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Abstract: Effective and accurate diagnosis of engine health is key to ensuring the safe operation
of engines. Inlet distortion is due to the flow or the pressure variations. In the paper, an acoustic
emission (AE) online monitoring technique, which has a faster response time compared with the
ordinary vibration monitoring technique, is used to study the inlet distortion of an engine. The results
show that with the deterioration of the inlet distortion, the characteristic parameters of AE signals
clearly evolve in three stages. Stage I: when the inlet distortion J ≤ 30%, the characteristic parameters
of the AE signal increase as J increases and the amplitude saturates at J = 23%, faster than the other
three parameters (the strength, the root mean square (RMS), and the average signal level (ASL)).
Stage II: when the inlet distortion 30% < J ≤ 43.64%, all the parameters saturate with only slight
fluctuations as J increases and the engine works in an unstable statue. Stage III: when the inlet
distortion J > 43.64%, the engine is prone to surge. Furthermore, an intelligent recognition method of
the engine inlet distortion based on a unit parameter entropy and the back propagation (BP) neural
network is constructed. The recognition accuracy is as high as 97.5%, and this method provides a
new approach for engine health management.
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1. Introduction

An engine typically encounters extreme environments which will result in the inlet distortion of
the engine [1]. The inlet distortion, which caused the high-cycle fatigue of turbomachinery components,
is the main reason for the disfunction of the engine’s components. When a mild inlet distortion
occurs, the vibration of the compressor becomes abnormal, reducing the efficiency of flight propulsion.
Whereas when a severe inlet distortion occurs, there will be unrecoverable damage to the engine [2,3].
This can even surge the compressor, leading to a shutdown of the engine, affecting the safety of the
engine. Therefore, it is important to research the inlet distortion of the engine.

From the mid-20th century, a great number of studies have been conducted on the inlet distortion
of the engine throughout the world. Reid [4] discovered that during the approaching of the designed
speed of the compressor, the loss of surge pressure ratio, due to inlet flow mal distribution, was
mainly dependent on the circumferential variation of inlet total pressure. James [5] measured the blade
response to an inlet total pressure distortion in an integral blade disk. The variations of measured stress
were found to be significantly affected by unsteady aerodynamic coupling. Zachos [6] demonstrated
the feasibility of using the stereo particle image velocimetry techniques for determining the flow field at
the exit of convoluted intakes with a spatial resolution higher than the typical pressure measurements.
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Hu and Zhao [7] developed a computational approach to assess the effect of the inlet distortion on the
stability of a large bypass ratio turbofan engine. However, all the above researches were carried out
based on some fundamental analysis. The accuracy of the experimental models and the results need
further verification.

The traditional nondestructive monitoring methods of engine mainly include the vibration
monitoring technique, the electrostatic monitoring technique, and the oil monitoring technique [8–11].
Although these monitoring methods can meet the requirements of health monitoring to a certain
extent, some serious limitations still exist. For instance, the vibration monitoring technique is limited
to the structure of the engine. The optimal sensor placement in different systems is a great challenge.
Furthermore, the signal picked up by the vibration sensor reflects the overall engine’s vibration but
not specific components’ vibration. Therefore, it is difficult to locate the fault [12]. Furthermore,
the electrostatic monitoring technique is only sensitive in monitoring gas path faults, while the oil
monitoring technique has a delay for the identification of the early faults, which can easily miss the
appropriate time of diagnosing [13].

The acoustic emission (AE) monitoring technique is a widely used nondestructive monitoring
method that can identify and locate various types of faults [14,15], reducing the daily maintenance
workload of engines, improving the engine’s efficiency. It shows an excellent performance in comparison
with other traditional methods. In the field of aviation, some studies undertook the AE monitoring
technique on the fatigue components of an engine, such as the main body, the horizontal tail, the
landing gear, and the turbine blades [16–20]. However, the application of the AE technique on the
inlet distortion of the engine remains blank. This paper applies the AE technique to explore the
inlet distortion of the engine, and the study proves that the AE technique is an effective method in
monitoring the status of the engine. It can precisely identify the inlet distortion of the engine through
an intelligent method based on a unit parameter entropy and the BP neural network.

2. Theory of the Entropy and BP Neural Network

The entropy is a state parameter that reflects the uncertainty of the evaluated system. It has
been widely used to evaluate the uncertainty of the information carried by the system since Shannon
proposed the concept of information entropy S(a) [21]:

S(a) = −
∑

pi logb(pi) (1)

where pi is the probability for each subsystem and b = 2. The more unified the distribution of pi is, the
greater the value of the entropy and the higher the uncertainty of the system are. Analogous to the
information entropy, this paper introduces a unit parameter entropy to evaluate the distribution of the
AE parameters in a certain status of the engine. Its definition and calculation formula are shown below.

2.1. Unit Parameter Entropy

Assuming that there are m · n data volumes of a certain parameter, these data are normalized and
arranged in ascending order of A1, A2, . . . , Am·n with the range of [A1, Am·n]. The data are then divided
into m intervals, each containing n data, [A1, An][An+1, A2n], . . . , [A(m−1)n+1, Am·n].

The ratio of the length of each interval to the total length of the interval is:

P1 =
An −A1

Am·n −A1
, (2)

Pi =
Ai·n −A(i−1)n

Am·n −A1
, i = 2, 3 . . .m (3)

where m is the number of intervals.
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The parameter entropy over these intervals is defined as:

S(A) = −( An−A1
Am·n−A1

log2
An−A1

Am·n−A1
+ A2n−An

Am·n−A1
log2

A2n−An
Am·n−A1

+ . . .+
Amn−A(m−1)n

Am·n−A1
log2

Amn−A(m−1)n
Am·n−A1

)

= −
m∑

i=1
Pi log2 Pi

(4)

Equation (4) mainly reflects the distribution of parameters in an interval. However, the length of
the parameter interval was not taken into consideration. To eliminate this effect, it is needed to define
the unit parameter entropy as Equation (4) divided by the length of the parameter interval.

S(A) = −
1

Am·n −A1

m∑
i=1

pi log2 pi (5)

Equation (5) mainly reflects the distribution of parameters in a unit interval, and the greater the
unit parameter entropy value is, the more uniform the distribution of the value of this parameter along
with the unit interval is. This indicates that this kind of parameter is more accurate to identify the
health status of the engine. Therefore, Equation (5) can be used to evaluate the ability of each AE
parameter to identify the inlet distortion of the engine.

2.2. BP Neural Network

The BP neural network is a multilayer feed-forward intelligent processing algorithm that is
designed by mimicking the operational relationship between the human brain neurons. It conducts
rigorous training through multi-level neurons and stops when the data converged, within the acceptable
error range. Otherwise, this algorithm will keep altering its weights and thresholds until it meets the
requirements [22–24].

As shown in Figure 1, the BP neural network consists of one input layer, one output layer, and l
hidden layers, and there is a data set of input (m1, m2, . . . , ma) corresponding to a data set of output
(n1, n2, . . . , nb).
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Figure 1. A schematic of the BP neural network.

Suppose the x inputs correspond to the y outputs, and the output of the α neurons on the layer l is Γxy
lα

Γxy
lα = f (

∑
α

w(l−1)αΓxy
(l−1)α

), (6)

where f is the algorithm of the neuron and w(l−1)α is the connection weight between the neuron of
layer (l− 1) and the neuron of layer l. Γxy

(l−1)α
is the output of the α neurons in the layer (l− 1).
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The square error function Exy is used to assess whether the network error exceeds the
allowable error.

Exy =
1
2

∑
α

(ny
α − ny

α)
2 (7)

where ny
α and ny

α are the calculate output and the actual output of the α neurons in the y data. If Exy is
less than the preset error amount, the learning process of the BP neural network is completed.

3. Experiments

3.1. Inlet Distortion Experiment

In this study, an engine was used to simulate the disfunction of inlet distortion, and the AE
monitoring technique was employed to identify the impact of inlet distortion on the stability of the
engine. Figure 2 shows a schematic representation of the experiment. With the arrangement of two
mobile spoilers in front of the engine to block the inlet through its horizontal motion, a large number
of turbulent flows were generated to simulate the process of inlet distortion. The AE sensors were
located on the engine casing to collect the AE signals generated by the faults. By applying the AE
monitoring technique, it would be feasible to continuously monitor and identify the simulated faults.
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Figure 2. Schematically representation of testing the inlet distortion.

Four types of sensors, R3, R6, R15, and WSa, are selected in this paper. Their characteristic
parameters are shown in Table 1. Each measurement point was equipped with 2 sensors, and a total of
14 sensors were arranged on the casing. During this experiment, the sample rate was 1 MHz, and the
hit length was 2 KHz. Threshold for AE detection is 38 dB for R1, R2, R3, R4, R9, R10, and R11and
38 dB for R5, R6, R7, R8, R13, and R14. Accordingly, with setting the relevant parameters of the AE
monitoring technique appropriately, efficient identification of the inlet distortion is applicable.

Table 1. Characteristic parameters of sensors.

Type of Sensors Center Frequency (kHz) Frequency Range (kHz) Sampling Frequency (MHz)

R3 30 20–80 1
R6 60 35–100 1

R15 150 50–200 1
WSa 550 100–1000 1



Appl. Sci. 2020, 10, 8240 5 of 12

Figure 3 shows the flowchart of an experiment performed to study inlet distortion of the engine.
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Figure 3. The flowchart of an experiment conducted to study inlet distortion based on the acoustic
emission (AE) technique.

In Figure 3, N2 is the actual speed of the engine divided by 10,000. The engine would be started
until all the technical indicators of engine satisfy the requirements of airworthiness [25,26] and the
AE technique was normally running. Then, the speed of the engine was controlled at 8976 rpm after
warming up the engine. Next, the Spoiler1 was moved to start the inlet distortion experiments at a
speed of V1 = 40 mm/s, and the Spoiler2 remained stationary. According to the parallel compressor
model, the inlet distortion J is defined as:

J =
S1 + S2

S
(8)

where S1 and S2 are the areas where the inlet was blocked by Spoiler1 and Spoiler2, respectively, and S
is the total area of the inlet, as shown in Figure 4.
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Hence:
S1 =

1
720

πD2arccos(1−
2H1

D
) −
√

DH1 −H1
2(

D
2
−H1) (9)

S2 = 0 (10)

S =
1
4
πD2 (11)

where H1 is the moving distance of the Spoiler1, D is the diameter of the engine inlet, and H1/D is an
independent variable.

Entering Equations (9)–(11) into Equation (8) yields Equation (12):

J =
1

180
arccos(1−

2H1

D
) −

√
H1

D
− (

H1

D
)

2
(2− 4

H1

D
)

1
π

(12)

where J is one of the important parameters to characterize the degree of the inlet distortion [27].
Eventually, when H1/D reaches 45%, i.e., J reaches 43.64%, the spoiler1 will stop moving. Then, the
spoiler1 will be withdrawn, and the engine will stop operating to stop the experiment.

3.2. Monitoring Technique

The AE monitoring technique consists of four parts: the sensors, the pre-amplifiers, the data
acquisition device, and the data analysis system. Figure 5 shows the principle of the AE monitoring
technique [28,29]. The elastic waves emitted from the AE sources eventually transmitted from inside
to the surface of the material, causing surface displacements that can be detected with AE sensors.
The elastic waves are translated into electrical signals through the AE sensors. Then, they are acquired
by the data acquisition device after being processed by the pre-amplifiers. Finally, the signal is analyzed
by the data analysis system [30–34].
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4. Results and Discussion

4.1. Parametric Analysis

The parametric analysis method, currently the most commonly used method for analysis of the
AE signals, utilizes the characteristics of multiple simplified waveforms to characterize the AE signals.
This method has proved that many engineering problems can be solved effectively after decades of
research [35]. Based on this method, it is clear to identify the health status of the engine through the AE
parameters, such as the amplitude, the signal strength, the RMS, and the average signal level (ASL).

Table 2 lists the variations of the amplitude, the signal strength, the RMS, and the ASL as J varies
from 0 to 43.64%. As we can see, the parameters of the AE signal increased with the uniform increase
of distortion range in real-time.
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Table 2. Variations dependency of the parameters of the AE method on J.

Time s H1
D J Amplitude

dB
Signal Strength ×

10−3 Vs
RMS

V
ASL
dB

0 0.00% 0.00% 86 3.447 0.4282 75
1 1.80% 0.41% 86 3.441 0.4270 75
2 6.10% 2.51% 86 3.409 0.4220 75
3 10.50% 5.59% 87 3.430 0.4302 75
4 15.00% 9.41% 87 3.491 0.4356 75
5 19.40% 13.63% 89 3.614 0.4680 76
6 23.50% 17.19% 91 4.084 0.5482 77
7 28.30% 23.26% 96 4.751 0.6424 79
8 32.70% 28.42% 96 6.550 0.9056 82
9 37.10% 33.76% 96 6.550 0.8636 81

10 41.90% 39.73% 96 6.307 0.8064 81
11 45.00% 43.64% 96 6.407 0.8334 81

For a more intuitive description of the relationship between the AE parameters and the J, the
line chart of the amplitude, the signal strength, the RMS, and the ASL relative to the change of J are
plotted in Figure 6. The variations of the AE parameters can be divided into three stages of I, II, and III.
In stage I, the AE parameters initially did not show a clear upward trend until J reached 10%. With the
increase of J, the parameters increased rapidly and reached the maximum value when J was about 30%.
There is an exponential relationship between the AE parameters and J. In stage II, the AE parameters
did not increase with the increase of J, while a slight fluctuation phenomenon occurred. In stage III, as
J continuously increased above 43.64%, the engine tended to surge, which should be strictly avoided.
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average signal level (ASL)-J.

In the same experiment, the vibration monitoring technique was tested to study the inlet distortion
of the engine as well. Figure 7 shows the relationship between the parameters of the vibration



Appl. Sci. 2020, 10, 8240 8 of 12

monitoring technique (taking the valid values as an example) and J. When J reached 14%, the
parameter of vibration monitoring technique begins to show a clear upward trend, lagging behind the
response of the AE monitoring technique, demonstrating that the AE technique is more sensitive to the
identification of inlet distortion.
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To avoid serious inlet distortion, the engine was strictly forbidden to operate in stages II and
III. Therefore, it is of significance to identify the J as soon as possible before entering stage II and
III. Additionally, the AE monitoring technique is more sensitive to identify the inlet distortion of the
engine in comparison with the vibration monitoring technique.

4.2. Analysis of Time and Frequency Domain

To figure out the effect of inlet distortion of the engine in essence clearly, it is necessary to analyze
the signal in the time and frequency domain. Figure 8a shows the AE signal measured during the
normal status of the engine (J = 0%), and the corresponding frequency-domain waveform is shown in
Figure 8b. Figure 9a shows the typical AE signal measured during the inlet distorted status of the
engine (J= 12%), and the corresponding frequency-domain waveform is shown in Figure 9b.
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By comparing the time-domain waveform between the normal and distorted signals, it can be
seen that the signals are both continuous-type signals and the amplitude of the distorted signal exceeds
largely over the normal signal. By comparing the frequency-domain waveform between the normal
and distorted signals, it can be seen that the energy lies mainly in the frequency band in the range of
50–250 kHz, and the most obvious frequency component is 150 kHz, followed by 100 kHz. Meanwhile,
the proportion of the 100 kHz frequency component in the distorted signal is significantly higher
than that in the normal signal. From the time-domain waveform and frequency-domain waveform,
it can be seen comprehensively that there are certain differences between the normal signal and the
distorted signal. However, there are also some overlaps in the main frequency, which will affect the
signal identification.

4.3. Intelligent Analysis Based on a Unit Parameter Entropy and the BP Neural Network

The measured signal requires further analysis to accurately identify the health state of the engine.
The BP neural network is an intelligent method with a function of multi-layer feed-forward, identifying
the signal through its logic operations. It is very important for the BP neural network to ensure the
effectiveness of the input parameters.

Based on the characteristics of the AE signals, 12 kinds of AE parameters were selected initially in
this paper, including the amplitude, the RMS, the signal strength, the initial frequency, and the eight
frequency bands’ energy after the signal was decomposed by the three-layer wavelet packet. Based
on Equation (6), the unit parameter entropy of the 12 AE parameters was calculated, with the results
shown in Table 2.

From Table 3, it can be seen that the value of the unit parameter entropy of the initial frequency,
Energy 1, Energy 3, Energy 5, Energy 7, and Energy 8 are smaller than the rest of the parameters.
This indicates that the parameters with a smaller value are unevenly distributed over the length of
the unit interval with large fluctuations, which are not suitable for input into the BP neural network.
The value of the unit parameter entropy of the remaining parameters is larger, indicating that the
parameter distribution is more uniform in the unit interval. Therefore, the amplitude, the RMS, the
signal strength, Energy 2, Energy 4, and Energy 6 are selected as the input parameters and imported
into the BP neural network for intelligent analysis.

Table 3. Unit parameter entropy of 12 AE parameters.

Parameter Unit Parameter
Entropy Parameter Unit Parameter

Entropy

Amplitude 115.17 Energy 3 43.17
RMS 131.34 Energy 4 119.91

Signal Strength 148.23 Energy 5 61.70
Initial Frequency 4.54 Energy 6 104.27

Energy 1 35.69 Energy 7 19.89
Energy 2 100.64 Energy 8 58.24

Sixty sets of input parameters were selected for the normal state of the engine and the inlet
distortion state of the engineer, respectively. Forty sets of data were randomly selected as training
samples to be imported into the BP neural network. The remaining 20 sets of data were used as
test samples to test the training effect of the BP neural network. To verify the validity of the unit
parameter entropy, the excluded parameters and the selected parameters were imported into the BP
neural network, respectively, for comparative analysis. The results are shown in Tables 4 and 5.
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Table 4. The identification result for parameters excluded via unit parameter entropy.

Status of the Engine Identification Accuracy Total Accuracy

Normal 85% 75%
Inlet distortion 65% 75%

Table 5. The identification result for parameters selected via unit parameter entropy.

Status of the Engine Identification Accuracy Total Accuracy

Normal 95% 97.5%
Inlet distortion 100% 97.5%

From Tables 4 and 5, it can be concluded that the total accuracy for identifying the engine’s
operating status through the AE parameters that are selected by the unit parameter entropy method is
up to 97.5%, which is higher than that of the AE parameters excluded by the unit parameter entropy.
This result proves that the unit parameter entropy method is an effective method to evaluate the
effectiveness of the AE parameters in identifying the engine’s operating status.

5. Conclusions

In this paper, the AE monitoring technique was used to monitor the inlet distortion experiment of
an engine. According to the results, the following conclusions can be drawn:

1. The AE parameters, such as the amplitude, the signal strength, the RMS, and the ASL could
efficiently identify the degree of the inlet distortion of the engine. With the continuous deterioration
of the inlet distortion, the AE parameters showed variations in three stages. In stage I, the AE
parameters showed a typical exponential growth with the increase of the degree of the inlet
distortion. In stage II, the variation of the AE parameters saturated with a slight fluctuation
phenomenon with the increase of the degree of the inlet distortion. In stage III, as the degree of
the inlet distortion increases continuously, the engine enters the surge zone.

2. The AE monitoring technique is more sensitive in comparison with the vibration monitoring
technique in terms of identifying the inlet distortion, representing accordingly a new approach
for the health monitoring of the engine.

3. This paper proposes an intelligent method based on the unit parameter entropy to evaluate the
effectiveness of the parameters to identify the status of the engine. Experiments have shown that
the parameters selected by this method are significantly better than the excluded parameters for
the identification of the status of the engine. The result proves the effectiveness of this method
and provides a theoretical basis for the establishment of an intelligent identification system of
the engine.
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