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Abstract: To perform air missions with an unmanned aerial vehicle (UAV) swarm is a significant
trend in warfare. The task assignment among the UAV swarm is one of the key issues in such missions.
This paper proposes PSO-GA-DWPA (discrete wolf pack algorithm with the principles of particle
swarm optimization and genetic algorithm) to solve the task assignment of a UAV swarm with fast
convergence speed. The PSO-GA-DWPA is confirmed with three different ground-attack scenarios by
experiments. The comparative results show that the improved algorithm not only converges faster
than the original WPA and PSO, but it also exhibits excellent search quality in high-dimensional space.

Keywords: UAV swarm; task assignment; Wolf Pack Algorithm (WPA); PSO-GA-DWPA;
ground-attack

1. Introduction

In the last two decades, how to use unmanned aerial vehicles (UAVs) for various military missions
has received growing attention. Over the years, UAVs have been used in military missions, such as
ground attack missions (GAM), wide area search missions (WASM), suppression of enemy air defense
(SEAD), and combat intelligence, surveillance, and reconnaissance (ISR).

At present, research on UAVs has changed from focus on a large full-function UAV to a swarm of
small single-function stealth UAVs, because the cost of a small single-function UAV is much lower
than that of a large full-function UAV. The basic performance of UAV swarm operations is to meet the
requirement of fast reliable assignment and execution, which is very complex to implement because of
the large amount of computation.

The task assignment of a UAV swarm is usually viewed as an optimization problem, in which
the optimal solution is found by maximizing or minimizing an objective function with constraints.
The classical optimization models include a mixed integer linear programming (MILP) [1] model,
the traveling salesman problem (TSP) [2] model, the generalized assignment problem (GAP) [3] model,
the vehicle routing problem (VRP) [4] model and the cooperative multiple task assignment problem
(CMTAP) [5] model.

The methods to solve optimization models are divided into two categories. One category is to get
an exact solution by mathematical programming, such as the Hungarian algorithm [6], the branch
and bound search algorithm [7], dynamic programming [8], the exhaustive method [9], Newton’s
method [10] and the gradient method [11]. These methods can guarantee an optimal solution of a
convex problem if there is a solution, but it is difficult to solve an NP-hard non-convex problem.
Moreover, this kind of method is normally suitable for low-dimensional space.

Another category is evolutionary algorithms, which are inspired by the mechanism of nature’s
evolution of a biological population. These methods usually do not have polynomial time complexity,
but can approach a global optimal or suboptimal solution with finite calculation cost. In the task
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assignment of the UAV swarm, it is difficult to establish an accurate mathematical model and guarantee
that the model is convex. Therefore, the evolutionary algorithms are the most common methods to
solve this kind of problem. The classical evolutionary algorithms include the simulated annealing
algorithm (SAA) [12], the tabu search algorithm (TS) [13], the genetic algorithm (GA) [14], the ant
colony optimization algorithm (ACO) [15], and particle swarm optimization algorithm (PSO) [16].

Considering the UAV swarm operation in the future, task assignment is challenging due to its
computational complexity caused by two reasons. The first is the complexity of the task assignment
model, including determining the order of tasks, the constraints and the coupling between task
assignment and trajectory optimization. The second is the large amount of computation and long
solution time caused by the dimension of the variables. For example, in a scenario where 80 aircraft
attack 100 targets, assuming that only a single attack task is performed and each target is attacked only
once, the variables describing the UAVs assigned to all targets, reach 100 dimensions, which greatly
increases the computation. Jia et al. [17] and Su [18] improved the variable’s coding method where
the constraint information was added so as to overcome the model complexity caused by constraints.
The co-evolutionary ant colony algorithm was presented in [19] to decompose a high-dimensional
variable into several low-dimensional variables. This method can effectively improve the speed of
solving the algorithm itself, but it is necessary to fuse all UAVs’ decisions to meet the constraints
of task assignment, such as the order of tasks. In [20], by integrating PSO with the beetle antennae
search (BAS) algorithm, which can overcome the defect that PSO is prone to fall into local convergence,
the convergence speed and solution accuracy of the algorithm are improved. Both in [18,20], the fixed
parameters of PSO are improved to be linear or dynamic so as to effectively accelerate the convergence
speed. Braun [21] developed the island model, where several populations isolated on an island
are optimized by GA until they degenerate. Then the degeneration is removed by refreshing the
population on each island through individuals of other islands. This method effectively solves the
problem of population degradation. To mitigate the parameter tuning on high-dimensional problems,
which is a computationally expensive procedure, Tuani et al. [22] introduced an adaptive approach to a
heterogeneous ant colony population that evolves the alpha and beta controlling parameters for ACO.

In addition, distributed task assignment methods were proposed to improve the computation
efficiency to overcome the problem of large computation and long solution time. Matin et al. [23]
proposed minimum distance greedy search (MDGS) to make the decision for a UAV to select the targets,
when the arrivals are dynamic and appear uniformly in a known rectangular region. This approach
is currently very effective in the field of dynamic task assignment for individual UAVs. Di et al. [24]
used the distributed auction algorithm, in which each UAV decides their own task goals according
to their own local information, to reduce the computational load of the system to a certain extent.
Similarly, a market-based decentralized algorithm was proposed by Oh et al. [25] to realize online task
assignment. Zhang et al. [26] used a contract network to rapidly update the task assignment scheme
after pre-assignment based on PSO. Such methods did not necessarily find the optimal solution based
on the global information, so the optimal assignment of resources cannot be realized.

Despite the great progress in improving efficiency, dimension explosion is still the primary
concern of these methods. High-dimension combinatorial optimization is still a difficult task
assignment problem. One possible direction is to establish a hybrid method to overcome the
defects of each individual method, such as PSO-SA [27], PSO-GA [28,29], and DPSO-GT [30,31].
Simulation experiments have demonstrated the effectiveness of these methods, when there are under
30 dimensions. The other direction is to design a more efficient algorithm, especially for high- dimension
problems. Wu et al. [32] proposed a new heuristic swarm intelligent algorithm named the wolf pack
algorithm (WPA), based on a swarm of intelligent wolves. Simulation results showed that the WPA
is especially suitable for solving high-dimension and multimodal function optimization problems.
Subsequently, the algorithm was applied to some classical optimization problems and achieved good
results [33,34]. However, whether the WPA with excellent performance in solving high-dimensional
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continuous problems is suitable for discrete optimization problems such as task assignment needs
further verification.

The main contribution of this paper is the application of WPA in high-dimension task assignment
and the improvement on the WPA with the ideas of PSO and a GA to accelerate convergence speed.
The remainder of this paper is organized as follows. Section 2 formalizes the UAV swarm task
assignment problem with respect to performance requirements. The principles of the WPA and the
improvement of four aspects of the WPA are described in Section 3. In Section 4, the PSO-GA-DWPA is
compared with the WPA and PSO by simulation experiments in three task scenarios. Finally, Section 5
concludes the paper and briefly explores future work.

2. Task Assignment Model

In this section, a background incorporating a UAV swarm that executes an attack mission in a
large field is presented. Then, a mathematical formulation is established.

There are NT static targets whose initial positions have been revealed, and NV attacking UAVs
planning to attack these targets with the minimum cost.

In actual task assignment for ground attack, the task assignment model is very complex; it includes
many factors, such as fuel constraints, ammunition quantity, timing constraints between multiple tasks,
UAV mobility, threats, and redundancy tolerance. The factors considered in different combat scenarios
are different, so the task assignment model varies with the actual situation. This paper considers a
more general task assignment model which is not limited to a specific scenario and a specific UAV type.
The point is to verify whether the proposed PSO-GA-DWPA is suitable for solving high-dimensional
discrete optimization problems.

To avoid the influence of uncertain factors on the analysis of simulation results, the following
ideal assumptions are set up to simplify the formalization of the problem.

1. There are no obstacles and no-fly zones in the task scenario. A flight trajectory can be described
as connections of straight lines.

2. It does not take into account the consumption of time spent preparing and firing the weapon.
In other words, only the time the UAV swarm takes to reach the target positions is considered.

3. The UAV swarm maintains the same constant velocity and hence the flight time can be represented
with the flight distance.

4. Each target can be attacked only once. There are more targets than UAVs in the swarm,
which means each UAV will probably be assigned multiple targets.

The targets can be expressed as T =
{
T1, T2, · · · , TNT

}
, and the attacking UAV swarm can be

expressed as V =
{
V1, V2, · · · , VNV

}
.

The task assignment plan of UAV Vi ∈ V is

plani =
{
stage(i)1 , stage(i)2 , · · · , stage(i)Nmi

}
stage(i)k = (T j, L(i)

k ), T j ∈ T
, (1)

where stage(i)k is the stage k of UAV Vi ∈ V, Nmi is the task number assigned to UAV Vi ∈ V, T j is the

target of the UAV Vi ∈ V at stage k, and L(i)
k is the distance to T j of UAV Vi ∈ V at stage k.

Without loss of generality, two cost indicators that must be considered in task assignment are
adopted: the shortest total range of all UAVs (i.e., the lowest fuel cost) and the shortest time to complete
all tasks.

1. Total range of all UAVs

J1 =

NV∑
i=1

Nmi∑
k=1

L(i)
k . (2)
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For all UAVs in the swarm, the average range is

J∗1 =

NV∑
i=1

Nmi∑
k=1

L(i)
k

NV
. (3)

2. Time to complete all tasks
J2 = max

i∈V
Timei, (4)

where Timei is the time of UAV Vi ∈ V to finish all of its tasks. With consideration of the same
constant velocity for all UAVs, the time of UAV Vi ∈ V to finish all of its tasks can be expressed as
its total range. Therefore, Equation (4) can be represented as Equation (5).

J∗2 = max
i∈V

Nmi∑
k=1

L(i)
k . (5)

The optimization goal is to minimize both the total range of all UAVs and the maximum range
among all UAVs.

Thus, the cost function of task assignment is

minJ = ω1 J∗1 +ω2 J∗2 = ω1

NV∑
i=1

Nmi∑
k=1

L(i)
k

NV
+ω2max

i∈V

Nmi∑
k=1

L(i)
k , (6)

where ω1 and ω2 are weighting factors reflecting the importance of each performance criterion,
decided by the commander, and ω1 +ω2 = 1

3. The Wolf Pack Algorithm

3.1. The Basics of the Wolf Pack Algorithm

The WPA adopts the bottom-up design principle and simulates wolves hunting cooperatively
according to their division system of responsibilities as shown in Figure 1. Wolves are divided into a
leader wolf, exploring wolves and fierce wolves, and they share information with each other. The leader
wolf is closest to the prey because it is most sensitive to smell, so it is the guidance of the wolf pack.
Exploring wolves are responsible for detecting the environment to find the position of the prey, due to
their sensitivity to smell. Fierce wolves are responsible for getting close to catch the prey quickly.

The problem space is defined as an N ×D Euclidean space, where N is the number of wolves
in the wolf pack, and D is the number of each wolf’s information dimension. The position of the
wolf i ∈ N is expressed as Xi = {xi1, · · · xid, · · · , xiD}, where xid is the value in dth(d ∈ D) dimension of
wolf i ∈ N, the smell concentration of prey perceived by wolf is described as the cost function value.
The distance between the wolf p and q is defined as the Manhattan distance.

L(p, q) =
D∑

d=1

∣∣∣xpd − xqd
∣∣∣. (7)

WPA is shown in Algorithm 1. The whole process of wolf pack hunting can be abstracted into
3 features:

• the selection of the leader wolf based on the winner-take-all rule;
• three cooperative behaviors including walking, calling and sieging;
• an update mechanism based on the strongest-survives law.
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Algorithm 1: WPA
Data: initial position of UAVs:posV, position of targets:posT,iterations, population size:N, stepa,

stepb,stepc, Tmax, dnear, α, β
Result: solution Xleader, min cost J
Generate initial solution X;
for iterations do

Select the leader wolf;
/* walking behaviour: */

Select S exploring wolves;
while walking times < Tmax do

for exploring wolves do
walk to h directions as Eq.(8);
if J(Xnew) < J(X) then

update position:X← Xnew

end
if J(X) < J(Xleader) then

replace leader wolf:Xleader ← X;
break;

end
end

end
/* calling behaviour: */

Select M fierce wolves;
while distance between fierce wolf and leader < dnear do

for fierce wolves do
get close to the leader wolf as Eq.(9) if J(Xnew) < J(X) then

update position:X← Xnew;
update distance between fierce wolf and leader as Eq.(7)

end
if J(X) < J(Xleader) then

replace leader wolf:Xleader ← X;
break;

end
end

end
/* sieging behaviour: */

for all wolves except the leader wolf do
get close to the leader wolf as Eq.(11);
if J(Xnew) < J(X) then

update position:X← Xnew

end
end
/* eliminate and generate: */

Select R weakest wolves;
delete the R wolves;
generate randomly R new wolves;

end
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3.1.1. The Selection of Leader Wolf Based on Winner-Take-All Rule

The wolf with the minimum cost can be the leader wolf at any time. Initially, the wolf with the
minimum cost is chosen as the leader wolf. In the subsequent stages, if the cost of some wolf is less than
that of the current leader wolf, that wolf will be the new leader. If multiple wolves are the best at the
same time, pick one at random to be the leader wolf. The leader wolf goes directly to the next iteration
without executing the following cooperative behaviors, until it is replaced by a new leader wolf.

3.1.2. Three Cooperative Behaviors

1. Walking behavior. S suboptimal wolves are selected as exploring wolves to perform the walking

behavior. S is a random integer picked from
[

N
α+1 , N

α

]
, where α is the scale factor of exploring

wolves. Starting from the current position, exploring wolf i ∈ N makes one step forward towards
h directions. On account of individual differences, h generally takes a random integer within a
limited range. The new position to the bth(b ∈ h) direction is obtained by

Xb
i = Xi + sin(2π×

b
h
) × stepa, (8)

where stepa is the length of walking step. Exploring wolf i ∈ N will return to its initial position
after detecting each direction, then choose the best one to update its position. All exploring
wolves will keep walking until the satisfy one of the following conditions.

• As long as one exploring wolf’s new position is better than that of the leader wolf, this exploring
wolf will be the new leader wolf and the wolf pack will move to the calling behavior.

• When walking times reach the maximum Tmax, the wolf pack move to the calling behavior.

2. Calling behavior. The leader wolf calls for M(M = N − S − 1) nearest wolves as fierce wolves
to get close to its position rapidly with a large step. The new position of fierce wolf i ∈ N is
obtained by

Xk+1
i = Xk

i + stepb ×
Xk

leader −Xk
i∣∣∣Xk

leader −Xk
i

∣∣∣ , (9)

where stepb is the length of raid step. Fierce wolves will continue to get close to the leader wolf
until one of the following conditions is satisfied.

• As long as one fierce wolf’s new position is better than that of the leader wolf, this fierce wolf will
be the new leader and the wolf pack moves to the sieging behavior.
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• The Manhattan distance between a fierce wolf and the leader wolf is less than the threshold
distance dnear. dnear is estimated according to

dnear =
1

D×ω
×

D∑
d=1

|maxd −mind|, (10)

where ω is the factor representing the threshold distance and [mind, maxd] is the variable’s domain
in the dth dimension.

3. Sieging behavior. The leader wolf, whose position is treated as the prey’s position, guides all
other wolves to siege the prey with a small step. For iteration k, the position of the prey is Xk

leader;
then the new position of wolf i ∈ N is updated according to

Xk+1
i = Xk

i + λ · stepc ·
∣∣∣Xk

leader −Xk
i

∣∣∣, (11)

where λ is a random real number in [−1, 1], and stepc is the length of the siege step. For any wolf,
if its new position is better than the current position, its position will be updated, otherwise its
current position will be kept. The wolf whose position is the best will be chosen as the leader wolf.

3.1.3. Update Mechanism Based on Strong-Survive Law

Prey is distributed according to the principle of strong to weak, which will cause the weakest
wolves to starve without food, that is to say, the wolves too far away from the prey will be eliminated.
In the algorithm, the R weakest wolves will be eliminated from the population and extra new R wolves
will be generated randomly. The larger R is, the more wolves will be generated, which is conducive to
maintaining the diversity of individuals in the population. However, if R is too large, the algorithm
tends to perform a random search. On the contrary, if R is too small, it is not conducive to maintaining
the diversity of individuals in the population, and the ability of the algorithm to open up a new solution
space is weakened. Since the size and number of prey are different with each capture, the number of
wolves starving to death varies. R is a random integer in

[
N
2β , N

β

]
, where β is the scale factor of the wolf

population update.

3.2. The Proposed PSO-GA-DWPA

The WPA is suitable for continuous problems where the variable in each dimension changes
continuously. However, the task assignment problem is a discrete problem in which the variable in
each dimension is an integer belonging to a set. As such, based on the rules of the WPA, it is necessary
to improve the WPA to match the integer discrete character of the task assignment. In addition, in order
to improve the convergence speed and solution accuracy, PSO and a GA are introduced into WPA.
The details of the PSO-GA-DWPA are as follows and the algorithm is shown in Algorithm 2.

3.2.1. Integer Matrix Coding

Integer matrix coding is adopted to express the assignment schema

Xi =

[
xi1 xi2 · · · xi j · · · xiNT

yi1 yi2 · · · yi j · · · yiNT

]
, (12)

where Xi is the position of the wolf i ∈ N, N is the population number of wolves, the dimensions
of variable is NT because there are more targets than UAVs and each target can only be attacked
once. The 1st row of Equation (12) is the index of the UAVs which perform attacking tasks where
xi j ∈ V, and elements in this row can be repeated because a UAV can attack multiple targets. The 2ed
row of Equation (12) is the index of targets, where yi j ∈ T. For the same UAV, the order in which
the target number appears is the attack order. For example, if there are 5 UAVs attacking 8 targets
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and the coding matrix is shown as Xi =

[
1 3 2 2 1 1 3 3
3 5 1 4 2 8 7 6

]
, then the task assignment

scheme is as follows: plan1 =
{
(3, L(1)

1 ), (2, L(1)
2 ), (8, L(1)

2 )
}
, plan2 =

{
(1, L(2)

1 ), (4, L(2)
2 )

}
, and plan3 ={

(5, L(3)
1 ), (7, L(3)

2 ), (6, L(3)
2 )

}
.

3.2.2. Improvement on Walking Behavior

The walking behavior of wolves is essentially an active exploration of the unknown environment.
This process determines the extent of the current best solution approaches to the global optimal solution.
In the WPA, each exploring wolf scouts the prey from h directions divided equally by 360 degrees as
Equation (8), and adjusts the coverage of the scout by changing the size of h. The bigger h is, the larger
the coverage of the scout will be, but the speed of the scout will be relatively slower. To scout the prey
more effectively, PSO is introduced in this paper to make the walking process completed from as few
directions as possible, under the guidance of the global extremum and the individual extremum.

Each exploring wolf is represented as one particle in the PSO. The implementation of PSO is divided
into three steps [20]: tracking individual extremum, tracking global extremum and individual variation.

1. Tracking individual extremum

This part of the formula is expressed in the discrete domain as Equation (13). This represents a
copy operation with probability c1. Xk

i represents the position of wolf i ∈ S in iteration k. Pk
i is the

optimal solution of wolf i ∈ S according to the current scouted directions, representing the individual
extremum of wolf i ∈ S in iteration k. Note that ϕk

i is a temporary variable.

ϕk
i = c1 ⊗ F1(Xk

i , Pk
i ) =

F1(Xk
i , Pk

i ), ε = rand() < c1

Xk
i , otherwise

. (13)

During the operation in Figure 2, a random number ε ∈ [0, 1] is generated firstly. If ε < c1, where c1

is the threshold to determine crossover, two random integers a, b ∈ [1, NT] are generated. The columns
between the index range [a, b] of Xk

i will be exchanged with the counterpart in the individual extremum
Pk

i . The result of this operation is ϕk
i . On the other hand, if ε ≥ c1, ϕk

i = Xk
i .
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2. Tracking global extremum

Equation (14) represents a copy operation with probability c2. Pk
g is the position of the leader wolf,

representing the global extremum in iteration k. λk
i is a temporary variable.

λk
i = c2 ⊗ F1(ϕ

k
i , Pk

g) =

F1(ϕk
i , Pk

g), ε = rand() < c2

ϕk
i , otherwise

. (14)
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During the operation in Figure 3, a random number ε ∈ [0, 1] is generated firstly. If ε < c2, where c2

is the threshold to determine crossover, two random integers a, b ∈ [1, NT] are generated. The columns
between the index range [a, b] of ϕk

i will be exchanged with the counterpart in the global extremum Pk
g.

The result of this operation is λk
i . On the other hand, if ε ≥ c2, λk

i = ϕk
i .
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2. Tracking global extremum 

Equation (14) represents a copy operation with probability 2c . k
gP  is the position of the leader 

wolf, representing the global extremum in iteration k . k
iλ  is a temporary variable. 

1 2
2 1

( , ), ()
( , )

,

k k
k k k i g
i i g k

i

F P rand c
c F P

otherwise
ϕ ε

λ ϕ
ϕ

 = <= ⊗ = 


. (14)

During the operation in Figure 3, a random number [0,1]ε ∈  is generated firstly. If 2cε < , 
where 2c  is the threshold to determine crossover, two random integers , [1, ]Ta b N∈  are generated. 
The columns between the index range [ , ]a b  of k

iϕ  will be exchanged with the counterpart in the 

global extremum k
gP . The result of this operation is k

iλ . On the other hand, if 2cε ≥ , =k k
i iλ ϕ . 

1iφ 2iφ  iaφ  ibφ
TiN

φ

 1iψ 2iψ iaψ ibψ
TiN

ψ
1gp   

  1gq
2gp gap gbp TgNp

2gq gaq gbq TgNq

a ab b

k
iϕ Pkg

1iφ 2iφ  
TiN

φ

  1iψ 2iψ
TiN

ψ
gap gbp

gaq gbq
k
iλ

1F ( , )k k
i gPϕ



 
Figure 3. Tracking global extremum.

3. Individual variation

This part of the formula is described in the discrete domain as Equation (15), where stepa is the
walking step, which determines how many columns of λk

i will mutate. Wk
i is a temporary variable

representing the result of the walking behavior.

Wk
i = F2(λ

k
i , Γ(stepa)). (15)

During the operation in Figure 4, function Γ(stepa) randomly selects stepa columns in the λk
i .

The values of the 1st row in these columns are randomly selected from [1, NV ], while the values of the
second row are randomly exchanged.
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3.2.3. Improvement on Calling Behavior

The calling behavior is an essential process for fierce wolves to converge to the current optimal
solution which is the position of the leader wolf. This behavior determines the convergence rate of the
algorithm. Inspired by gene segment duplication in the GA, each fierce wolf duplicates a piece of the
leader’s position to replace its own to realize the fast approach of the leader wolf.

This part of the formula is expressed in the discrete domain as Equation (16). Pk
g is the position of

the leader wolf, representing the global extremum in iteration k, stepb is the raid step, and Ck
i (i ∈M) is

a temporary variable representing the result of the calling behavior.

Ck
i = F1(Xk

i , Pk
g, stepb). (16)

During the operation in Figure 5, a continuous segment of length stepb is randomly intercepted
from the wolf i ∈M, then, is replaced by the corresponding segment of the leader wolf.
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3.2.4. Improvement on Sieging Behavior

This part of the formula is expressed in the discrete domain as Equation (17), where stepc is siege
step, and Xk+1

i is the result of the siege behavior.

Xk+1
i = F2(X, Γ(stepc)) =

F2(Wk
i , Γ(stepc)), i ∈ S

F2(Ck
i , Γ(stepc)), i ∈M

. (17)

During the operation in Figure 6, Function Γ(stepc) randomly selects stepc columns in X. The values
of the first row in these columns are randomly selected from [1, NV ], while the values of the second
row are randomly exchanged.
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3.2.5. Improvement in Wolf Population Update

In WPA, R weakest wolves are eliminated and replaced by new wolves generated randomly
just as the initialization. Experiments show that new wolves generated by this method do not
have competitiveness, and they are finally eliminated and meaningless in the algorithm. In the
PSO-GA-DWPA, a new wolf is generated by using the method of small variation of the leader wolf.
The process is similar to individual variation in walking behavior.

This is expressed in the discrete domain as Equation (18), where stepd is variation step, and Xk+1
i

is the position of new wolf.
Xk+1

i = F2(Pk
g, Γ(stepd)). (18)

During the operation in Figure 7, Function Γ(stepd) randomly selects stepd columns in Pk
g.

The values of the first row in these columns are randomly selected from [1, NV], while the values of the
second row are randomly exchanged.
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Algorithm 2: PSO-GA-DWPA
Data: initial position of UAVs:posV , position of targets:posT ,iterations, population size:N, stepa, stepb,stepc,

stepd, Tmax, dnear, α, β
Result: solution Xleader, min cost J
Generate initial solution X;
for iterations do

Select the leader wolf;
/* walking behaviour: */

Select S exploring wolves;
while walking times < Tmax do

for exploring wolves do
tracking individual extremum as Eq.(13);
tracking global extremum as Eq.(14);
individual variation as Eq.(15);
if J(Xnew) < J(X) then

update position:X← Xnew

end
if J(X) < J(Xleader) then

replace leader wolf:Xleader ← X;
break;

end
end

end
/* calling behaviour: */

Select M fierce wolves;
while distance between fierce wolf and leader < dnear do

for fierce wolves do
get close to the leader wolf as Eq.(16) if J(Xnew) < J(X) then

update position:X← Xnew;
update distance between fierce wolf and leader as Eq.(7)

end
if J(X) < J(Xleader) then

replace leader wolf:Xleader ← X;
break;

end
end

end
/* sieging behaviour: */

for all wolves except the leader wolf do
get close to the leader wolf as Eq.(17);
if J(Xnew) < J(X) then

update position:X← Xnew

end
end
/* eliminate and generate: */

Select R weakest wolves;
delete the R wolves;
for R wolves do

X← Xleader;
individual variation as Eq.(18):X← Xnew

end
end
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In this way, the new wolf can not only be competitive, but can also conduct local optimization at
the position of the leader wolf to avoid local convergence.

4. Experiments of Task Assignment for UAV Swarm Using PSO-GA-DWPA

The performance of the PSO-GA-DWPA is analyzed in this section using simulation according to
the assumptions in Section 2. By setting three scenarios with different numbers of UAVs and targets,
we verified the applicable scope and efficiency of the algorithm. The parameters used for the simulation
and the PSO-GA-DWPA are summarized in Table 1.

Table 1. Simulation parameters.

Parameters Scenario 1 Scenario 2 Scenario 3

iterations 200 400 1000
population size 100 100 100

stepa 2 2 2
stepb 4 14 70
stepc 1 2 2
stepd 2 2 2
Tmax 10 10 10
dnear 2 14 70
α 4 4 4
β 5 5 5

4.1. Monte Carlo Simulation in Different Scenarios

A Monte Carlo study, consisting of 50 runs, is used in this section to compare the performance of
the PSO-GA-DWPA, WPA and PSO algorithms with respect to the cost function of Equation (6) where
ω1 = ω2 = 0.5. Three scenarios are examined: 5 UAVs on 8 targets, 20 UAVs on 30 targets and 100
UAVs on 150 targets. The initial locations of the UAVs and targets were generated randomly as shown
in Figure 8.

The algorithms are coded in Python, and all simulations are run on a computer with a 2.50-GHz
Intel Core i5 CPU and 4 GB of RAM.

First, a small size scenario of 5 UAVs on 8 targets is analyzed. In Figures 9 and 10, the cost curve
and the running time curve (the intersection of the solid line and dotted line indicates the convergence
time) are plotted to compare the convergence performances of the three methods. Figure 9 shows
that the optimization capabilities of the three algorithms are similar, but the convergence speed of
the WPA and the PSO-GA-DWPA is better than that of PSO. Also, PSO is time-consuming and WPA
and PSO-GA-DWPA is time-saving. Since the calculation process of the PSO-GA-DWPA is more
complicated than that of the WPA, running time for each iteration of the PSO-GA-DWPA is slightly
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longer than that of the WPA. However, the PSO-GA-DWPA needs less number of iterations to converge,
so the convergence time is shorter than that of the WPA.
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distributed in a space of 10,000 × 10,000 m.
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Compared with the recognized fast and accurate PSO algorithm, the advantage of the WPA and
the proposed PSO-GA-WPA in a low-dimensional solution space (such as the 8-dimensional solution
space in scenario 1), is not obvious. The experiments in Scenario 1 prove the availability of the WPA
and the PSO-GA-WPA for task assignment problem. The higher the dimension of the solution space is,
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the advantage of the proposed algorithm is more obvious. Compared with the WPA, the PSO-GA-WPA
has the advantage of a faster convergence speed. Although their convergence costs are similar, the
PSO-GA-WPA can obtain a convergent solution in a shorter time.

Second, we set the size as 20 UAVs on 30 targets, in other words, the dimension of the optimization
problem is 30. As shown in Figure 10, it is obvious that the optimization performances of the WPA
and the PSO-GA-DWPA are much better than that of the PSO. It can be seen that the WPA and
the PSO-GA-DWPA can obtain a better solution in a shorter time. PSO-GA-DWPA has the same
optimization performance as WPA, however, its convergence speed is better than that of the WPA.

Finally, the dimension of the optimization problem is set to be 150, that is, the scenario is 100 UAVs
on 150 targets. The convergence performance and running time of different measures are shown in
Figure 11. With the increase of dimension, PSO has become ineffective, (i) the optimal solution cannot
be obtained; and (ii) the calculation speed is too slow, and the time required for 1000 iterations is nearly
2.5 times that of the other two algorithms. Running time for each iteration of the PSO-GA-DWPA is
slightly longer than that of the WPA, but its convergence speed in the early stage is obviously faster,
so its convergence time is shorter than that of WPA.

1 
 

  
(a) (b) 

Figure 11. Simulation results in scenario 3: (a) the mean cost of the Monte Carlo runs, and (b) the 
mean convergence time of the Monte Carlo runs. 

  

Figure 11. Simulation results in scenario 3: (a) the mean cost of the Monte Carlo runs, and (b) the mean
convergence time of the Monte Carlo runs.

The comparison of the three methods in 3 scenarios is shown in Table 2, which indicates visually
that the overall performance of the PSO-GA-DWPA is better than that of the other two methods.
According to Figures 9–11 and Table 2, compared with the PSO, which is recognized as fast and
accurate, the advantage of the WPA and the proposed PSO-GA-WPA in the low-dimensional solution
space (such as the 8-dimensional solution space in Scenario 1) is not obvious. The experiments in
Scenario 1 prove the availability of the WPA and the PSO-GA-WPA for task assignment problem.
The higher the dimension of the solution space is, the advantage of the proposed algorithm is more
obvious. Compared with the WPA, the PSO-GA-WPA has the advantage of a faster convergence speed.
Although their convergence costs are similar, the PSO-GA-WPA can obtain a convergent solution in a
shorter time.
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Table 2. Comparison of simulation results.

Scenario Algorithm
Cost Function Convergence Time

Maximum Minimum Mean Standard
Deviation Maximum Minimum Mean Standard

Deviation

5 vs. 8
PSO 31.69 28.72 29.49 0.78 46.77 16.23 36.31 7.8
WPA 29.7 28.72 28.92 0.37 7.47 2.64 4.22 1.43

PSO-GA-WPA 30.98 28.72 29.23 0.52 4.36 1.45 2.53 0.17

20 vs.
30

PSO 582.86 412.4 511.84 37 - - - -
WPA 279.15 239.23 261.95 12.65 100.55 64.89 70.29 10.17

PSO-GA-WPA 269.84 235.28 253.6 10.2 51 23.67 29.56 4.77

100 vs.
150

PSO 8586 7929 8212 225 - - - -
WPA 1908 1650 1783 80 2508 2160 2255 102

PSO-GA-WPA 1880 1480 1606 78 1894 1784 1844 27

4.2. The Real-Time Analysis of the PSO-GA-DWPA

In practical application, the situation of the battlefield is rapidly changing; as a result, the time of
task assignment is limited. When the optimization problem scale is small, the global optimal solution
or sub-optimal solution can be obtained within the specified time. However, if the dimension of the
optimization problem is high, it is impossible to get the optimal solution in the specified time. In this
case, an algorithm with a faster convergence speed is required in the early stage to obtain a relatively
reasonable solution.

As shown in Figure 9b, to get the convergent solution of the optimization problem with 8
dimensions, the WPA needs 5 s and the PSO-GA-DWPA needs 2 s, which meets the requirement of real
time. While as shown in Figures 10b and 11b, the WPA needs 70 s and the PSO-GA-DWPA needs 30 s
when the dimension of the problem is 30, even worse, the WPA needs 2500 s and the PSO-GA-DWPA
needs 1800 s when the dimension of the problem goes up to 150. Hence in practice, a compromise
must be made between the optimal solution and the convergence time.

In the 150-dimensional scenario, it is required to make the decision of task assignment within a
specified time. Fifty experiments with three methods were conducted to compare the adaptability of
the three methods. The experimental results are shown in Figure 12. As can be seen from the results in
the figure, the PSO-GA-DWPA obtains a better solution within the specified time. If we need to obtain
a better but not optimal solution in finite time, the PSO-GA-DWPA is a better choice. 

2 

 
Figure 12. Mean of the Monte Carlo runs: 100 vs. 150 scenario, minimum cost within specified time.

5. Conclusions

Aiming at the problem of the UAV swarm task assignment, this paper introduces a novel
swarm intelligence algorithm, the wolf pack algorithm (WPA), which is particularly suitable for
high-dimensional continuous optimization problems. In order to apply this method to the discrete
optimization problem and improve the convergence speed, this paper proposes the PSO-GA-DWPA
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based on matrix coding and the principles of particle swarm optimization and genetic algorithm.
According to a general task assignment model and simulation experiments, this method proved to be
applicable for high-dimensional task assignment.

The simulation results show that in the case of a small dimension such as Scenario 1,
the PSO-GA-DWPA has almost the same optimization ability as the PSO. However, when the
dimension increases to 30 in Scenario 2, the PSO-GA-DWPA is obviously superior to PSO both in
terms of convergence speed and solution accuracy. When the dimension increases to 150 in Scenario 3,
the PSO fails, while the PSO-GA-DWPA can still obtain an effective solution. Therefore, this method
can serve as a useful reference for the UAV swarm task assignment.
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