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Abstract: This paper deals with the effects that displacements of the measuring pillar have on
precise geodetic measurements. The changes in the position of the control points on the object or its
surroundings can only be determined with well stabilized and stable reference points. These points
are usually stabilized with measuring pillars which are not always constructed in an optimal manner.
If they are placed in a dark tube with a high absorption factor, solar heating on one side of the pillar
can cause the pillar to deflect considerably due to the temperature difference on the two sides of
the pillar. This paper presents the influence of such a displacement, if the pillar is a survey point,
orientation point, or control point. We show that even small displacement of the survey point can
have important influence on all measurements and that the error in some cases significantly increases,
e.g., if the standard deviations of the coordinates of the survey point are 1 mm and their covariance is
assumed to be zero, the standard deviation of the distance between measured and exact position of
the control point exceeds the value of 2.2 mm.

Keywords: influence of temperature; deflection of the measuring pillar; displacement of the measuring pillar;
control measurements

1. Introduction

We cannot afford to make gross errors in precise geodetic measurements or in defining the
coordinates of reference points or points with a size of around 1 mm. Therefore, we try to eliminate or
at least reduce systematic errors by comparing instruments, using appropriate measuring methods,
taking into account the meteorological conditions in the environment, etc. [1]. However, there are
certain sources of errors present that are hard to avoid. Systematic errors include the deflection
of the measuring pillar, which can occur due to the variation of the temperature field inside the
pillar; especially when the sun shines on one side and the other side is in the shadow. This results
in temperature differences inside the pillar body, which are considered as a temperature load and
lead to deformations of the pillar. If the pillar is improperly stabilized, i.e., if a small-diameter
reference pillar and a dark drain tube with a high absorption factor are used for stabilization (Figure 1),
the deformations are considerable and cannot be neglected.

Appl. Sci. 2020, 10, 8319; doi:10.3390/app10238319 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7652-0174
http://www.mdpi.com/2076-3417/10/23/8319?type=check_update&version=1
http://dx.doi.org/10.3390/app10238319
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 8319 2 of 15
Appl. Sci. 2020, 10, x 2 of 15 

    

Figure 1. An example of an inappropriately stabilized measurement pillar. 

Based on calculations [2] and an experiment [3] we have established that a temperature 

difference of 16.2 °C between the two sides of a 1.5 m high pillar results in displacements of the screw 

for forced centering of the instrument of magnitudes around 1 mm, which is a considerable 

displacement for precise measurements. In the experiment, a ribbed tube was used made of plastic 

material with an outer diameter of 250 mm and an inner diameter of 217 mm. A welded reinforcement 

was rolled in the form of a cylinder, installed into the tube, and then the tube was filled with concrete 

C25/30. The Dewetron system for data capturing and the Agilent VEE Pro application were used to 

gather data from the thermocouple wire. The measurements are precise up to 0.3 K. For more details 

and the comparisons among other measurement error sources, the reader is referred to paper [3]. 

The photograph in Figure 2 shows a measurement we made on site, without waiting for extreme 

conditions. The photograph shows the temperatures measured on the sunny and shady side of the 

pillar. 

 

Figure 2. Temperatures measured on the sunny and shady side of the measurement pillar. 

In this paper, we discuss how much the displacements of the pillar, which occur as a result of a 

temperature variation along the pillar body, could affect the control point on the object when the 

displacement occurs at the orientation point, survey point, or control point. The influence of the 

displacement is analyzed using a simple example of a measurement performed using the polar 

method (Figure 3), where we have measured the horizontal direction 𝑜𝐵  from reference point 𝐴 

(survey point) to the second reference point 𝐵 (orientation point) as well as the horizontal direction 

𝑜𝐶 and the distance 𝑑𝐴𝐶 of the control point 𝐶. The horizontal angle 𝛼 is calculated as the difference 

between the measured horizontal directions [4]: 

Figure 1. An example of an inappropriately stabilized measurement pillar.

Based on calculations [2] and an experiment [3] we have established that a temperature difference
of 16.2 ◦C between the two sides of a 1.5 m high pillar results in displacements of the screw for forced
centering of the instrument of magnitudes around 1 mm, which is a considerable displacement for
precise measurements. In the experiment, a ribbed tube was used made of plastic material with an
outer diameter of 250 mm and an inner diameter of 217 mm. A welded reinforcement was rolled
in the form of a cylinder, installed into the tube, and then the tube was filled with concrete C25/30.
The Dewetron system for data capturing and the Agilent VEE Pro application were used to gather
data from the thermocouple wire. The measurements are precise up to 0.3 K. For more details and the
comparisons among other measurement error sources, the reader is referred to paper [3].

The photograph in Figure 2 shows a measurement we made on site, without waiting for extreme
conditions. The photograph shows the temperatures measured on the sunny and shady side of
the pillar.
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Figure 2. Temperatures measured on the sunny and shady side of the measurement pillar.

In this paper, we discuss how much the displacements of the pillar, which occur as a result of
a temperature variation along the pillar body, could affect the control point on the object when the
displacement occurs at the orientation point, survey point, or control point. The influence of the
displacement is analyzed using a simple example of a measurement performed using the polar method
(Figure 3), where we have measured the horizontal direction oB from reference point A (survey point)
to the second reference point B (orientation point) as well as the horizontal direction oC and the distance
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dAC of the control point C. The horizontal angle α is calculated as the difference between the measured
horizontal directions [4]:

α = oC − oB. (1)
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Figure 3. Polar measurement method.

The bearing between the reference points A and B is calculated as follows:

tan νB
A =

yB − yA

xB − xA
=

∆yB
A

∆xB
A

, (2)

while the bearing to the control point C is calculated as:

νC
A = νB

A + α. (3)

The coordinates of control point C are calculated as follows:

yC = yA + ∆yC
A = yA + dAC· sin νC

A and (4)

xC = xA + ∆xC
A = xA + dAC· cos νC

A. (5)

Literature (let us name only a few sources: [5–10]) deals with the influence of the displacement of
the signalized points (in our case, the displacement of points B and C) and the influence of the centering
error (in our example, the displacement of point A) on the measured horizontal angles; in our paper,
we will discuss the influence of these displacements on the position of the control point, i.e., on the
coordinates of the control point.

2. The Analysis of the Influence Temperature Displacements of a Pillar on the Position of the
Control Point

First of all, we need to look at the law of propagation of variances and covariances, as we will use
this law in what follows. Then, we will discuss the influence of the temperature displacement of the
pillar on the determination of the coordinates of the control point on the object, if such a pillar is an
orientation point, a survey point, or the control point on the object.

2.1. Linearization

The relations between the geodetic measurements and other parameters are usually described
by non-linear functions. For practical applications, non-linear functions are often (at least locally)
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approximated by the linear ones. Starting from a Taylor series expansion [11] of a non-linear function

y = F(x) =


F1(x)

...
Fn(x)

 =


F1(x1, x2, . . . xu)
...

Fn(x1, x2, . . . xu)

 about the point x0:

y = F(x0) + DF|x=x0(x− x0) +
1
2!
(x− x0)

T D2F
∣∣∣
x=x0

(x− x0) + · · · , (6)

where DF =


∂F1
∂x1

· · ·
∂F1
∂xu

...
. . .

...
∂Fn
∂x1

· · ·
∂Fn
∂xu

 denotes the Jacobian matrix of first-order partial derivatives,

D2F denotes the Hessian matrix of second order partial derivatives, while in higher-order terms,
the higher order partial derivatives are present.

When we neglect the higher-order terms and take only the linear part:

y = F(x0) + DF|x=x0(x− x0), (7)

we get a linear function, which coincides with the original one at x0 and represents an approximation of
the original one y = F(x). Note that the error of approximation is strongly dependent on the distance
between x and x0 and that in general such approximation makes sense only in a close neighbourhood
to x0.

2.2. Law of Propagation of Variances and Covariances

There are two ways to calculate the precision of estimates of the calculated quantity. If we have
redundant measurements, we can calculate the most likely value of the desired quantity and adjust its
precision. If we have just enough measurements, we can calculate the desired quantity monotonically,
and then estimate its precision by applying the law of propagation of variances and covariances [12].

In the following, we will consider all the parameters to be random variables. We will focus on
the expected value of the parameter described by a random variable Xi and its standard deviation
σXi , which reveals the dispersity of the parameter. The expected value µXi of a random variable Xi is
evaluated using the following equation [11]:

µXi = E[Xi] =

∫
∞

−∞

. . .

∫
∞

−∞

xifX(x1, x2, . . . , xn) dx1 · · · dxn, (8)

where fX(x1, x2, . . . , xn) denotes the probability density function of the random vector X consisting of
all random variables of the problem. With respect to the primary axioms of probability, fX is strictly
positive and its integral is equal to one.

The variance σ2
Xi

of a random variable Xi is calculated using [11]:

σ2
Xi

= E
[(

Xi − µxi

)2
]
=

∫
∞

−∞

. . .

∫
∞

−∞

(
xi − µxi

)2
fX(x1, x2, . . . , xn)dx1 · · · dxn, (9)

while the standard deviation defined as:

σXi =
√
σ2

Xi
. (10)

For any two components of a random vector, we can also calculate the covariance, which describes
the statistical correlation between two random variables. The covariance is calculated as follows [11]:

σXiX j = E
[
(Xi − µXi )

(
X j − µX j

)]
=

∫
∞

−∞

. . .

∫
∞

−∞

(xi − µxi )
(
x j − µx j

)
fX(x1, x2, . . . , xn)dx1 · · · dxn, (11)
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while the variance is always positive, the covariance can be negative.
For any random vector of size n, we can calculate the variances for each component using

Equation (9) and the covariances for each pair of components according to Equation (11). The results
can be written in the form called variance-covariance matrix [11]:

ΣXX = E
[
(X− µX)(X− µX)

T
]
=


σ2

X1
· · · σX1Xn

...
. . .

...
σXnX1 · · · σ2

Xn

. (12)

Note that ΣXX is a symmetrical, since σXiX j = σX jXi , where i, j = 1, . . . , n.
Starting from a simple linear transformation of a random vector Y = J0 + J·X, where J0 is a vector

of constants and J the constant transformation matrix, we can find the following relation:

ΣYY = J·ΣXX·JT, (13)

where ΣYY is a variance-covariance matrix of a vector. Equation (13) is called the law of propagation of
variances and covariances between the random vectors X and Y.

2.3. The Influence of the Temperature Displacements at Orientation Point B on the Position of the Control
Point C

If the temperature load displaces the position of the orientation point B, we use the point
B′(yB′ , xB′), instead of the point B(yB, xB) for our measurements. The two points are related by
yB′ = yB + δyB and xB′ = xB + δxB , where δyB and δxB represent the displacements of the position of
point B (Figure 4). Consequently, we measure the horizontal angle α′ = α+ δα, where δα is the error of
the horizontal angle α, instead of measuring horizontal angle α. The horizontal angle α′ is calculated
as the difference between the measured horizontal direction at control point C and the (displaced)
measured horizontal direction at orientation point B′ [4]:

α′ = oC
A − oB′

A . (14)
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Figure 4. Displacement at orientation point B: geometry.

Due to the displacement of the orientation point B, the horizontal angle α shows an error.
Considering the approximations yB′ = yB and xB′ = xB, we can calculate the position of the control
point C:

yC = yA + dAC sin
(
νB

A + α′
)

and (15)
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xC = xA + dAC cos
(
νB

A + α′
)
, (16)

where dAC =

√
(yC − yA)

2 + (xC − xA)
2 is the distance between survey point A and control point C,

νB
A = atan yB−yA

xB−xA
denotes the displaced bearing between survey point A and the displaced orientation

point B.
We can express the position of the control point C using the following two equations:

F1 ≡ yC = yA + dAC sin
(
atan

yB − yA

xB − xA
+ α′

)
and (17)

F2 ≡ xC = xA + dAC cos
(
atan

yB − yA

xB − xA
+ α′

)
. (18)

Observe, that the relation between the coordinates of these two points is non-linear and we will
linearize it to be able to apply Equation (13). The Jacobian matrix in terms of coordinates of orientation
point B is as follows:

∂F1

∂yB
= dAC cos

(
νB

A + α′
)
·
∆xB

A

d2
AB

, (19)

∂F1

∂xB
= −dAC cos

(
νB

A + α′
)
·
∆yB

A

d2
AB

, (20)

∂F2

∂yB
= −dAC sin

(
νB

A + α′
)
·
∆xB

A

d2
AB

, and (21)

∂F2

∂xB
= dAC sin

(
νB

A + α′
)
·
∆yB

A

d2
AB

. (22)

Here, ∆yB
A = yB − yA and ∆xB

A = xB − xA are the coordinate differences between survey point A

and orientation point B, while dAC =

√
(yC − yA)

2 + (xC − xA)
2 is the distance between both points.

These component are then gathered in the matrix JB =

 ∂F1
∂yB

∂F1
∂xB

∂F2
∂yB

∂F2
∂xB

.
Starting from known (or assumed) standard deviations σyB and σxB and the covariance σxyB for the

position of the orientation point B(yB, xB), we can now evaluate standard deviations and covariance
for the coordinates of the control point C using Equation (13):

ΣXXC =

[
σ2

yC
σxyC

σxyC σ2
xC

]
= JB·ΣXXB ·J

T
B =

 ∂F1
∂yB

∂F1
∂xB

∂F2
∂yB

∂F2
∂xB

[ σ2
yB

σxyB

σxyB σ2
xB

] ∂F1
∂yB

∂F1
∂xB

∂F2
∂yB

∂F2
∂xB


T

. (23)

After some algebra, we express:

σ2
yC

=
d2

AC

d4
AB

· cos2
(
νB

A + α′
)
·

(
∆xB

A·∆xB
A·σ

2
yB
− 2∆yB

A·∆xB
A·σxyB + ∆yB

A·∆yB
A·σ

2
xB

)
, (24)

σ2
xC

=
d2

AC

d4
AB

· sin2
(
νB

A + α′
)
·

(
∆xB

A·∆xB
A·σ

2
yB
− 2∆yB

A·∆xB
A·σxyB + ∆yB

A·∆yB
A·σ

2
xB

)
, and (25)

σxyC = −
d2

AC

d4
AB

· sin
(
νB

A + α′
)
· cos

(
νB

A + α′
)
·

(
∆xB

A·∆xB
A·σ

2
yB
− 2∆yB

A·∆xB
A·σxyB + ∆yB

A·∆yB
A·σ

2
xB

)
. (26)



Appl. Sci. 2020, 10, 8319 7 of 15

Assuming σ2
yB

= σ2
xB

= σ2
B and σxyB = 0, and νC

A = νB
A + α′, the result further simplifies to:

σ2
yC

= σ2
B·

d2
AC

d2
AB

· cos2 νC
A, (27)

σ2
xC

= σ2
B·

d2
AC

d2
AB

· sin2 νC
A, and (28)

σxyC = −σ2
B·

1
2

d2
AC

d2
AB

· sin 2νC
A. (29)

We can now calculate the values of the semi-axis of the error ellipse and the bearing of the longer
semi-axis [13]:

a2 =
σ2

xC
+ σ2

yC
+

√(
σ2

xC
− σ2

yC

)2
+ 4σ2

xyC

2
= σ2

B·
d2

AC

d2
AB

and (30)

a = σB·
dAC
dAB

, (31)

b2 =
σ2

xC
+ σ2

yC
−

√(
σ2

xC
− σ2

yC

)2
+ 4σ2

xyC

2
=

1
2
·

σ2
B·

d2
AC

d2
AB

− σ2
B·

d2
AC

d2
AB

 and (32)

b = 0, (33)

tan 2θ =
2·σxyC

σ2
xC
− σ2

yC

=
sin 2νC

A

cos 2νC
A

= tan 2νC
A and (34)

θ = νC
A ±

π

2
. (35)

From Equations (31) and (33), we can observe that the error ellipse becomes a line. More detailed
numerical results will be presented in Section 3.1.

2.4. The Influence of the Temperature Displacements at Control Point C on the Position of the Control Point C

In case the control point C has been displaced, we aim at the point C′(yC′ , xC′) instead of point
C(yC, xc), where yC′ = yC + δyC and xC′ = xC + δxC and δyC and δxC are the displacement of the position
of control point C (Figure 5).
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As expected, if the control point C has been displaced as a result of the temperature load on the
pillar, its position has moved for exactly the same value as the displacements by temperature at the top
of the pillar.

2.5. The Influence of the Temperature Displacements at Survey Point A on the Position of the Control Point C

If the temperature load has changed the position of the survey point A, we stem from the point
A′(yA′ , xA′), instead of the point A(yA, xA), where yA′ = yA + δyA and xA′ = xA + δxA and δyA and δxA

represent the displacement of the position of point A (Figure 6). Consequently, we measure the
horizontal angle α′ = α+ δα, where δα is the error of the horizontal angle α, instead of measuring
horizontal angle α. We calculate the horizontal angle α′ as the difference between the measured
horizontal direction to the control point C and the measured horizontal direction to the orientation
point B [4]:

α′ = oC
A′ − oB

A′ . (36)
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Figure 6. Displacement at survey point A: geometry.

Due to the displaced survey point A′, we measure the horizontal distance dA′C = dAC + δdAC ,
instead of the horizontal distance dAC, where δdAC represents the error in the horizontal distance dAC.

The displacement of the survey point A leads to an error in the horizontal angle and in the
horizontal distance between the points. Assuming that δyA and δxA are small, we can use the
following approximation:

yC = yA + dAC sin
(
νB

A + α′
)

and (37)

xC = xA + dAC cos
(
νB

A + α′
)
, (38)

where νB
A = atan yB−yA

xB−xA
is the displaced bearing between displaced survey point A and the orientation

point B.
The non-linear functions relating the coordinates now read:

F3 ≡ yC = yA + dAC sin
(
atan

yB − yA

xB − xA
+ α′

)
and (39)

F4 ≡ xC = xA + dAC cos
(
atan

yB − yA

xB − xA
+ α′

)
. (40)
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Again, the Jacobian matrix with respect to the displaced point A is needed:

∂F3

∂yA
= 1− dAC cos

(
νB

A + α′
)
·
∆xB

A

d2
AB

, (41)

∂F3

∂xA
= dAC cos

(
νB

A + α′
)
·
∆yB

A

d2
AB

, (42)

∂F4

∂yA
= dAC sin

(
νB

A + α′
)
·
∆xB

A

d2
AB

and (43)

∂F4

∂xA
= 1− dAC sin

(
νB

A + α′
)
·
∆yB

A

d2
AB

, (44)

which gives JA =

 ∂F3
∂yA

∂F3
∂xA

∂F4
∂yA

∂F4
∂xA

.
Assuming the standard deviations σyA and σxA and the covariance σxyA for the survey point

A(yA, xA) are known, we can calculate standard deviations and the covariance for the coordinates of
the control point C using Equation (13):

ΣXXC =

[
σ2

yC
σxyC

σxyC σ2
xC

]
= JA·ΣXXA ·J

T
A =

 ∂F3
∂yA

∂F3
∂xA

∂F4
∂yA

∂F4
∂xA

[ σ2
yA

σxyA

σxyA σ2
xA

] ∂F3
∂yA

∂F3
∂xA

∂F4
∂yA

∂F4
∂xA


T

. (45)

After inserting the expressions for the partial derivatives, we get:

σ2
yC

= σ2
yA

+ 2 dAC
d2

AB
· cos

(
νB

A + α′
)
·

(
∆yB

A·σxyA − ∆xB
A·σ

2
yA

)
+

d2
AC

d4
AB
· cos2

(
νB

A + α′
)

·

(
∆xB

A·∆xB
A·σ

2
yA
− 2∆yB

A·∆xB
A·σxyA + ∆yB

A·∆yB
A·σ

2
xA

)
,

(46)

σ2
xC

= σ2
xA

+ 2 dAC
d2

AB
· sin

(
νB

A + α′
)
·

(
∆xB

A·σxyA − ∆yB
A·σ

2
xA

)
+

d2
AC

d4
AB
· sin2

(
νB

A + α′
)

·

(
∆xB

A·∆xB
A·σ

2
yA
− 2∆yB

A·∆xB
A·σxyA + ∆yB

A·∆yB
A·σ

2
xA

)
, and

(47)

σxyC = σxyA +
dAC
d2

AB
· sin

(
νB

A + α′
)
·

(
∆xB

A·σ
2
yA
− ∆yB

A·σxyA

)
+

dAC
d2

AB
· cos

(
νB

A + α′
)

·

(
∆yB

A·σ
2
xA
− ∆xB

A·σxyA

)
−

d2
AC

d4
AB
· sin

(
νB

A + α′
)
· cos

(
νB

A + α′
)

·

(
∆xB

A·∆xB
A·σ

2
yA
− 2∆yB

A·∆xB
A·σxyA + ∆yB

A·∆yB
A·σ

2
xA

)
.

(48)

And for the special case, where σ2
yA

= σ2
xA

= σ2
A and σxyA = 0, and νC

A = νB
A + α′, we have:

σ2
yC

= σ2
A·

1− 2
dAC

d2
AB

·∆xB
A· cos

(
νB

A + α′
)
+

d2
AC

d2
AB

· cos2
(
νB

A + α′
), (49)

σ2
xC

= σ2
A·

1− 2
dAC

d2
AB

·∆yB
A· sin

(
νB

A + α′
)
+

d2
AC

d2
AB

· sin2
(
νB

A + α′
), and (50)

σxyC = σ2
A·

dAC

d2
AB

·

[
∆xB

A· sin
(
νB

A + α′
)
+ ∆yB

A· cos
(
νB

A + α′
)
− dAC· sin

(
νB

A + α′
)
· cos

(
νB

A + α′
)]

. (51)
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It is also interesting to express the values of the semi-axis of the error ellipse and the bearing of
the longer semi-axis of the ellipse, taking into account the same assumptions σ2

yA
= σ2

xA
= σ2

A and
σxyA = 0 [13]. They are as follows:

a2 = σ2
A·[1−

dAC
d2

AB
·

(
∆xB

A· cos
(
νB

A + α′
)
+ ∆yB

A· sin
(
νB

A + α′
))
+

d2
AC

2d2
AB
+

dAC
dAB

√
1− dAC

d2
AB
·

(
∆xB

A· cos
(
νB

A + α′
)
+ ∆yB

A· sin
(
νB

A + α′
))
+

d2
AC

4d2
AB
],

(52)

b2 = σ2
A·[1−

dAC
d2

AB
·

(
∆xB

A· cos
(
νB

A + α′
)
+ ∆yB

A· sin
(
νB

A + α′
))
+

d2
AC

2d2
AB
−

dAC
dAB

√
1− dAC

d2
AB
·

(
∆xB

A· cos
(
νB

A + α′
)
+ ∆yB

A· sin
(
νB

A + α′
))
+

d2
AC

4d2
AB
],

(53)

tan 2θ =
∆xB

A· sin
(
νB

A + α′
)
+ ∆yB

A· cos
(
νB

A + α′
)
− dAC/2· sin

(
2 ∗

(
νB

A + α′
))

∆xB
A· cos

(
νB

A + α′
)
− ∆yB

A· sin
(
νB

A + α′
)
− dAC/2· cos

(
2 ∗

(
νB

A + α′
)) . (54)

For numerical values, the reader is referred to Section 3.3.

3. Results and Discussion

3.1. The Influence of the Temperature Displacements at Orientation Point B on the Position of Control Point C

We will evaluate the precision of the coordinates of point C for various coordinate differences
∆yC

A and ∆xC
A between points A and C using Equations (27)–(29). We used the variances σ2

yC

and σ2
xC

and the covariance σxyC to calculate the standard error ellipses (31), (33), and (35).
Figure 7 and Table 1 show the direction and shape of the standard error ellipses resulting from
the displacement of the orientation point B for different positions of the control point C. We have
shown ellipses for different positions of the simulated points, different bearings between points A
and C (νC

A = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦, 330◦) and different distances
between the points (dAC = 50, 100, 150 m) and for various coordinate differences between points A and
C. The bearing between survey point A and the orientation point B is νB

A = 45◦, while the distance
between survey point A and orientation point B is measured at dAB = 150 m.

Table 1 shows the precision of the position of the control point C and the elements of the standard
error ellipse due to the influence of the displacement of the orientation point B for σ2

yB
= σ2

xB
= 1 mm2

and σyxB = 0 mm2 at different angles and distances between survey point A and control point C and
νB

A = 45◦, dAB = 150 m.
From Figure 7 and the values in Table 1, we can see that:

• we have the limit case of the error ellipses with one principal axis equal to zero,
• the direction of the major semi-axis is orthogonal to the line connecting points A and C,
• the semi-major axis increases with the distance from the control point C.

The displacements of the orientation point B therefore not only causes an error in the measuring
direction between survey point A and orientation point B, but also lead to errors in the horizontal angle
with the tip in survey point A and branches in the direction of orientation point B and control point C.
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Figure 7. Standard error ellipses for the influence of displacements at orientation point B on the position
of control point C.

Table 1. The precision of the position of the control point C and the elements of the standard error
ellipse due to the influence of the displacement as a result of the temperature difference at orientation
point B.

νC
A

[◦]
dAC
[m]

σxyC

[mm2]
σyC

[mm]
σxC

[mm]
a

[mm]
b

[mm]
θ
[◦]

0 50 0.00 0.33 0.00 0.33 0.00 90.00
0 100 0.00 0.67 0.00 0.67 0.00 90.00
0 150 0.00 1.00 0.00 1.00 0.00 90.00
30 50 0.05 0.29 0.17 0.33 0.00 120.00
30 100 0.19 0.58 0.33 0.67 0.00 120.00
30 150 0.43 0.87 0.50 1.00 0.00 120.00
60 50 0.05 0.17 0.29 0.33 0.00 150.00
60 100 0.19 0.33 0.58 0.67 0.00 150.00
60 150 0.43 0.50 0.87 1.00 0.00 150.00
90 50 0.00 0.00 0.33 0.33 0.00 180.00
90 100 0.00 0.00 0.67 0.67 0.00 180.00
90 150 0.00 0.00 1.00 1.00 0.00 180.00

3.2. The Influence of the Temperature Displacements at Control Point C on the Position of Control Point C

If the control point C has been displaced due to the temperature load on the pillar, the error
ellipses are of course the same regardless of the angles of orientation and the distances between the
points, which is clearly shown in Figure 8.
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3.3. The Influence of the Temperature Displacements at Survey Point A on the Position of the Control Point C

With Equations (49)–(51), we have expressed the precision of the control point C for the orientation
angle 45◦ between the survey point A and the orientation point B and a distance of 150 m, as well as
for different bearings (0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦, 330◦) and distances
(50, 100, and 150 m) between survey point A and control point C. Figure 9 and Table 2 show the
direction and shape of the standard error ellipses (52), (53), and (54), which occur as a result of the
temperature displacements at the survey point A for various positions of the control point C.

Table 2. The precision of the position of the control point C and the elements of the standard error
ellipse due to the temperature displacements at the survey point A.

νC
A

[◦]
dAC
[m]

σxyC

[mm2]
σyC

[mm]
σxC

[mm]
σC

[mm]
a

[mm]
b

[mm]
θ
[◦]

0 50 0.24 0.80 1.00 1.28 1.06 0.72 26.30
0 100 0.47 0.71 1.00 1.23 1.13 0.47 31.07
0 150 0.71 0.77 1.00 1.26 1.24 0.24 36.84
30 50 0.27 0.82 0.89 1.21 1.01 0.67 38.97
30 100 0.45 0.72 0.80 1.08 1.02 0.35 41.13
30 150 0.53 0.72 0.74 1.03 1.03 0.03 44.53
60 50 0.27 0.89 0.82 1.21 1.01 0.67 51.03
60 100 0.45 0.80 0.72 1.08 1.02 0.35 48.87
60 150 0.53 0.74 0.72 1.03 1.03 0.03 45.47
90 50 0.24 1.00 0.80 1.28 1.06 0.72 63.70
90 100 0.47 1.00 0.71 1.23 1.13 0.47 58.93
90 150 0.71 1.00 0.77 1.26 1.24 0.24 53.16

120 50 0.13 1.12 0.82 1.39 1.14 0.80 77.72
120 100 0.36 1.26 0.72 1.45 1.30 0.64 72.79
120 150 0.69 1.40 0.72 1.58 1.50 0.50 67.99
150 50 −0.04 1.22 0.89 1.51 1.22 0.89 93.11
150 100 0.02 1.47 0.80 1.67 1.47 0.80 89.24
150 150 0.17 1.72 0.74 1.88 1.73 0.73 85.92
180 50 −0.24 1.26 1.00 1.61 1.29 0.96 109.49
180 100 −0.47 1.55 1.00 1.84 1.59 0.92 107.10
180 150 −0.71 1.85 1.00 2.10 1.90 0.90 105.18
210 50 −0.37 1.22 1.12 1.66 1.33 1.00 126.44
210 100 −0.84 1.47 1.26 1.93 1.66 0.99 125.63
210 150 −1.40 1.72 1.40 2.22 1.99 0.99 125.01
240 50 −0.37 1.12 1.22 1.66 1.33 1.00 143.56
240 100 −0.84 1.26 1.47 1.93 1.66 0.99 144.37
240 150 −1.40 1.40 1.72 2.22 1.99 0.99 144.99
270 50 −0.24 1.00 1.26 1.61 1.29 0.96 160.51
270 100 −0.47 1.00 1.55 1.84 1.59 0.92 162.90
270 150 −0.71 1.00 1.85 2.10 1.90 0.90 164.82
300 50 −0.04 0.89 1.22 1.51 1.22 0.89 176.89
300 100 0.02 0.80 1.47 1.67 1.47 0.80 0.76
300 150 0.17 0.74 1.72 1.88 1.73 0.73 4.08
330 50 0.13 0.82 1.12 1.39 1.14 0.80 12.28
330 100 0.36 0.72 1.26 1.45 1.30 0.64 17.21
330 150 0.69 0.72 1.40 1.58 1.50 0.50 22.01

Table 2 shows the influence of the temperature displacements at survey point A on the
precision of the position of the control point C and the elements of the standard error ellipses
when σ2

yA
= σ2

xA
= 1 mm2 and σyxA = 0 mm2 at different angles and distances between survey point A

and control point C, νB
A = 45◦, dAB = 150 m.
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If we look at the influence of the temperature displacements at survey point A on the position of
control point C, Equations (52)–(54), in combination with the representations of the error ellipses in
Figure 9 and the values in Table 2, we see that:

• the error ellipses increase with distance from the control point C,
• the major semi-axis of the error ellipses reaches a size of 2 mm, which is significant if we take into

account the fact that for the survey point A we assumed the variances to be σ2
yA

= σ2
xA

= 1 mm2

and σyxA = 0 mm2,
• that the standard deviation of the distance between measured and exact position of the control

point σC =
√
σ2

yC
+ σ2

xC
exceeds the value of 2.2 mm, which is significant in precise measurements,

• with increasing distance between survey point A and orientation point B, the influence of the
horizontal angle error on the precision of control point C decreases and the distance error becomes
more and more influential.

The displacement of survey point A thus influences all measurements, i.e., the measured horizontal
direction to points B and C, and the distance between survey point A and control point C.

The error of determining the position of the control point C has a considerable influence on
the error of the measured direction from survey point A to control point C and consequently on the
horizontal angle with its apex at survey point A and the intersections in the direction of orientation
point B and control point C as well as the measured distance between survey point A and control
point C.

4. Conclusions

If we want to determine the displacements of the control points located on the object, we need well
stabilized reference points, which must be in the same position during the individual measurements.
Since the points are usually stabilized in nature, they are constantly exposed to changing natural
conditions. Apart from different movements of the ground, the positions of these points, when stabilized
by measuring pillars, can be influenced by temperature loads due to solar radiation. These loads lead
to a deflection of the measuring pillar, which moves the screw for forced centering, which is attached
to the top of the pillar and to which we attach the tachymeter or prism. If we use such a pillar or point
for measuring, our measurements may show an error in distance or horizontal direction due to the
deflection of the pillar.

Control measurements show whether the object has been displaced. Due to temperature related
deflections of the pillar, which can lead to considerable measurement errors, we may come to a wrong
conclusion. We could conclude that the displacement of the object did not take place although it did,
or we could come to the opposite conclusion and find that a displacement took place although the
object remained still.

In this paper, we have shown that if such a displacement occurs at the orientation point, it can be
minimized with a sufficient distance between the survey and orientation points. If such a displacement
occurs at the survey or control point, it cannot be eliminated by geometrically dividing the points.
However, we can try to minimize its effect by measuring under conditions that do not lead to a
temperature variation in the pillar body and temperature induced displacements.
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