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Abstract: An artificial neural network (ANN) extracts knowledge from a training dataset and uses
this acquired knowledge to forecast outputs for any new set of inputs. When the input/output
relations are complex and highly non-linear, the ANN needs a relatively large training dataset
(hundreds of data points) to capture these relations adequately. This paper introduces a novel
assisted-ANN modeling approach that enables the development of ANNs using small datasets,
while maintaining high prediction accuracy. This approach uses parameters that are obtained using
the known input/output relations (partial or full relations). These so called assistance parameters
are included as ANN inputs in addition to the traditional direct independent inputs. The proposed
assisted approach is applied for predicting the residual strength of panels with multiple site damage
(MSD) cracks. Different assistance levels (four levels) and different training dataset sizes (from 75
down to 22 data points) are investigated, and the results are compared to the traditional approach.
The results show that the assisted approach helps in achieving high predictions” accuracy (<3%
average error). The relative accuracy improvement is higher (up to 46%) for ANN learning
algorithms that give lower prediction accuracy. Also, the relative accuracy improvement becomes
more significant (up to 38%) for smaller dataset sizes.

Keywords: artificial neural networks; small datasets; assisted-ANN; hybrid-ANN; ANN inputs;
fracture mechanics; residual strength; multiple site damage cracks

1. Introduction

Data-driven methods are increasingly being used in a wide variety of scientific fields. These
methods extract knowledge and insights from datasets, which are typically large, and use this
acquired knowledge to forecast new outputs. Artificial neural network (ANN) modeling is one of
these data-driven methods that resembles the work principle of the human brain. An ANN acquires
knowledge through a learning process and stores this knowledge through interneuron connections
of different synaptic weight [1]. The ANN learns how a system behaves based on experience gained
from the input/output dataset (the training process), and based on that, it can predict the system’s
output(s) for any new set of inputs. The ability of the ANNs to learn by example, makes them
particularly useful for modeling highly complicated and non-linear processes, since the development
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of analytical models for such processes is extremely difficult. ANN modeling has been successfully
used in a wide variety of engineering applications including automatic control [2], solar energy
systems [3,4], traffic and transportation [5], image processing [6], biomechanics [7], materials science
and engineering [8-10], manufacturing [11,12], fracture mechanics and fault detection [13-27].

A typical ANN consists of an input layer, an output layer and one or more hidden layers in
between. Networks with up to two hidden layers are typically referred to as shallow neural networks
(SNNs). They are the simplest type of networks and the most widely used in engineering
applications. Networks with three or more hidden layers are referred to as deep neural networks
(DNNs). They generally have higher prediction accuracy, and nowadays, they are attracting the most
interest in the field of machine learning [14]. However, DNNs typically require large datasets for
training the network in order to achieve high prediction accuracy for the unseen datasets. For
applications where the number of inputs is relatively large, datasets comprising >10* data points are
typically required [14]. Collecting and assembling large datasets is challenging, or even not feasible,
in many applications, such as fracture mechanics and material science. For this reason, DNNs are still
not finding a lot of use in some engineering applications. Most SNNs utilize only one hidden layer,
and they generally do not require training datasets as large as those needed for DNNs. But
nevertheless, even with a single hidden layer network, datasets comprising hundreds of data points
are typically required to successfully train the network in order to achieve high prediction accuracy
for the unseen dataset. It can be generally stated that the more complex and non-linear the
relationships being modeled by the ANN are, the larger the size of the dataset required for training
the network is.

In fracture mechanics, ANNs were mostly used in applications concerned with crack
propagation, fatigue life, and failure mode prediction [13]. In the field of mechanical fracture, ANNs
have not found as much use as in other fields, mainly because it is not easy to generate large
experimental datasets for training the ANN. This can mainly be attributed to practical constraints
related to the time and cost requirements in many mechanical fracture experiments. Multiple site
damage (MSD) cracks are small fatigue cracks that may accumulate at the sides of highly loaded rivet
holes in the fuselage of an airplane. These MSD cracks usually appear after an extended period of
time due to the large number of loading cycles, and therefore they present a major concern for aging
aircraft fleets. Aircraft manufacturers design the fuselage of their airplanes to be able to carry the
design load with the presence of a relatively large crack spanning several adjacent rivet holes.
However, the presence of MSD cracks can significantly reduce the structure’s ability to carry loads
[28]. The maximum stress level a cracked structure can withstand before it fractures is referred to as
residual strength. For a panel having a lead (large) crack along with MSD cracks, residual strength
usually refers to the stress level at which the ligaments between the lead crack and adjacent MSD
cracks, on both sides, collapse. Several analytical and computational methodologies can theoretically
be used to estimate the residual strength of panels with MSD, and the accuracy of these
methodologies varies substantially [29-34].

The use of data-driven approaches, such as ANN, for predicting residual strength of panels with
MSD cracks is very rare in literature. As a matter of fact, testing panels with MSD cracks is not a quick
and easy experimental task, and it is usually a time-and-cost-intensive process in both preparation
and testing. In general, the panels need to be relatively large in order to resemble the actual case of
aircraft structures realistically. For this reason, it is not possible to find large experimental datasets
for panels with MSD in the literature. Pidaparti et al. [25,26] used ANN for predicting the corrosion
rate and residual strength of unstiffened aluminum panels with corrosion thinning and MSD.
Comparison of the ANN residual strength predictions with the experimental results showed that the
mean absolute error to be about 12%. Such an error level is considered to be relatively high, even
when compared to some of the other relatively simple engineering models reported in the literature
[29-34]. The reason behind this relatively high ANN prediction error can partly be attributed to the
small size of the dataset used for training the network (only about 40 data points). The authors of this
study, Hijazi et al. [27], have recently used ANN modeling for residual strength prediction of panels
with MSD. A dataset comprising 147 different configurations was assembled form many literature
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sources where 97 data points were used for training, 25 data points for validation and 25 data points
for testing. The dataset included data for three different aluminum alloys (2024-T3, 2524-T3 and 7075-
T6), four different test panel configurations (unstiffened, stiffened, stiffened with broken middle
stiffener, and lap-joints), and many different panel and cracks geometries. Through the careful
selection of the ANN inputs and the use of a comprehensive optimization procedure, a single ANN
model was developed where this model was able to give reasonably accurate residual strength
predictions for all the different materials and panel configurations. Comparison of the ANN model
predictions with the experimental results (of the testing dataset) showed that the mean absolute error
is less than 4%, which puts the ANN model at the same accuracy level with the best semi-analytical
and computational models available in the literature.

Situations where only small experimental datasets are available may be encountered in many
fields because generating large datasets is time-and-cost prohibitive [14,27,35,36]. Therefore, different
methods have been developed and implemented in ANN modeling to cope with the small dataset
conditions. Examples of these methods include using simulated data [37], using virtual data [38],
using multiple runs for models development and surrogate data analysis for model validation [39],
using duplicated experimental runs [9], using stacked auto-encoder pre-training [14], using analytical
models with errors revised by intelligent algorithms [35], using optimization aided generalized
regression approach [36], and simultaneously considering data samples with their posterior
probabilities [40]. Candelieri et al. [37] used datasets obtained from finite element simulations to
develop an ANN model for diagnosing and predicting cracks in aircraft fuselage panels. The use of
simulated data was shown to be technically effective and economical compared to generating an
experimental dataset; however, the attainable accuracy of such approach is practically limited by the
accuracy of the simulation method used to generate the dataset. Li et al. [38] proposed an approach
called “functional virtual population” to assist learning of the scheduling knowledge in dynamic
manufacturing systems using small datasets. Using as few as 40 virtual samples, the proposed ANN
model was attested to enhance learning accuracy. Shaikhina and Khovanova [39] introduced a
method of multiple runs adopted during the design of an ANN model for predicting the compressive
strength of trabecular bone. Although a small dataset with only 35 data points is used for training, a
two-layer back-propagation neural network (BPNN) model achieved significantly high accuracy
with 98.3% correlation coefficient between predicted and experimental values. Altarazi et al. [9] used
the results of multiple experimental duplicates for the same input variables in developing an ANN
model to evaluate polyvinylchloride composites” properties. Their results showed that the use of the
individual duplicates data (instead of the averaged value) helps in enhancing the accuracy of the
ANN model. Feng et al. [14] performed pre-training using a stacked auto-encoder to optimize the
initial weights in deep networks. They used this approach for predicting solidification cracking
susceptibility of stainless steels using a small dataset (containing 487 data points) and concluded that
their approach leads to better performance of DNNs. Wu et al. [35] compared four models for the
prediction of the flow stress of Nb-Ti micro-alloyed steel. The compared models included the original
Arrhenius-type model and the same model modified by intelligent algorithms such as ANN and
genetic algorithm. The results showed that the Arrhenius-type model with errors revised by ANN
gives the best prediction accuracy among all other models, even with a small training dataset. Qiao
et al. [36] proposed the use of a generalized regression neural network (GRNN) optimized by fruit-
fly optimization algorithm (FOA) to improve the predictive accuracy when using small training
datasets. Using a small dataset comprising only 14 data points, the proposed approach was used for
modeling the relationship between alloying elements and fracture toughness of steel alloys. Based on
their results, the GRNN-FOA model was found to be successful in predicting toughness with high
accuracy and good generalization ability. Mao et al. [40] utilized support vector machine to obtain
posterior probability information, then an ANN model whose inputs included the samples and their
posterior probabilities was constructed. Using a small dataset, the inclusion of simulation and real
data results showed improved learning accuracy by the proposed algorithm.

In this paper, we introduce a novel assisted-ANN modeling approach and use it for estimating
the residual strength of panels with MSD. This proposed approach improves the accuracy of the ANN
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model predictions, and most importantly, it enables the ANN to be trained using small datasets and
still achieve high prediction accuracy. Our approach merges the well-known and well-established
analytical relations (between the different input/output parameters) with the ANN technique to
improve the ability of ANN to estimate the residual strength of panels with MSD cracks. This
proposed approach is especially useful in cases where there are many input parameters that affect
the output, and at the same time, the number of data points available for training the ANN model is
limited. Our approach relies on calculating characteristic quantities using the known relations
between the different inputs/outputs and using these calculated quantities as assistance input
parameters for the ANN (in addition to the traditional independent inputs). When the size of the
training dataset is small, the limited number of data points along with the complex interactions
between the inputs/outputs, limits the ability for the ANN to fully capture (or learn) the complex
relations between the inputs/outputs. In such cases, the proposed assisted approach helps to improve
the ANN training process and enables the network to capture the inputs/outputs relations more
adequately, and thus it improves the predictions” accuracy. As a matter of fact, the choice of the
assistance parameters for any type of problem requires sufficient experience in that particular field,
since the assistance parameters are chosen based on the specific knowledge of the existing relations
between the inputs and outputs. The experimental dataset used in this investigation is obtained from
several literature sources [30-32,34,41,42]. The data covers four different panel configurations
(unstiffened, stiffened, stiffened with middle broken stiffener, bolted lap-joint), different panel
widths, sheet thickness, material conditions and grain orientations, along with many different lead
and MSD cracks geometries. The dataset includes a total of 113 data points, each representing a
unique experimental configuration. In order to demonstrate the benefit of using the proposed
assisted-ANN approach, four different levels of assistance are investigated and compared. In
addition to the assisted approach, the traditional approach, which relies on the use of independent
geometric/material inputs only, is also used on the same data to serve as a benchmark. In our assisted
approach, any known partial or full relation between any of the inputs and the output can be used to
generate an assistance parameter. For the MSD problem at hand, the assistance parameters being
used are mainly the crack-tip stress intensity factor (SIF) correction factors. These SIF correction
factors are mainly geometry and configuration dependent, and hence they relate many of the
geometric parameters to the residual strength. In addition to these SIF correction factors, theoretical
residual strength predictions obtained using an analytical model (called the “Linkup model”), are
also used as one of the assistance input parameters. Comparing the results obtained using the
traditional and the assisted approaches shows that the assisted-ANN approach clearly improves the
accuracy of the ANN residual strength predictions. Based on the testing dataset, the mean absolute
percentage error (MAEp) went from 3.8% for the traditional approach, down to 2.97% for the assisted
approach, which means that the relative error reduction is about 22%. The improvement attained
using the assisted approach is clearly observed for all the three different ANN learning algorithms
that are used in this study, namely; Bayesian Regularization (BR), Levenberg-Marquardt (LM) and
Scaled Conjugate Gradient (SCG). Additionally, in order to further demonstrate the benefit of the
proposed assisted-ANN approach for small datasets, the size of the training dataset is reduced from
75 data points (the initial size) all the way down to 22 data points, in three steps. As expected,
reducing the size of the training dataset increases the error level for the ANN predictions. However,
the results show that the relative error reduction, resulting from using the assisted approach,
increases for smaller datasets. Therefore, the importance of using the assisted approach is more
apparent for smaller datasets since the relative accuracy improvement becomes more significant. The
assisted-ANN approach proposed here should prove to be very helpful in cases where the number
of data points available for training the ANN is limited, which is generally the case in many
experimental investigations in fracture mechanics. In addition, the use of such approach is not limited
to fracture mechanics, but it is also generally applicable in other fields where the known analytical
inputs/outputs relations can be used as inputs for assisting the ANN training/prediction process. This
approach is especially useful when the number of available data points is not sufficient to enable the
ANN to fully capture the existing relations between the different inputs/outputs.
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2. Background

2.1. Residual Strength of Panels with MSD

A variety of analytical and computational approaches can theoretically be used for estimating
the residual strength of panels with MSD cracks. These approaches include analytical, semi-analytical
(empirically corrected), computational and data-driven, and the accuracy of these approaches varies
significantly [27]. Figure 1 illustrates the configuration of a typical panel having a lead crack along
with adjacent MSD cracks, which is being considered here. Linear Elastic Fracture Mechanics (LEFM)
is one of the most fundamental theories in fracture mechanics, and it can be used for evaluating
residual strength for different types of crack configurations [43]. However, the LEFM is more
applicable to brittle materials since it assumes a linear-elastic behavior for the material at the crack
tip. According to LEFM, failure (or unstable crack extension) will occur when the value of the crack-
tip SIF reaches a critical value. This limiting value of the SIF is called the fracture toughness (Kc). The
fracture toughness is a material property, but for thin sheets, it is also slightly dependent on thickness,
grain orientation and crack length. For a panel with a major crack and collinear adjacent MSD cracks
subjected to tension, as illustrated in Figure 1, the Mode-I stress intensity factor (Ki) for the lead crack
is:

K| = ovna By Baye 1

where

0:  The remote applied stress.

a: Lead crack half-length.

Bw: Finite width correction factor.

Ba,¢: Cracks interaction correction factor for the effect of MSD cracks on the lead crack.
Thus, the residual strength (o) of the panel can be found as:

¢ Vma Bw Baye @)

Experimental investigations have shown that the LEFM is not able to accurately predict the
residual strength of panels with MSD neither for brittle nor ductile materials where it consistently
over predicts the strength [29]. Swift [28] introduced an analytical model that is specially formulated
for the prediction of the residual strength of panels having MSD cracks. This model is called the
“Linkup” model, and it is based on the concept that the ligament between the lead crack and the
adjacent MSD crack will fail when the remote stress reaches a level that causes the lead crack-tip
plastic zone and the adjacent MSD crack-tip plastic zone to touch each other (i.e., merge together). As

o

the linkup occurs, the entire panel will fail (assuming MSD cracks exist on all subsequent holes and
no crack arresting structures are used); therefore the stress causing linkup of the lead and MSD cracks
is practically equal to the residual strength of the panel. Therefore, the residual strength of panels
with MSD is also sometimes referred to as linkup stress.

The Linkup model estimates the plastic zone size using the Irwin plane-stress plastic zone
model. The Irwin model is based on the crack-tip SIF (Ki), and it gives the size (diameter) of plastic

Zone as:
2
1 (K,
_ (K 3
LR <0y> @

where oy is the yield strength of the material. Therefore, according to the linkup model, the remote
stress that causes failure of the ligament (i.e., touch of the plastic zones), which is called “linkup”
stress (oLv), is found as:

- u — ( )
o.=0 =0, |— 4
¢ g Y a Baz £ B{’Z

where

L: Length of the ligament between the lead crack and MSD crack.
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£: MSD crack half-length.

Ba: The overall SIF correction factor for the lead crack tip.

B,: The overall SIF correction factor for the adjacent MSD crack tip.

For the case of a panel with open holes and no stiffeners (as seen in Figure 1), B, and B, can be
determined as follows:

Ba = Bw Baye 5)
Be = Bu B{’/a (6)

where

Bu: Correction factor for the effect of the hole.

Be/a: The cracks interaction correction factor for the effect of the lead crack on MSD cracks.

The different SIF geometric correction factors (usually referred to as “betas”) are usually readily
available in literature in the form of equations or charts and in case they are not available for some
configurations they can be determined using FEA [29]. In the case that the panel has stiffeners or it is
a bolted (or riveted) lap-joint, additional correction factors to account for the configuration of the
stiffeners (3s) or lap-joint (fu) are included in the overall correction factors (Equations (5) and (6)).

A A O

|
| 2la_ e _/l
oo ol ¥ o Lead and MSD cracks
T : ““ B plastic zones

Phddd b i bbb igo

Figure 1. Illustration of the MSD test panel geometry and the crack-tip plastic zone.

Experimental investigations have also shown that linkup model is not accurate for many crack
configurations [29-34]. To cope for the inaccuracy of the linkup model, different empirical corrections
were developed and can be found in literature [29]. The most accurate of these empirically corrected
models are those developed by Smith et al. [30,44,45] where three different empirically corrected
models were developed for three different aluminum alloys; 2024-T3, 2524-T3 and 7075-T6. In fact,
all of these three linkup model’s empirical corrections, for the three aluminum alloys, are function of
the ligament length alone. This suggests that the assumption of the linkup model (failure of ligament
when the plastic zones touch) is rational but the size of the plastic zones is not accounted for
accurately. It also should be stated here that the experimental results show that though the original
linkup model is not accurate in many cases, it can reasonably capture the effects of the different
parameters on residual strength.

Hijazi et al. [27] developed a single ANN model to predict the residual strength of panels with
MSD made of any of the three different aluminum alloys (2024-T3, 2524-T3 and 7075-T6) and
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compared the ANN predictions accuracy to that of the three empirically-corrected models of Smith
et al. [30,44,45]. Their results have shown that both the ANN model and the empirically-corrected
linkup models are able to give residual strength predictions with reasonably high accuracy where the
average error for both approaches is about 4%. Finally, a thorough review for the different
approaches (analytical, computational, etc.) used in the literature for estimating the residual strength
of panels with MSD cracks can be found in Hijazi et al. [27]. Such review is not included here because
it is distractive to the reader and it is out of the scope of this paper.

2.2. ANN Input Parameters Selection

The selection of an appropriate set of input parameters (or variables) has been a longstanding
concern for ANN development. When the number of available input variables is relatively large, it is
sometimes recommended not to use inputs with high multi-collinearity, in order to avoid
redundancy. On the other hand, it is also commonly believed that an ANN is adequately capable of
identifying redundant and noise input variables during the training process, and that the trained
network will use only the significant input variables to make predictions. However, the proper
selection of the ANN input variables can simplify models structure and reduce computational effort,
and accordingly, obtain high-quality models [46]. Different methods have been applied for this
purpose including input variable selection (IVS) algorithms, dimensionality reduction techniques,
and other various ad hoc and heuristic methods. Bowden et al. [47] described an IVS method that
combines genetic algorithm optimization with a generalized regression ANN. In practice, the method
demonstrated fast model’s training times. May et al. [48] proposed non-linear IVS algorithm for the
development of ANN models for water quality forecasting. The ANN models constructed using this
algorithm, which based on partial mutual information concept, resulted in optimal prediction with
significantly low computation effort. Li et al. [49] integrated principal component analysis (PCA) with
ANN for hourly prediction of building electricity consumption. As a result of PCA application, two
out of four input variables were selected as significant and only those were used in the ANN
proposed model. Yang et al. [50] have also combined PCA and ANN to predict the mechanical
behavior of binary composites. The proposed model was motivated, and found potentially capable,
by the fast inference of the PCA/ANN method comparing to other empirical models used for
generating stress-strain curves. Yu and Chou [51] proposed a combined scheme of independent
component analysis (ICA) and ANN for electrocardiogram beat classification. The study results
proved the effectiveness of ICA-ANN integration. Yadav et al. [52] has implemented the decision tree
method for variable selection in developing ANN model for solar radiation prediction, herein, initial
list of relevant variables were given by Waikato Environment for Knowledge Analysis software.
Dolara et al. [53] employed a hybrid analytical-ANN approach for improving the forecasting
accuracy of PV power plants output. In their approach, they used an analytical model (called the clear
sky model) to obtain predictions of PV power output based on historical weather data, and they used
the analytical model’s output along with the historical weather data and measured PV power output
to train the ANN. Then, for forecasting the PV power output, both the weather forecast and the
analytical model’s output are used as ANN inputs to predict the PV power output.

3. The Experimental Dataset

The experimental data used in this study are obtained from several literature sources [30-32,34,
41,42]. The data include a total of 113 data points that represent 113 unique experimental
configurations (no duplicates are included). The experiments were conducted on relatively large scale
panels of different configurations that contain a lead crack and adjacent MSD cracks. The output of
each experiment is the residual strength which is obtained by performing tensile test and finding the
load that caused the failure of the ligament between the lead crack and the adjacent MSD cracks on
both sides. The residual strength values being used here represent the nominal remote stress which
is calculated as the failure load divided by the panel’s nominal cross-sectional area (that includes the
stiffeners’ cross-sectional area in case of the stiffened panels). Using the stress rather than the load
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values is actually more appropriate here since panels of different widths, thicknesses and stiffener
configurations are included in the experimental data.

The experimental data being used in this study are all for the same aluminum alloy (2024-T3),
but they cover a wide variety of test panel configurations, material conditions, grain orientation,
widths, thicknesses, and lead and MSD cracks geometries. The 113 experimental data points that are
used here include: (i) four different test panel configurations (unstiffened, stiffened, stiffened with a
broken stiffener, and lap-joint), (ii) bare and clad material conditions, (iii) longitudinal and transverse
grain orientations, (iv) different sheet thickness (from 1 mm to 1.8 mm), (v) different panel widths
(from 508 mm to 2286 mm), vi) different lead crack lengths (from 76 mm to 546 mm), (vii) different
MSD crack lengths (from 7.6 mm to 25.4 mm), and (viii) different ligament lengths between the lead
and adjacent MSD cracks (from 3.8 mm to 38 mm).

The experimental data are included in the Appendix in three tables where they are grouped
according to the test panel configuration. The unstiffened panels” data include 50 data points, and
they are presented in Table Al. The stiffened panels’ data include 36 data points that cover two
different stiffeners configurations (crack centered between stiffeners and crack centered under a
broken middle stiffener), and they are presented in Table A2. Finally, the lap-joint panels’ data
include 27 data points, and they are presented in Table A3. Each of these three tables contain the
material’s yield strength, the test panel and cracks geometry, and the experimentally obtained
residual strength values. For the stiffened panels (Table A2), the stiffener’s cross-sectional area (Ast)
is also given. To save space, the material thickness, condition and grain orientation data are not
included in the tables since they are not used as inputs for the ANN model (they are accounted for
indirectly through the material’s yield strength). For the interested reader, such information as well
as more details about the experimental data and the configurations of the test panels can be found in
Hijazi et al. [27]. It should be mentioned here that the yield strength values reported in the table are
the standard handbook values (not the actual values obtained from testing specimens cut out of the
same sheets) and that these values depend on the material’s thickness, condition and grain
orientation. The yield strength values given in all tables are the A-basis values obtained from MIL-
HDBK-5H [54].

In addition to the yield strength, the different geometric quantities and the experimentally
obtained residual strength; the tables also give some of the SIF geometric correction factors and the
linkup model’s residual strength prediction for each of the 113 configurations. These additional
parameters given in the tables are meant to be used as assistance input parameters in the assisted-
ANN approach being proposed in this paper. More details about the different SIF geometric
correction factors listed in the tables will be given in Section 4.2.

4. ANN Modeling Procedure

The main objective of this study is to introduce a novel assisted-ANN modeling approach that
can further improve the accuracy of the ANN predictions, and at the same time this approach enables
the ANN to hold accurate even when relatively small datasets are used for training the network. The
benefits and capabilities of this assisted-ANN modeling approach are demonstrated by applying it
for developing an ANN model that can accurately predict the residual strength of panels with any
lead and MSD cracks geometry for any panel configuration and geometry. In order to recognize the
benefit of the assisted approach, two ANN modeling approaches are used and comparted in this
investigation. Firstly, the traditional or typical approach is used. In this approach, independent
parameters such as geometric quantities, panel configuration identifier and relevant material
properties, are used as inputs to the ANN. Such input parameters maybe called direct parameters.
Secondly, the proposed assisted-ANN approach is used. In this approach, in addition to the direct
independent input parameters (geometry, material properties, etc.), additional “dependent”
parameters are used as inputs in order to assist the ANN to better capture the input/output relations
and therefore improve the accuracy of the predicted outputs. These indirect dependent parameters,
which may be called “assistance parameters”, are obtained using the known analytical relations
between the inputs and the output. It should be mentioned here that the traditional ANN modeling
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approach was previously used by Hijazi et al. [27] on a slightly larger dataset than what is being used
here and it was found to give reasonably high accuracy. The dataset used in Hijazi et al. [27] had a
total number of 147 data points where that included additional 34 datasets for two aluminum alloys
(2524-T3 and 7075-T6) that are not considered here. In this study, only the Al 2024-T3 experimental
data (113 data points) are considered since it includes the widest possible variety of different
configurations. The same traditional ANN modeling approach used in Hijazi et al. [27] is also being
used in this investigation to serve as a benchmark for the accuracy level in order to evaluate the
improvements attained by using the assisted approach. For both the traditional and assisted
approaches, the ANN model is built using the supervised feed-forward scheme. The network consists
of an input layer with several input nodes, an output layer with one output node (residual strength),
and one intermediate hidden layer. The data points used in this investigation are separated into three
general groups (given in Table Al to Table A3) according to the panel configuration. For each of these
three groups, the size percentages of datasets used for training, validation, and testing are set to be
about 66%, 17% and 17%, respectively. Thus, the number of data points used for
training/validation/testing for each of the different panel configuration groups are: 34/8/8 for the
unstiffened panels, 24/6/6 for the stiffened panels and 17/5/5 for the lap-joint panels. This makes the
total number of data points used for training (from all the different groups) to be 75 data points and
the number of data points for the validation and testing to be 19 data points for each.

The individual data points that are used in the training, validation and testing datasets should
be chosen randomly such as to avoid any bias that might come from manually choosing the testing
dataset. However, since the number of data points used in this investigation is relatively small, it is
recommended to include some fixed manually selected data points in the training dataset to cover
the upper and lower limits of each of the input parameters (e.g., ligament length, lead crack length,
MSD crack length, etc.). This is done to avoid having some data points in the testing group that
require the ANN to extrapolate out of the data ranges used for training. This partially randomized
selection approach was previously shown by Hijazi et al. [27] to improve the ANN predictions
accuracy, and it is also consistent with the findings reported by Mortazavi and Ince [21] about the
poor extrapolation ability of ANN. Therefore, a partially randomized selection approach is used here
for selecting the training dataset. From each of the three different panel configuration groups (Table
Al to Table A3), some of the training data points are selected manually and the remaining are chosen
randomly. The total number of the manually selected (fixed) training data points is 22 where that
includes: 10 (out of 34) for the unstiffened panels, eight (out of 24) for the stiffened panels, and four
(out of 17) for the lap-joint panels. As for the 19 validation and 19 testing data points, they are
randomly chosen with a fixed number of data points selected from each of the three panel
configuration groups (eight unstiffened + six stiffened + five lap-joint).

In addition to the randomized selection process (partially randomized to be more accurate), a
cross-validation procedure [55] is carried out. This is done by taking 80 random combinations of the
training, validation and testing datasets, and repeating the entire ANN development procedure for
each of these 80 random combinations. These purpose of this randomized cross-validation procedure
is to get more robust and reliable results by averaging over the 80 combinations (instead of relying
on the results obtained from a single training/validation/testing combination). Furthermore, to make
the comparison between the traditional and assisted approaches more reliable, this randomized
selection process of the 80 training/validating/testing datasets combinations is done only once and
the exact same 80 random combinations are used for both the traditional and assisted approaches.
Lastly, it should be clearly stated here that the performance metrics used in this paper for comparing
the traditional and assisted approaches are calculated by averaging 80 different values corresponding
to the 80 different random combinations.

4.1. Traditional ANN Modeling Approach

A schematic illustration of the structure of the implemented ANN model for the traditional
direct-inputs approach is shown in Figure 2a. The network consists of an input layer with 7 input
nodes where 5 inputs are geometry related, one input is material related, and one input is used to
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identify the configuration of the test panel. The geometric input parameters are the lead crack half-
length, MSD cracks half-length, ligament length, panel width, and the stiffener cross-sectional area.
The stiffener cross-sectional area (Ast) will have a value for the stiffened panels only, while its value
will be zero for the unstiffened and lap-joint panels. The yield strength is the only material related
input parameter that is used here. Unlike the previous study by Hijazi et al. [27] where three material
related inputs were used (yield strength, fracture toughness and material identification index) to
account for the difference in ductility between the different materials, only one material-related input
is used in this investigation. The yield strength is chosen to be used here rather than the fracture
toughness since the material being considered here is ductile. It should be stressed here that the sheet
thickness is not included among the geometric input parameters since the yield strength depends on
the thickness (i.e., the thickness is accounted for indirectly through the yield strength). Also, since the
stress value (rather than the load) is used for the residual strength, it becomes completely unnecessary
to include the thickness among the ANN inputs. Finally, the last input parameter is the panel
configuration identification number which is used to designate each of the different test panel
configurations. Identification numbers from 1 to 4 are assigned to the four distinct test panel
configurations that are being used here (1: unstiffened panel, 2: one-bay stiffened panel, 3: two-bay
stiffened panel with broken stiffener, and 4: lap-joint panel).

4.2. Assisted-ANN Modeling Approach

The purpose of the assisted approach proposed in this paper is to assist the ANN learning
process; and therefore, improve the accuracy of the output predictions. This is done by including
additional “dependent” input parameters that are obtained from the known analytical input/output
relations. A schematic illustration of the structure of the implemented ANN model for the assisted-
ANN approach is shown in Figure 2b. As in the traditional approach, the input layer includes
geometry and material related inputs as well as the panel configuration identifier. In addition to these
direct independent inputs, one or more assistance parameter input(s) is/are included. The assistance
parameters being used here are mainly geometric corrections for the crack-tip SIF. In general, the
choice of the assistance parameters for any type of problem depends on the specific knowledge of the
existing relations between the inputs and outputs. For the MSD problem being considered here, from
the previous investigations, it can be seen that the linkup model, though not accurate, can capture
the general trend of the experimental data to some extent. Since the linkup model is basically based
on SIFs (the SIF is used to calculate the plastic zone size, Equation (3), it becomes reasonable to assume
that the SIF’s geometric correction factors can assist the ANN in the learning/prediction process. In
order to demonstrate the effect of this assisted approach, four different levels of assistance are used.
In each of the four levels, assistance parameter(s) that provide progressively higher level of assistance
are used. Table 1 lists the different input assistance parameters that are used at each of the four levels.
The details of the four assistance levels are as follows:

e First assistance level: here, the panel configuration SIF correction factor (Brconiig) is used as an
assistance parameter. This correction factor corrects the SIF of the lead crack for all effects related
to the panel configuration, where the unstiffened panel configuration (seen in Figure 1) is taken
as a reference configuration. Therefore, the value of [Br-config for the unstiffened panels (listed in
Table Al) is unity ([Br-config = 1) since this is the reference configuration. For the stiffened panels,
the panel configuration correction factor is basically the stiffeners’ effect correction factor ([3p-contig
= Bstf), and its value for each of the different cracks/stiffeners configurations is given in Table A2.
This stiffeners’ effect correction factor accounts not only for the presence of the stiffeners and
their arrangement, but it also accounts for their cross-sectional area and spacing, the fasteners
stiffness and spacing, and the crack location and length. Finally, for the lap-joint panels, the
panel configuration correction factor is the lap-joint effect correction factor (Br-consig = B11), and its
value for each of the different cracks configurations is given in Table A3. This factor mainly
accounts for the fasteners arrangement, stiffness and spacing, and for the point loads induced
by the fasteners along the crack plane.
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e Second assistance level: here, instead of using the panel configuration SIF correction factor ({Br-
«onfig), the overall lead crack SIF correction factor (B,) is used. The (. includes both the finite width
correction and the cracks interaction correction (as seen in Equation (5)), and it also includes the
panel configuration correction factor (Bst or Buy). The values of B, for all the 113 data points are
given in Table Al to Table A3.

o Third assistance level: here, instead of using one assistance parameter as in the previous assistance
levels, two assistance parameters are used simultaneously. In addition to the overall lead crack
SIF correction factor (B,), which is used in the second assistance level, the overall SIF correction
factor for the adjacent MSD crack (f,) is also used. The B, mainly accounts for the cracks
interaction effect and the hole effect (as seen in Equation (6)) and its values are also given in the
tables.

o Fourth assistance level: here, instead of using the SIF correction factors, the residual strength value
calculated by the linkup model (Equation (4)) is used as the assistance parameter. As can be seen
form the linkup model equation, it includes the SIF geometric correction factors as well as the
lead and MSD crack lengths, the ligament length and the material’s yield strength. Therefore,
the inclusion of the linkup model’s residual strength predictions provides the highest level of
assistance since it combines the effects of many of the input parameters together.

It is important to be noted here that the exact same input parameters used in the traditional
approach (7 inputs) are also used in the assisted approach, and the different assistance parameters
are included as additional inputs. From the theoretical stand point, one might argue that the inclusion
of these assistance parameters among the ANN model inputs eliminates the need for some of the
direct geometric input parameters. For instance, for the stiffened panels, the overall lead crack SIF
correction factor () accounts for the finite width effect and the complete effect of the stiffeners (their
cross-sectional area and spacing, fasteners, etc.). Accordingly, it might be rational to eliminate some
of the related direct inputs in such case (such as the panel width and stiffeners cross-sectional area).
Nevertheless, in the work presented here, all the traditional direct inputs are kept the same in the
four different assistance levels. The purpose of keeping all the direct inputs is mainly to demonstrate
the advantage of adding the assistance parameters on the ANN model accuracy. These assistance
parameters are basically intended to assist the ANN learning/prediction process, and not to replace
any of the direct input parameters.

Geometry~< ___ —
Geometry—

Panel config. ID
_—

AP1
Assistance |———>
parameters AP2
—_—

@ (b)

Input layer Hidden layer Output layer

Figure 2. The ANN structure: (a) traditional direct independent inputs approach, (b) assisted
approach with calculated assistance parameters.
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Table 1. The ANN assistance input parameters for the different levels of assistance.

Assistance Level AP1  AP2

1 [BP-config _
2 B
; B P
4 oL B

The values of the assistance parameters used at the different levels of assistance for each of the
different panel configurations are given in Table A1 to Table A3. The SIF geometric correction factors,
which are being used here as assistance parameters, are widely used in fracture mechanics for both
fatigue and static fracture calculations. Accordingly, the SIF correction factors for many geometric
configurations are readily available and can be found in the literature. Most of the SIF correction
factors used in this study are obtained from literature [43,56-58] while for the lap-joint panels, the SIF
correction factors are obtained using FEA [29].

4.3. Reduced Size Training Datasets

As mentioned previously, 75 data points are used for training the ANN, out of which 22 data
points are fixed (manually selected) while the remaining 53 data points are chosen randomly (24
unstiffened + 16 stiffened + 13 lap-joint). In order to further demonstrate the benefit of the proposed
assisted-ANN modeling approach when dealing with small datasets, the size of the training datasets
is further reduced. The training dataset size reduction is done in three steps. The original (full)
training dataset (75 data points) is first reduced to 48 data points, then it is reduced to 35 data points
in the second step, and finally it is reduced to 22 data points. In the first two size reduction steps, the
22 fixed data points are kept unchanged, and the reduction is achieved by cutting the number of the
randomly chosen data points by half. Accordingly, the first reduced training dataset includes 22 fixed
and 26 randomly selected data points (12 unstiffened + eight stiffened + six lap-joint), while the
second reduced training dataset includes 22 fixed and 13 randomly selected data points (six
unstiffened + four stiffened + three lap-joint). Finally, the third reduced training dataset includes only
the 22 fixed data points. Since 80 different combinations of the full (75 data points) training datasets
are available, each of these 80 combinations is used to generate the reduced size training datasets.
Therefore, 80 different combinations of the first (48 data points) and second (35 data points) reduced
training datasets are generated form the 80 full training datasets. Since the number of data points
used for training is reduced, more unseen data points are available and can be used for testing.
However, to make the comparison between the full size and the reduced size training datasets more
accurate, the exact same 80 combinations of the validation and testing datasets (each containing 19
data points) are also used for the reduced training datasets scenarios.

4.4. ANN Optimization and Performance Evaluation

For the traditional approach and each of the four different levels of the assisted approach, the
ANN’s configuration is optimized using the validation datasets. The optimization is done to identify
the combination of learning algorithm, hidden nodes activation function, and the number of nodes
in the hidden layer that gives the best prediction accuracy. Three learning algorithms are used in the
optimization, namely; BR, LM and SCG. The difference between the algorithms lies in the way that
each algorithm sets the internal parameters of the ANN (i.e., weights and biases). The weights and
biases are initially set randomly and then updated iteratively by calculating the error on the training
outputs and distributing it back to the ANN layers. Though more learning algorithms are available,
the three algorithms used here are the most commonly used in literature and they are known to give
good performance in comparison to the other available learning algorithms in different industrial
applications [59-62]. For the activation functions, all the 12 different activation functions available in



Appl. Sci. 2020, 10, 8255 13 of 29

the MATLAB ANN-toolbox are used in the optimization [63]. The difference between these functions
lies in the way that each function calculates the layer’s output from the received inputs. Finally, for
the number of nodes in the hidden layer, from 1 up to 20 nodes are used in the optimization.

The optimum ANN configuration is determined based on the average MAEr for the 80 random
combinations of the validation datasets. The MAEpr is used for the optimization since it is more
meaningful for reflecting the level of the error. In addition to the MAEp, two other performance
metrics are also calculated and reported to get more insights into the performance of the assisted-
ANN modeling approach as compared to the traditional approach. The additional performance
metrics are the root mean square percentage error (RMSEr) and the coefficient of determination (R?).
The MAEr, RMSEr and R? are calculated here as:

(o) o
MAE, = _Z OPrdct — OExp % %
GExp i
2
IV (o -0
RMSEp = —Z (M %) ®)
N i=1 GExp i
N _ 2
R2=[1_ ZL:l(GExp cPrdct)iz % (9)

Z?:l(GExp - EExp)i

5. Results and Discussion

In this study, a novel assisted-ANN modeling is proposed and it is used for estimating the
residual strength of aluminum panels with MSD cracks. The essence of the assisted approach being
used here is to include some assistance parameters as ANN inputs, in addition to the traditional direct
independent parameters (such as geometric quantities, material properties, configuration, etc.)
typically used as inputs to the ANN model. These assistance parameters come from the known
analytical input/output relations and are intended to help the ANN to better capture the complex
input/output relations when the size of the training dataset is relatively small.

It is important to stress here that data preparation is crucial before the data can be utilized it in
ANN modeling [7]. Several steps associated with data preparation are conducted on the current
experimental data. Firstly, proper data selection and classification. This step is manifested in: (i) the
careful selection of the model inputs for both the traditional approach and the proposed assisted
approach, (ii) the adoption of cross-validation procedure where 80 random combinations are used
for the training, validation and testing datasets, and (iii) the adoption of partially randomized
selection where some selected data points in the training dataset are fixed to cover the upper and
lower limits of each of the input parameters. Secondly, data preprocessing. Herein, only complete
data are selected from literature, outliers are checked and excluded whenever found, and the output
parameter values for some data points are formatted in terms of the stress rather than the load values.
Thirdly, data transformation. Because of having one output parameter, normalizing or scaling was
not necessary. However, it is worth mentioning here that in order to make the comparison of the
relative weight of the inputs across the different scenarios easier; the relative weights are normalized
for all scenarios in the different training datasets (as seen in Section 5.3).

5.1. Assisted-ANN Performance for Different Learning Algorithms

The ANN optimization procedure, described previously in Section 4.4, is carried out for the five
modeling scenarios (traditional and the four assistance levels) used in this investigation. For each
scenario, 80 ANNs are developed using the 80 random training datasets, and the optimum ANN
configuration is identified based on the MAEr value (averaged value for the 80 different random
combinations) for the validation datasets. When using the testing datasets for evaluating the
performance of the ANN, in addition to the MAEp, two additional performance metrics (RMSEr and
R?) are also taken into consideration for determining the goodness of the residual strength
predictions. For the traditional and all four assistance levels, the BR learning algorithm, along with
the Elliot symmetric sigmoid (elliotsig) activation function, gives the best prediction performance. As
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for the optimum number of nodes in the hidden layer, it varies from case to case. The LM and SGC
learning algorithms are ranked second and third, respectively, in terms of prediction accuracy.
Thought, the BR learning algorithm results in the best prediction performance and will be adopted
henceforth; however, it is also important to observe the effect of the assisted approach when used
along with the different learning algorithms. Table 2 lists the values of the three performance metrics
obtained using the BR, LM and SGC algorithms for the traditional and the four assisted scenarios. In
each case, the shown values are for the optimum configuration (best activation function and number
of hidden nodes), and each value is the average for the 80 random combinations of the testing dataset.
As can be seen from the table, improvement can be clearly observed in the MAEr, RMSEr and R?
values for the four assisted scenarios as compared to the traditional scenario. Also, this improvement
can be observed for the three learning algorithms. The improved results associated with the assisted
scenarios indicate that, though dependency may exist between the direct independent input
parameters and assistance parameters; the developed ANN model did not trap into local optima nor
did it hide important input-output relationships. Also, the results show that the addition of the
assistance parameters did not add significant noise into the model. Furthermore, the highly accurate
results obtained using the testing dataset, also indicate that the ANN model did not experience
overfitting during the learning process; on the contrary, it has learned to generalize to new situations.

To further illustrate the accuracy improvement resulting from using the assisted approach,
Figure 3 is developed using the MAEr values given in Table 2. From the figure, it can be seen that for
any of the five scenarios, the BR gives the best accuracy followed by the LM then the SGC. The figure
also shows that, for all three learning algorithms, the accuracy gradually improves as the assistance
level increases (from assisted 1 to assisted 4). This gradual accuracy improvement is consistent with
the logic of assigning the assistance parameters being used at the different assistance levels, where at
each level, a higher-order assistance parameter is used (as previously explained in Section 4.2). In
order to quantify the accuracy improvement obtained using the four assistance levels, the error
(MAE?P) reduction relative to the traditional approach is calculated and shown in the bottom part of
Figure 3.

Table 2. Performance metrics for each learning algorithm using the traditional and assisted ANN
modeling approaches (averages for the 80 random combinations of the testing dataset).

BR LM SGC

MAEr RSMEr R? MAEr RSMEr R? MAEr RSMEr R?

[%] [%] [%] [%] [%] [%] [%] [%] [%]
Traditional 3.8 5.51 92.39 5.59 7.89 81.19 7.65 10.33 75.94
Assisted 1 3.76 5.42 92.61 5.56 7.92 84.56 6.41 8.67 83.32
Assisted 2 3.45 5.04 93.16 4.86 6.8 87.89 6.05 8.16 84.49
Assisted 3 3.13 4.26 95.14 4.42 6.17 89.85 5.52 7.22 87.96
Assisted 4 2.97 4.07 96.21 3.31 4.2 96.04 4.13 5.48 92.9
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Figure 3. The effect of the assisted approach on the ANN prediction accuracy using the different
learning algorithms. The MAEr values for the traditional and assisted approaches residual strength
predictions (top), together with the error reduction of the assisted approach relative to the traditional
approach (bottom). Averaged results for the 80 random combinations of the testing dataset.

By inspecting the relative error reduction values, it can be clearly observed that, in general, the
heights values of error reduction are associated with the SGC algorithm, followed by the LM and BR
algorithms, respectively. For instance, at assistance level 4, the relative error reduction for the SGC,
LM and BR are —46.1%, —40.9% and -21.8%, respectively. This observation is rather interesting where
it indicates that the accuracy improvement attained using the assisted approach becomes more
pronounced when the original error of the traditional approach is higher. It is probably worth to
mention here that the computer CPU time required to train and optimize the ANN using these three
learning algorithms differs significantly. In terms of the run time, the SGC algorithm is the fastest
while the BR is the slowest. For comparison purposes and to get a sense of the computational burden
difference, taking the SCG as a reference, the relative run times for LM and BR are 2x and 104x,
respectively.

The results presented in Table 2 and Figure 3 are averaged values for the 80 random
combinations of the testing datasets. However, the calculated performance metrics are somewhat
different for each of the 80 testing datasets combinations. To get a closer look at the results obtained
using the individual datasets, Figure 4 shows exemplary results for one of the 80 testing datasets
combinations (it contains 19 data points, and the sample ID for each data point is indicated in the
figure). The upper part of Figure 4 shows the experimental residual strength value for each sample
alongside with the ANN predictions obtained using the traditional approach and assisted 3 and 4
scenarios (assisted 1 and 2 are not shown in order not to congest the figure). The lower part of the
figure shows the magnitude of error in the predicted residual strength using the traditional and the
two assisted scenarios. The figure shows that the ANN residual strength predictions obtained using
the two assisted scenarios are superior to the predictions obtained using the traditional approach for
almost all the shown samples.
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Figure 4. The experimental residual strength values along with the predictions obtained by the ANN
model for the traditional and assisted approaches (assisted 3 and 4 only) for one of the testing datasets
using the BR algorithm (top), together with the residual strength prediction errors (bottom). The
shown ANN predictions are for the best one of the 80 random combinations of the testing datasets.

5.2. Effect of Smaller Training Dataset Size

The results presented in the previous section are obtained using full-size training datasets (each
containing 75 data points). Thought this dataset size is relatively small, it is important to find out the
effect of the assisted approach as the size of the training datasets gets even smaller. Thus, three
progressively reduced training dataset sizes are also investigated. The three reduced training dataset
sizes are: reduced-1 (48 data points), reduced-2 (35 data points) and reduced-3 (22 data points). For
the reduced size datasets investigation, only the BR learning algorithm is used since it gives the best
performance. Table 3 lists the values of the three performance metrics obtained using the reduced
training dataset sizes for the traditional and the four assisted scenarios. From the table, it can be seen
that for the three reduced training dataset sizes, the MAEr, RMSEr and R? values for the four assisted
scenarios are clearly superior to those of the traditional approach. Closer inspection of the results
listed in the table shows that for reduced-1 and reduced-2 dataset sizes, the accuracy gradually
improves as the assistance level gets higher; whereas, for reduced-3 dataset size, the results associated
with assisted 1, 2 and 3 scenarios are fairly close to each other. The general trend for accuracy
improvement for the different training dataset sizes can be better observed by referring to Figure 5.
Similar to Figure 3, the upper part of Figure 5 shows MAEr values obtained using the traditional and
assisted scenarios associated with the different dataset sizes, while the lower part of the figure shows
the error reduction of the assisted scenarios relative to the traditional approach. The data presented
in the figure for the full-size dataset are obtained from Table 2. As expected, the figure shows that, in
general, as the size of the training dataset gets smaller, the ANN predictions become less accurate.
From the figure, it can be seen that for all dataset sizes, except reduced-3, the accuracy of the ANN
predictions gradually improves as the assistance level increases. It can also be seen that the relative
error reduction increases as the dataset size gets smaller. This observation clearly indicates that the
proposed assisted-ANN approach is more effective in improving the accuracy for smaller size
training datasets. For the reduced-3 training dataset size, the figure shows that the situation is slightly
different than the larger dataset sizes. In this case, all the four assisted scenarios give clearly better
accuracy than the traditional approach; however, the relative error reduction resulting from assisted
scenarios 1, 2 and 3 is relatively high, and the error reduction values for the three scenarios are fairly
close to each other. It is probably worth mentioning here that for the reduced-3 training dataset size,
all the data points are manually selected; while for the larger dataset sizes (reduced-1 and reduced-
2), some of the data points are chosen randomly. As mentioned previously, the manually selected
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data points are all at either the upper or lower limit values of the different inputs (lead crack length,
ligament length, etc.), and do not include intermediate values. Most likely, this difference in the
nature of the data points for reduced-3 is what cussed the difference in relative error reduction trend.
The fact that the relative error reduction achieved using the four assisted scenarios is fairly high
(>30%) for reduced-3 training dataset size, indicates that the assisted approach helped the ANN to
properly capture the input/output relations, though no intermediate values (for some of the inputs)
are available in the training dataset. This observation further confirms the importance of using the
proposed assisted approach for small size datasets.

In order to further examine the effect of the assisted approach for smaller dataset sizes, Figure 6
shows exemplary results for one of the 80 testing datasets combinations (the same testing dataset
shown previously in Figure 4). The upper part of the figure shows the experimental residual strength
value and the ANN predictions (for traditional, assisted 3 and 4 scenarios); while the lower part
shows the magnitude of error in ANN predictions. The figure shows that for most of the samples
shown in the figure (15 out of 19) the ANN residual strength predictions obtained using the two
assisted scenarios are superior to the predictions obtained using the traditional approach. It should
be clear here that the purpose of Figure 6 is to observe the overall predictions accuracy for the
individual samples. The fact that the traditional approach predictions for some of the samples (U-25
for instance) are more accurate, does not affect the overall conclusions which are based on the
averages for large numbers of data points.

Table 3. Performance metrics for the reduced size training datasets using the traditional and assisted
ANN modeling approaches (averages for the 80 random combinations of the testing dataset).

Reduced 1 (48) Reduced 2 (35) Reduced 3 (22)

MAEr RSMEr R? MAEr RSMEr R? MAEr RSMEr R?

[%] [%] [%] [%] [%] [%] [%] [%] [%]
Traditional 4.68 6.52 88.73 5.55 7.52 85.77 6.86 9.54 80.97
Assisted 1 4.67 6.61 89.59 5.1 7.01 87.65 4.51 5.93 90.24
Assisted 2 4.16 5.82 91.46 4.65 6.32 90.2 4.52 5.92 90.97
Assisted 3 3.55 4.88 93.91 3.84 5.33 92.85 4.63 6.21 91.64
Assisted 4 3.46 4.54 95.21 3.46 4.52 95.16 4.26 5.83 92.81
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Figure 5. The effect of the assisted approach on the ANN prediction accuracy using the different
learning algorithms. The MAEr values for the traditional and assisted approaches residual strength
predictions (top), together with the error reduction of the assisted approach relative to the traditional
approach (bottom). Averaged results for the 80 random combinations of the testing dataset.
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Figure 6. The experimental residual strength values along with the predictions obtained by the ANN
model built using the reduced size training dataset (reduced 3) for the traditional and assisted
approaches (assisted 3 and 4 only) for one of the testing datasets (top), together with the residual
strength prediction errors (bottom). The shown ANN predictions are for the same testing dataset used
in Figure 4.

Finally, in order to visualize the overall accuracy improvement for the ANN residual strength
predictions when using the assisted approach, the correlation between the experimental results and
ANN predictions for the different training dataset sizes are shown in Figure 7. The data shown in
this figure are for one of the 80 datasets combinations, and the figure shows the correlation for all
data points (training, validation and testing). In all of the subfigures, the points are distributed
uniformly above and below the 45-degrees line; this indicates that there is no over-or-under
prediction tendency in the ANN predictions, and the prediction errors are fairly random (no
systematic error is observed). In this type of figures, the closer the points to the 45-degrees line, the
more accurate the predictions are. For all the different training dataset sizes, it can be seen that as we
transition from one subfigure to the next (left to right direction) the data points become closer to the
45-degree line. This observation is another indication of the accuracy improvement attained using
the assisted approach scenarios. It can also be observed from the figure that, as we transition from
one subfigure to the one below, the data points tend to get farther from the 45-degree line. This
observation gives further verification that the accuracy decreases as the training dataset size becomes
smaller. It can also be seen from the figure that there is no noticeable difference in accuracy for the
different panel configurations (unstiffened, stiffened, etc.) since all the data are clustered close to the
45-degrees line. The coefficient of determination (R?) values for the training, validation, and testing
datasets are also shown in each of the subfigures. It can be noticed that the coefficient of
determination for the training datasets are clearly higher than those for the validation and training
datasets. In fact, this trend is quite normal since the training data are already “seen” by the ANN
(since they are used for training); therefore, the ANN can predict the residual strength for the training
datasets more accurately that the “unseen” validation and testing datasets.



Appl. Sci. 2020, 10, 8255 19 of 29
Traditional Assisted 1 Assisted 2 Assisted 3 Assisted 4
200 200 ° o 200 o 200 °
[ / = / T / 5 / = /
a o a a o
= 150 = 150 = 150 = 150 = 150
%) %) %) %) %)

e 4 4 4 o

>3 100 7 100 T 100 = 100 7 100
g R? ,=99.84% g RZ_,=99.88% g R2 ,=99.87% g w0 R2,,=99.90% g RZ ,=99.77%

50 2 50 2 50 2 2 50 2
3 P RZ =9229% © . RZ =93.73% ® p RZ,4=90.84% & P R2,"9297% @ 7 RZ,=96.62%
o / R =91.86% & / RZ =96.26% o 4 RZ =96.99% o 7/ RZ =o7.98% / R =97.78%
0 0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa]
200 o 200 o 200 o 200 o 200 °
T / = / T 7 5 7 3 /
a o a a o

~ = 150 S 150 S 150 S 150 S 150

as = = =4 =
0 %) %) %) )

S o o 4 4

3 5 100 - 100 < 100 - 100 - 100

oo o) o) o)

g 3 RZ,,=99.997% 3 R, ,=99.999% T RZ,,=99.995% T R ,=99.997% T R2 . ,99.993%
g %0 RZ, =7022% © 90| /1 RZ,=8671% 8 0| 7 RZ, =8094% © 90  / RZ, =7873% g 90| RZ,=89.50%
£ % valid & s valid & % valid & , valid & s valid

7 R =94.67% I RZ _=95.99% 4 RZ _=95.61% s R2 _=96.59% s RZ _=95.13%
0 est 0 fest 0 est 0 lost 0 fest
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa]
200 o 200 o 200 o 200 o 200 °
[ /7 w / < 7/ [ 7 w 7
a a a a a

o~ S 150 = 150 = 150 S 150 = 150

az =, =, = =
1%} 0 %) 1%} 0

e o 4 k4 o

8 5 100 < 100 = 100 < 100 = 100

E é R?, =99.985% é R2,,=99.998% § R2,, =99.925% § © R2, =100% é R2,,=99.995%

50 2 50 2 50 2 2 50 2
&) 7 R T975% ® P RZ,=84.64% g 7 RZ, =87.91% &; 7 2 14=96.668% B 7 RZ,=93.32%
/ RZ =03.02% - / RZ =93.25% s R2 =94.20% / RZ =o7.81% 7 R2 =97.54%
0 0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa] Experimental RS [MPa]
200 o 200 o 200 o 200 o 200 °
T /7 T 7 w 7 T / T /
o

« < 150 o L g £ 150 < 150 < 150

as = = = =
%) 7 7} %) 2]

82 . % 100 2 100 2 100 % 100

23 3 3 3 3
E ol I R 210 g O s R, 8485% 8 90~ RZ,7598% 8 90/ R, e788% 8 50/ R2,,,=94.96%

’ RZ_=80.78% - / R2_=3.80% s RZ_=85.60% / RZ =9554% 7 RZ =95.41%
0 0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Experimental RS [MPa]

Experimental RS [MPa]

Experimental RS [MPa]

Experimental RS [MPa]

[---45°lne © Unstif % Lab-Joint X Stif (One-Bay)  Stif (Two-Bay)|

Experimental RS [MPa]

Figure 7. Effect of the assisted modeling approach and training dataset size on the correlation of ANN
predictions with experimental residual strength values (for all data points used for training,
validation, and testing). The effect of the assisted approach is observed when moving from left to
right, while the effect of training dataset size reduction is observed when moving from top to bottom.
The shown ANN predictions are for one of the 80 training/validation/testing datasets random
combinations.

5.3. ANN Inputs Relative Importance

To better understand how the proposed assisted-ANN modeling approach improves the
prediction accuracy and enables the network to be trained efficiently using small datasets, it is
essential to look at the effect of the added assistance inputs on the internal parameters (i.e., the
weights) of the ANN. Specifically, the contribution of each input in the ANN’s residual strength
predictions can be quantified by resorting to the connection weights (CW) algorithm [64]. The relative
weight of any of the ANN inputs basically reflects its relative importance, and therefore the different
inputs can be ranked based on the relative weight values [65]. That is, the evolution of the ANN
internal parameters considering the different scenarios investigated in this work is embedded in the
quantification of the relative weight values. The CW algorithm [64] uses the ultimate inputs-hidden

connection weights (W,,), from x-th input node (x = 1, ..., X) to y-th hiddennode (y =1, ..

.,H), and

the ultimate hidden-output connection weights (W,,,), from y-th hidden node (y = 1, ..., H) to the z-
th output node (z = 1), obtained for the optimum ANN models of the different scenarios to assess
the Relative Weight (RW,) of each x-th ANN input (x = 1, ..., X) as follows:

RW, =

H
> W,
y=1

(10)
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where RW, is the “absolute” relative weight of the x-th input node and YJ_; W, W,, is the sum of
the product of the ultimate weights of the connections from the x-th input node to hidden nodes
(Wyy) with the connections from the hidden nodes to the output node (W,,). It is worth mentioning
that the sum of products used here is the average sum of products calculated over the 80 cross-
validation combinations of each ANN scenario. The absolute value is taken here because the sign of
the relative weight is not considered when ranking the inputs according to their importance. The
relative weights are calculated for each of the ANN inputs used in the traditional approach and the
four assisted approach scenarios. In order to make the comparison of the relative weight of the inputs
across the different scenarios easier, the relative weights are normalized for each scenario. After
normalization, the total normalized relative weights for all inputs for any of the different scenarios is
equal to 1. The normalized relative weights calculations are also done for the different training dataset
sizes, and all the data are graphically represented in Figure 8. The first seven inputs (“a” to “config
ID”) are the direct independent inputs, and they are common for the traditional and the four assisted
approach scenarios. The last four inputs are the assistance parameters where one or more of them is
used at each of the four assistance levels (see Table 1). By inspecting the different parts of the figure,
corresponding to the different training dataset sizes, it can be seen that the overall trends seen in
these parts are fairly similar (except for few minor differences in the relative weights of some inputs).
The figure shows that for the assisted approach scenarios, starting from assistance level 1 up to 4, the
relative weights of the assistance input parameters are always increasing (note that for assistance
level 3, two assistance parameters are used and thus, their weights are added together). As a matter
of fact, this observation is consistent with the logic behind assigning the assistance parameters for the
different assistance levels according to the theoretical definitions of these parameters (as explained
in Section 4.2). The increase in the relative weight of the assistance parameters comes at the expense
of the relative weights of the direct independent inputs (since the total weight for all inputs is 1). For
instance, at assistance level 4, the relative weight of the assistance input parameter (ovv) is about 0.7,
which leaves only about 0.3 relative weight for all the seven independent inputs. It can also be seen
from the figure that although the relative weights of all the direct inputs is reduced as the assistance
parameters are added, some of the inputs are clearly affected more than the others. If we, for instance,
consider the “config ID”, which is used to identify the four different test panel configurations being
used in this study, it can be seen that the relative weight of this input immediately drops and becomes
close to zero for all the assisted approach scenarios. This drop is rather expected since all of the
assistance parameters being used here account for the panel configuration more explicitly. When the
weight of any of the inputs becomes very close to zero, this means that this parameter can be excluded
from the ANN inputs. However, as previously mentioned in Section 4.2, the essence of the assisted
approach being proposed here is to add the necessary assistance parameters to the ANN inputs
without deleting any of the direct independent inputs. As such, the ANN itself will recognize the
importance of each of the inputs and give it its appropriate weight. Indeed, the results presented here
show that the ANN is able to do that successfully. Also, the results presented here clearly show that
the ANN is able to handle the different inputs without compromising the performance, though some
of the inputs (i.e., the assistance parameters) are dependent on other inputs. Table 4 gives the ranking
of the different ANN inputs for the traditional and assisted approach scenarios (for the full-size
training dataset) based on their relative weights shown in Figure 8. The table shows that the
assistance parameters ranking is clearly higher than most of the other direct inputs. For assistance
levels 1 and 2, the assistance parameters are ranked third, and they go to the first rank for assistance
levels 3 and 4. Other than the assistance parameters, the two most important inputs are the ligament
length (L) and the lead crack half-length (a2). However, it should be noticed that at assistance level 4,
the importance of “a” diminishes (it goes to rank 8) and “L” remains as the only significant input (of
course after oru). In fact, at this assistance level, the ANN benefits from the Linkup model’s ability to
capture the general trend of the residual strength, and the ANN basically corrects the Linkup model
predictions based on the experimental results. The fact that the most significant input for this assisted
scenario is “L”, means that the ligament length is the main parameter that causes error in the Linkup
model predictions (because of inaccurate estimation of the plastic zone size). This observation is
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actually in agreement with the findings of Smith et al. [30,44,45] where the empirical corrections they
developed for the Linkup model are a function of the ligament length alone.
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Figure 8. Normalized relative weights of the different ANN inputs for the traditional and assisted
approach at the different training dataset sizes (results are based on averages for the 80 random
combinations of the training dataset).

Table 4. Ranking of the different ANN inputs based on their importance (relative weight) for the full
size training datasets (results are based on averages for the 80 random combinations of the training

dataset).
Direct Independent Inputs Assistance Input Parameters
a ¢ L W A« % ConfigID | Premis B B ow
Traditional 2 4 1 7 6 5 3 - - - -
Assisted1l 1 4 2 6 8 5 7 3 - - -
Assisted 2 1 6 2 7 8 4 5 - 3 - -
Assisted 3 3 5 4 9 7 6 8 - 1 2 -
Assisted 4 8 4 2 5 6 7 3 - - - 1

Finally, it is probably worth mentioning here that when using the traditional approach, accurate
predictions can be made only for panels of the exact same configurations used in training. On the
contrary, adopting the proposed assisted approach can help in extending the applicability of the
ANN model to panel configurations different from those used in training. If we consider for instance
the one-bay stiffened panels for which 21 data points are available (panel IDs S-1 to S-21), and all of
them have the same spacing between the stiffeners (305 mm). In fact, several parameters related to
the stiffeners (such as the stiffeners’ cross-sectional area and spacing, fasteners’ stiffness and spacing,
etc.) will affect the residual strength. If all of these parameters are to be included as inputs for the
ANN, at least tens of training datasets (if not hundreds) will be required for the network to capture
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the effects of all these input parameters on the output. In contrast, in the assisted approach, a single
input parameter ((3s), which combines the effect of all of these individual parameters on the SIF, can
be included as an assistance input parameter. As such, the ANN will be able to better recognize the
effect of the stiffeners and make accurate predictions without the need for a huge training dataset. In
addition, the network will also be able to predict the residual strength for stiffened panels even if the
spacing between the stiffeners is different from what is used in the training dataset since the
assistance parameter (3s completely accounts for the geometry of the stiffeners. The same idea is also
true for the other higher-level SIF geometric correction factors being used here as assistance
parameters. For instance, the lead-crack overall correction factor ((3:), which is used at assistance level
2, combines different effects together. For a stiffened panel, 3. combines the stiffeners effect, the panel
width effect, and the interaction effect of the MSD cracks on the lead crack. Accordingly, the inclusion
of this assistance parameter among the inputs makes it easier for the ANN to recognize the complex
interactions between the different geometric input parameters. Therefore, it further improves the
residual strength predictions’ accuracy.

6. Concluding Remarks

It is widely believed that one of the advantages of ANNSs is their ability to model complex non-
linear relationships between several input/output parameters, without any need for prior knowledge
of the nature of the relationships between these parameters. While this is generally true, however a
large training dataset (usually hundreds of data points) will be required for the ANN to fully capture
such complex non-linear relationships. In many engineering applications, such as fracture mechanics
for instance, the input/output relations are complex and highly non-linear; and at the same time, the
curation of large experimental datasets is usually not feasible. This paper introduces a novel assisted-
ANN modeling approach that enables the ANN to be trained using small datasets and still achieve
high prediction accuracy. This approach is demonstrated, and its capabilities are investigated by
applying it for evaluating the residual strength of panels with MSD cracks. The purpose of the
assisted-ANN modeling approach proposed here is to assist the ANN learning process, when the
training dataset is relatively small, and therefore improve the accuracy of the output predictions. This
is done by including additional inputs (called assistance parameters) that are obtained from the
known analytical input/output relations. So, in essence, our approach merges the well-known and
well-established analytical relations (between the different input/output parameters) with the ANN
technique to improve the ability of ANN to estimate the residual strength of panels with MSD cracks.
The inputs that are usually used in ANN modeling are geometry and material related, and they are
“independent” from each other. In contrary to the inputs used in the traditional approach, the added
assistance parameters being used in the assisted approach are basically “dependent” on the other
input parameters, and they are calculated using the existing analytical relations (or obtained using
computational techniques). The results presented in this paper demonstrate that the assisted-ANN
modeling approach clearly improves the residual strength predictions’ accuracy, in comparison to
the traditional approach. Using the assisted approach, an average prediction error (MAEr) of less
than 3% is achieved. Also, the relative reduction in the prediction error, compared to the traditional
approach, reached up to 46% in some cases. The main conclusions of this study can be summarized
in the following points:

e  Different types of parameters can be used as assistance parameters, and one or more assistance
parameters can be used at the same time. The assistance parameters can be obtained using any
well-established relation that partially or fully relate some (or all) of the inputs with the output
(e.g., the SIF correction factors are partial relations while the linkup model is a full relation). The
amount of the achieved accuracy improvement depends on the level and the accuracy of the
assistance parameter(s) being used.

e  The fact that the SIF correction factors can be successfully used as assistance input parameters
makes the proposed assisted-ANN approach to be useful in a very wide variety of fracture
mechanics applications (both for fatigue crack growth and static fracture). The assisted-ANN
approach should prove to be very helpful in cases where the number of data points available for
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training the ANN is limited, which is generally the case in many experimental investigations in
the fracture mechanics field.

e  The lower the accuracy of the predictions obtained using the traditional approach, the more the
improvement that is achieved using the assisted approach. For the SGC algorithm (it gives the
least accurate results), the relative error reduction achieved by the assisted approach reached -
46%; whereas for the BR algorithm (it gives the most accurate results), the relative error
reduction achieved by the assisted approach reached -22% only.

e As the size of the training dataset gets smaller, the assistance input parameters will play a more
significant role in improving the ANN performance. The results show that the relative error
reduction generally increases as the size of the training dataset gets smaller. For the 22 data
points training dataset, the achieved relative error reduction by the assisted approach reached -
37%; whereas for the 75 data points training dataset, the achieved relative error reduction by the
assisted approach reached —22% only.

e In the proposed assisted approach, all the direct independent inputs used in the traditional
approach are still used and the assistance parameter(s) is/are used as additional input(s). The
added assistance parameter(s) will influence the internal configuration of the ANN, especially
the neurons’ connection weights. When an assistance parameter is added to the inputs, its
relative weight becomes clearly higher than most (or all) of the other direct independent inputs.
This shows the importance of adding the assistance parameter and the significant role it plays
in the internal ANN structure. Also, when an assistance parameter is added, the relative weight
of some of the inputs is reduced significantly, which means that the assistance parameter is
taking over their role. Usually, the inputs with very small relative weights are deleted; however,
our results show that to be not necessary since the ANN can recognize the importance of each
of the inputs and give it its appropriate weight. Furthermore, the results show that the ANN is
able to efficiently handle all the different types of inputs whether they are independent or
dependent.
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Appendix A

Table Al. Datasets for the unstiffened 2024-T3 panels (experimental data and calculated assistance
parameters) [30,34,41,42].

Oy W a ¢ L OExp b . oLu
Panel ID MPa mm mm mm mm MPa E ; MPa
U-12 3103 610 9335 445 381 79.84 1.190 3.380 63.33
U-2a 310.3 610 90.81 445 635 97.15 1.126 2.714  90.90
U-32 310.3 610 8827 445 889 112.18 1.102 2.350 114.02
U-4a 2758 610 84.46 826 889 94.25 1.146 2.100  95.80
U-52 2758 610 8319 6.99 1143 110.04 1.103 1.989 116.25
U-62 275.8 610 8192 572 13.97 120.04 1.085 1.903 134.84
U-7a 2758 610 80.65 445 16.51 132.52 1.063 1.789 154.39
U-8a 275.8 610 118.75 445 381 67.57 1.238 3.536 49.41
U-9a 2758 610 11621 445 635 83.36 1.166 2985 69.93
U-102 275.8 610 113.67 445 889 9494 1.141 2.600 87.15
U-112 2758 610 109.86 826 889 8233 1.184 2.360 82.20
U-122 275.8 610 10859 6.99 1143 97.15 1.139 2224 99.60
U-13a 275.8 610 107.32 5.72 13.97 105.7 1.117 2.122 11552

U-14 = 275.8 610 106.05 4.45 16.51 119.77 1.098 1.997 131.35
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U-152 310.3 610 144.15 445 381 59.02 1.305 3.900 48.39
U-162 3103 610 141.61 445 635 7398 1.228 3.255 68.48
U-172 3103 610 139.07 445 889 83.71 1.198 2.798 85.45
U-182 2758 610 13526 826 889 71.23 1.239 2590 71.70
U-192 2758 610 13399 6.99 1143 83.50 1.191 2438 86.71
U-20° 2758 610 13272 572 1397 9391 1174 2319  99.79
U-21a 2758 610 13145 445 16.51 108.73 1.149 2.194 113.58
U-222 2758 610 160.66 826 889  71.23 1314 2770  63.00
U-23¢b 324.1 2286 254 6.35 635 61.50 1.104 3,570 58.51
U-24»° 3241 2286 177.8 5.08 7.62  84.12 1.066 3.224 7931
U-25¢b 3241 2286 71.12 7.62 10.16 1379 1.070 1.880 140.43
U-26° 324.1 2286 195.58 5.08 1524 9791 1.040 2.631 113.98
U-27° 3241 2286 2413 635 19.05 88.95 1.050 2560 114.11
U-28»b 324.1 2286 96.52 7.62 2286 161.34 1.035 1.620 197.38
U-29b 3241 2286 273.05 635 254  91.29 1.049 2428 125.70
U-30°b 3241 2286 127 5.08 33.02 151.69 1.015 1.664 218.90
U-31¢ 268.9 508 101.6  3.81 8.89 9743 1.140 2390 9146
U-32¢ 2689 508 9652 6.35 1143 99.98 1.147 2.080 103.46
U-33¢ 2689 508 40.64 10.16 12.7 1448 1.094 1.420 162.97
U-34¢ 2689 508 635 127 127 10605 1141  1.620 125.81
U-35¢ 2689 508 9398 6.35 1397 110.32 1.130 1.910 118.80
U-36 © 268.9 508 4064 635 16.51 171.55 1.054 1.361 204.87
U-37 ¢ 2689 508 9144 635 16.51 118.94 1.123 1.780 132.76
U-38 ¢ 268.9 508 76.2 6.35 31.75 155.14 1.077 1.370 213.88
U-39 ¢ 268.9 508 38.1 12.7  38.1 194.78 1.049 1.130 307.93
U-40 ¢ 3034 600 90 7.5 8 106.83 1.144 2.150 98.28
U-414 3034 600 90 7.5 12 120.83 1.107 1.950 126.15
U-424 303.4 600 90 7.5 18 132 1.086 1.700 161.03
U-43 4 3034 600 111 75 10 103 1.159 2.300 98.72
U-44 ¢ 3034 600 111 7.5 15 107.83 1.128 1.970 127.35
U-454 3034 600 113 7.5 15 11333 1131  1.980 126.04
U-46 ¢ 3034 600 113 7.5 20 119.67 1.120 1.800 148.96
U-474 303.4 600 136 7.5 20 1.172 1.920 131.00
U-48 ¢ 3034 600 138 7.5 30 110.67 1.166 1.680 162.62
U-49 4 303.4 600 143 7.5 20 100 1.192 1.960 126.00
U-50 4 3034 600 148 75 30 106.67 1.195 1.740 153.63

aPanels tested by Smith et al
[41]; 4 Panels tested by Xu et

Table A2. Datasets for the
parameters) [31].

. [30]; P Panels tested by Dewit et al. [42]; <Panels tested by Thomson et al.

al. [34].

stiffened 2024-T3 panels (experimental data and calculated assistance

] :
Panel Stiff. Oy Asit vnvl a m L OExp ﬁl; B” B a OLU
ID Config. MPa mm? mm mm MPa ¢ MPa
m m (Bs)
275. 118.7 44 L .07 b
S-1 One-Bay 85 105 610 g 5 3.81 73.09 0 58 ! ;) 3:9 54.51
S-2 One-Bay 225' 105 610 1116'2 454 6.35 86.95 0'(?9 1'23 2'593 77.09
S-3 One-Bay 225' 105 610 113 6 454 8.89 9991 0'78 o 1';) ! 2'955 95.93
275. 1085 69 114 091 1.03 218 107.8
S-4 One-Bay 8 105 610 9 9 3 95.43 1 4 6 3
275. 1073 57 139 1106 091 1.01 208 125.0
S-5 One-Bay 8 105 610 ” ) ” p 4 8 N 6
275. 106.0 44 165 1221 091 1.00 198 1418
S-6 One-Bay 8 105 610 s 5 1 8 ” 6 1 9
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S-7 One-Bay 225' 105 610 14: 1 45'4 3.81 74.67 0'171 0'59 ! 3.693 55.30
S-8 One-Bay 2785. 105 610 1411'6 454 6.35  88.67 0.673 0'30 351 77.56
59 One-Bay 225' 105 610 1379 0 454 8.89  97.08 0'176 0'79 0 2'77 ? 95.18
510 One-Bay 225. 105 610 133.9 6§9 124 96.95 O.SO 0.295 2.:8 10;.8
511 One-Bay 2785. 105 610 1322.7 5; 1?;.9 1162.6 0.;31 0.694 2.127 11;.7
S12 One-Bay 2785. 105 610 1351.4 45.’4 161.5 12;.8 0.981 0.(?4 2.915 1335.4
513 One-Bay 3;0. 121. 610 11;:.6 45.4 8.89 10;.0 0.587 0.39 2.955 115(;).0
514 One-Bay 3;0. 1561. 610 10;3.5 6§9 1;.4 108.6 0.589 1.21 2.618 12;.9
515 One-Bay 320. 15;1. 610 1027.3 5; 1?;.9 119.9 0.:9 1.(())0 2.;]8 14;.7
516 One-Bay 320. 1561. 610 1056.0 454 161.5 130.8 0.30 0.798 1.198 1612.2
S-17 One-Bay 320' 1631' 610 14;“ 454 381 815 0'166 0;35 3.693 65.09
518 One-Bay 3;0. 1561. 610 13;.9 6§9 1;.4 11;1.0 0.Z7 0.192 2.:8 1129.7
519 One-Bay 3;0. 121. 610 1322.7 527 13;.9 12;).3 0.;8 0.;1 2.127 1318.5
520 One-Bay 3;0. 121. 610 1351.4 45.4 161.5 1359.3 0.379 0.191 2.915 15:.5
501 One-Bay 3(13. 105 610 81.92 5; 137.9 13;).7 0.35 1.22 1.;37 155.6
5-22 Two-Bay * 225' 105 610 1027 3 5; 1?;9 80.53 1'34 1'58 2'38 95.79
5-23 Two-Bay * 225' 105 610 1098 . 6; 124 70.88 1'42:4 1'; ! 2'618 83.42
S-24 Two-Bay * 2;5' 105 610 1069'8 8: 8.89  58.68 1'54 1;15 2; 4 69.93
5-25 Two-Bay * 225' 105 610 1322 7 5; 13;9 75.85 1'118 1'5’7 2'127 86.91
5-26 Two-Bay * 225' 105 610 133'9 6; 1;’4 67.85 1'717 1;10 2058 75.79
5-27 Two-Bay * 2785' 105 610 13:'2 862 8.89  56.75 1"17 1'(;14 256 63.57
5-28 Two-Bay * 2785' 105 610 1528 1 5; 1?;9 72.26 1'01 1 1? 7 2'34 79.87
5-29 Two-Bay * 225' 105 610 1599 3 6; 124 63.92 1.610 1'5 ? 2':7 69.67
5-30 Two-Bay * 225' 105 610 162'6 Séz 8.89  54.75 1'21 0 1': 3 2'77 6 58.49
S-31 Two-Bay * 2;5' 105 610 185 = 5; 13;9 68.74 l.;) 0 1'54 2'(?1 75.55
5-32 Two-Bay * 225' 105 610 18;1'7 6; 1;4 60.95 0'39 1'36 2.874 66.10
S-33 Two-Bay * 225' 105 610 1866'0 8: 8.89 5185 0'998 1':0 2’79 > 55.64
534 Two-Bay * 320. 105 610 1027.3 5; 1?;.9 97.01 1.?4 1.:8 2.;]8 1077.7
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310. 132.7 57 139 118 137 227
_ - *
S-35 Two-Bay 3 105 610 ’ 2 ” 84.26 1 3 1 97.77
310. 158.1 5.7 139 111 137 244
- Two-Bay * 1 1 2. a
5-36 wo-Bay 3 05 610 2 5 7 82.33 0 5 6 89.85

*Panels with crack centered under broken middle stiffener.

Table A3. Datasets for the lap-joint 2024-T3 panels (experimental data and calculated assistance

parameters) [32].

Oy w a ¢ L OExp PBr-config Ba B oL
Panel ID MPa E mm mm mm MPa (Bu) MPa
LJ-1 268.9 610 106.52 3.65 16.83 126.73 0.843 0.922 2.506 146.46
LJ-2 268.9 610 106.52 4.92 15.56  115.77 0.846 0.935 2323 137.17
LJ-3 268.9 610 107.79 3.65 15.56  126.73 0.821 0.904 2.574 14151
LJ-4 268.9 610 107.79 4.92 14.29 113.35 0.826 0.918 2.393 131.79
LJ-5 268.9 610 107.79 6.19 13.02  106.53 0.834 0.934 2.268  122.30
LJ-6 268.9 610 109.06 3.65 14.29 119.84 0.810 0.889 2.656 135.86
LJ-7 268.9 610 109.06 4.92 13.02 113.56 0.815 0.905 2.466 125.64
LJ-8 268.9 610 109.06 6.19 11.75  105.77 0.818 0.923 2.346  115.69
LJ-9 268.9 610 109.06 7.46 10.48 101.49 0.821 0.944 2.294 105.38
LJ-10 268.9 610 131.92 3.65 16.83 107.29 0.828 0.948 2.853  128.10
LJ-11 268.9 610 131.92 4.92 15.56 102.6 0.831 0.961 2.642  120.00
LJ-12 268.9 610 133.19 3.65 15.56  105.91 0.810 0.930 2930 123.87
LJ-13 268.9 610 133.19 4.92 14.29 97.29 0.812 0.941 2.720 115.66
LJ-14 268.9 610 133.19 6.19 13.02 90.32 0.816 0.958 2.572 10741
LJ-15 268.9 610 134.46 3.65 14.29 102.18 0.793 0.915 3.034 118.92
LJ-16 268.9 610 134.46 4.92 13.02 96.25 0.799 0.930 2.799 110.25
LJ-17 268.9 610 134.46 6.19 11.75 88.26 0.802 0.949 2.663 101.50
LJ-18 268.9 610 134.46 7.46 10.48 81.91 0.807 0.971 2.613 92.34
LJ-19 268.9 610 157.32 3.65 16.83 89.29 0.816 0.992 3.314 111.70
LJ-20 268.9 610 157.32 4.92 15.56 86.26 0.820 1.007 3.028 104.84
LJ-21 268.9 610 158.59 3.65 15.56 87.84 0.802 0.979 3403 107.63
LJ-22 268.9 610 158.59 4.92 14.29 81.29 0.806 0.994 3.113 100.53
LJ-23 268.9 610 158.59 6.19 13.02 75.02 0.812 1.012 2.952 93.26
L]-24 268.9 610 159.86 3.65 14.29 84.46 0.787 0.964 3.503 103.38
LJ-25 268.9 610 159.86 4.92 13.02 79.78 0.793 0.981 3.218 95.89
LJ-26 268.9 610 159.86 6.19 11.75 74.12 0.796 1.001 3.059 88.26
LJ-27 268.9 610 159.86 7.46 10.48 69.23 0.801 1.025 2.988 80.39
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