so, the proposed model
is competitive to state-of-the-art approaches, and the superiority is highlighted when training data
are scarce. Besides, the count-ception model improved performance with the compromise of location
information and the predicted map is poorly visible. In contrast, our predicted density map is more
meaningful, which is shown in Figure 11. For the test image in Figure 11, the ground truth of cell
number is 306 and CCF predicted 306.4 cells. It reveals that CCF performs well both on the global
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region and local regions. When N increases from 32 to 50, the improvement is almost invariable.
The main reason is the dense cells are in minority and there is less context information to be learned
than the sparse cells. Unless the information about the dense cells is supplemented, the increment of
training data will not be helpful for the training model.

Table 2. The comparison of mean absolute error (MAE) on the VGG cells. The testing set is fixed and
10 times training with different training data and different network initializations are used to calculate
the mean and standard deviation.

Method N = 8 N = 16 N = 32 N = 50

Lempitsky et al. [1] 4.9± 0.7 3.8± 0.2 3.5± 0.2 N/A 1

Fiaschi et al. [2] 3.4± 0.1 N/A 3.2± 0.1 N/A
Arteta et al. [30] 4.5± 0.6 3.8± 0.3 3.5± 0.1 N/A

FCRN-A [5] 3.9± 0.5 3.4± 0.2 2.9± 0.2 2.9± 0.2 2

SAU-Net [21] N/A N/A N/A 2.6± 0.4 2

Count-ception [6] 3.9± 0.4 2.9± 0.5 2.4± 0.4 2.3± 0.4
CCF 2.9± 0.2 2.8± 0.1 2.6± 0.1 2.6± 0.1

1 The references don’t provide the data. 2 These models are trained on 64 images.
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Figure 11. A test image of VGG cells. The two boxes highlighted in the input image contains high 
density overlapped cells that are difficult for human to count correctly. But the proposed CCF could 
predict the number of cells with acceptable errors. The second row displays the ground truth of the 
density map and the predicted density map. 

Figure 11. A test image of VGG cells. The two boxes highlighted in the input image contains high
density overlapped cells that are difficult for human to count correctly. But the proposed CCF could
predict the number of cells with acceptable errors. The second row displays the ground truth of the
density map and the predicted density map.

4.3.2. MBM Cells

The greatest challenge of the MBM cells is the pink tissue and the fake particles. With the dilated
extracted features, the patch in feature space is enlarged with the dimension reduced. The first two
compared methods are based on CNNs and both of them count cells by predicting a density map.
The comparison results listed in Table 3 indicate that CCF has the lowest MAE, which means it is more
suitable to handle the counting problem without enough training data. Marsden et al. [31] designed a
network that can be adaptive to various visual domains and it only outputs the number of objects.
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Similar to CCF, Cell-Net [29] also counted cells by locating the centroids of cells. However, Cell-Net has
many parameters to be learned and it is not suitable for the small datasets. In Figure 12, the predictions
of two local patches show that there is no noise in the background and CCF can detect the separated
cells well. In the full-size density maps, it can be observed that there are several uncertain locations
which are not approved by all RFs. It is exactly the function that averaging all detection maps plays.
The number of ground truth is 174 cells and the prediction is 168.2 cells.

Table 3. The comparison MAE on the MBM cells. The testing set is fixed and 10 times training
with different training data and different network initializations are used to calculate the mean and
standard deviation.

Method N = 5 N = 10 N = 15

FCRN-A [5] 28.9± 22.6 22.2± 11.6 21.3± 9.4
Count-ception [10] 12.6± 3.0 10.7± 2.5 8.8± 2.3
Marsden et al. [31] 23.6± 4.6 21.5± 4.2 20.5± 3.5

Cell-Net [29] 11.3± 4.8 9.8± 3.2 N/A
CCF 9.3± 1.4 8.9± 0.9 8.6± 0.3
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Figure 12. A test image of MBM cells. The cells in two close-ups differ in size and texture. The local
predicted density maps show that each cell is detected well and there is no noise in the background
which can avoid the accumulated error of background. The true density map and the predicted density
map are shown on the second row.

4.3.3. Adipocyte Cells

In Adipocyte cells, there some empty regions that are similar to the adipocyte cells, and some
small cells are crowded in large cells or occluded by tissues. The variety in size and shape makes
the Adipocyte cells harder to count. In the experiment, CCF is compared to two open-source
software [32,33], the count-ception model [6], and SAU-Net [21]. From the results listed in Table 4,
it can be observed that CCF performs similarly to the Adiposoft [33]. Even more, the MAE is improved
from 19.4 to 14.5 over the count-ception model and the proposed model achieves a 25% relative
improvement. SAU-Net [21] is a U-net with a spatial attention block. With the spatial attention block,
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SAU-Net can capture more context which is helpful to train the model. But it will cost much memory
to calculate the attention matrix. Figure 13 shows two local patches that contain both small cells and
large cells and it seems that CCF performs well. This image contains 129 cells and CCF predicted it
contains 126.3 cells.

Table 4. The comparison MAE on the Adipocyte cells. The testing set is fixed and 10 times training
with different training data and different network initializations are used to calculate the mean and
standard deviation.

Method N = 10 N = 25 N = 50

CellProfiler [32] - - - - - - - - - - - -25.06± 2.6- - - - - - - - - - - -
Adiposoft [33] - - - - - - - - - - - -14.8± 13.6- - - - - - - - - - - -

Count-ception [6] 25.1± 2.9 21.9± 2.8 19.4± 2.2
SAU-Net [21] N/A N/A 14.2± 1.6

CCF 16.9± 1.9 14.5± 0.4 14.5± 0.4
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Figure 13. A test image of Adipocyte cells. The adipocyte cells are very various in shape and size.
Some small cells are tightly surrounded by large cells. The results show that the proposed CCF can
detect both small cells and large cells. The ground truth of the density map and the predicted density
map are also listed.

4.3.4. The Effectiveness of CCF

To demonstrate the effectiveness of suppressing the wrong detections by average, the detection
maps of 10 RFs have been converted to density maps, as shown in Figure 14. Figure 14a,b are the true
density map and the final density map, respectively. Figure 14c–l are the predicted density maps of
10 RFs, which are the smooth versions of detection maps. If paying attention to the regions marked
with red boxes, we could see that the cells detected by several RFs in the largest box and smallest box
have lower densities in the final density map, which are shown as the color is close to blue. There
are four cases to be discussed which are similar to Figure 9a–d. (a) The cells that are detected by all
RFs are also well reserved in the final density map. (b) The medium box where most RFs detected
a cell has the highest error in the final density map. (c) The result of the large box is supported by
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several RFs, whose bias is lower. (d) In the smallest box, there is only an RF detected a cell so the
detection contributes 0.1 cells to the final result. This indicates that detection with low confidence can
be suppressed differently depending on how many detection maps contain it. In this way, the final
predicted result gets more robust.
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Someone may be curious that what happens if we use an RF that has as many DTs as CCF.
Except for the number of DTs, we kept all parameters the same. However, we found the result gets
worse. There are two reasons: (1) Too many trees cause overfitting. (2) The count result is decided by
only one probability map and it is susceptible to noise, which is the motivation we proposed the CCF.

Besides, we also displayed the strength of CCF intuitively by curves. To compare the bias and
variance between CCF and RF, we took MAE and mean square error (MSE) as the metric to evaluate
performance. MSE is defined as:

MSE =
1
N

N∑
i=1

(ŷi − yi)
2 (8)

where, N is the number of images, ŷi and yi are the predicted count and the ground truth of the
i-th image.

Figure 15 plots MAEs and MSEs on three datasets. The solid lines represent the results for the
proposed CCF that consists of 10 RFs in this paper and the dot-dash lines represent the base RF. It can
be observed that the MAEs of CCF are lower than the averaged MAE of 10 RFs and MSEs of CCF are
also lower than the averaged MSE of 10 RFs, which means both the bias and variance are getting lower.
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5. Conclusions

In cell counting, the cell occlusions and scarce training data make the counting task difficult. To this
end, we proposed a cell counting framework based on random forest (RF) and density map. In the
proposed cell counting framework (CCF), the training data preparation and the detection framework
are combined to provide an accurate and robust counting result. The training data preparation aims to
make the cells can be better detected even when overlapping and reduce the computational overhead.
The detection framework contains multiple RFs and each RF can predict a probability map where the
cells can be detected robustly by Hessian matrix. To decrease the overall count error, we averaged
all detection maps such that the false detection disapproved by most RFs can be suppressed. In this
paper, we assigned 10 base RFs to the proposed CCF and proved that CCF outperforms the base RF in
terms of MAE and MSE. The comparisons between CCF and some state-of-the-art methods show that
CCF can achieve higher performance, especially when the training data are small. However, the cell
images with annotations are usually difficult to collect. Therefore, the proposed CCF can serve as an
automatic counting tool in cell image analysis. From training to testing, it does not require extra high
hardware resources.
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In this paper, the CCF is trained by handcrafted features that are low-level. Further, the receptive
field of the extracted feature vector is also small. These factors limit the performance improvement.
In future studies, we will try to use some classic pre-trained CNN models as the feature extractor to
enhance the feature representation. At the last step of CCF, the final detection result is the average of
all detection results, which means each base RF contributes equally to the final count result. To make
the count result more accurate, we will explore how to re-weight base RFs to perform a better count.
Furthermore, we will also focus on speeding up the training and testing processes by parallelization.
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