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Featured Application: Inventory Management.

Abstract: The ABC classification problem is approached as a ranking problem by the most current
classification models; that is, a group of inventory items is expressed according to its overall weighted
score of criteria in descending order. In this paper, we present an extended version of the Hadi-Vencheh
model for multiple-criteria ABC inventory classification. The proposed model is one based on the
nonlinear weighted product method (WPM), which determines a common set of weights for all
items. Our proposed nonlinear WPM incorporates multiple criteria with different measured units
without converting the performance of each inventory item, in terms of converting each criterion
into a normalized attribute value, thereby providing an improvement over the model proposed by
Hadi-Vencheh. Our study mainly includes various criteria for ABC classification and demonstrates
an efficient algorithm for solving nonlinear programming problems, in which the feasible solution
set does not have to be convex. The algorithm presented in this study substantially improves the
solution efficiency of the canonical coordinates method (CCM) algorithm when applied to large-scale,
nonlinear programming problems. The modified algorithm was tested to compare our proposed
model results to the results derived using the Hadi-Vencheh model and demonstrate the algorithm’s
efficacy. The practical objectives of the study were to develop an efficient nonlinear optimization
solver by optimizing the quality of existing solutions, thus improving time and space efficiency.

Keywords: non-linear programming; Hadi-Vencheh model; multiple criteria ABC inventory classification;
nonlinear weighted product model

1. Introduction

To facilitate the successful management of a growing number of stock-keeping units (SKUs),
inventory managers have found that inventory classification systems provide essential context for
evaluating inventory management. ABC analysis is one of the most frequently used inventory
classification techniques. Raw materials, subassemblies, intermediate products, parts, and end
products can be divided into three classes: A (very important items), B (moderately important items),
and C (relatively unimportant items). The ABC classification problem is presented as a ranking problem
by the most current classification models [1–3]; that is, a group of inventory items is represented
according to its overall weighted score of criteria in descending order. The idea of ABC analysis was
applied to the inventory management at General Electric during the 1950s. This approach is based
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on Pareto’s famous theory of inequality in the distribution of incomes. A conventional ABC study is
conducted on the basis of one criterion: the annual dollar usage (value of an item times its annual
usage) of SKUs.

Under Pareto’s theory, all items are ranked based on a single criterion; within inventory management,
dollar usage is the only criterion for managers to classify items into the A, B, and C categories. However,
managers sometimes want to consider more attributes of an item when classifying goods. Many item
characteristics could influence inventory control policy and must be considered. Flores [2] noted
that other vital criteria can be adopted in addition to dollar usage, such as commonality, reparability,
substitutability, lead time, and commonality. For instance, an enterprise must pursue efficient operations
that can both minimize total costs and maximize satisfaction brought to their internal or external
customers. If SKUs are only classified based on the single criterion of dollar usage, an item with a
lower dollar usage, but a long lead time and high criticality, would be misclassified into the C category,
resulting in serious damage to the company if the item were to run out of stock.

Detailed literary research has been carried out on multi-choice programming (MCP) theories
and applications. MCP is a branch of multi-objective programming that stems from multiple-criteria
decision-making (MCDM). MCDM tests several overlapping criteria of decision-making in various
areas [4,5]. Multi-criteria inventory classification (MCIC) can be viewed as an application of multi-criteria
decision analysis [6,7]. To solve the MCIC problem, the joint criteria matrix [8] is a simple and
easy-to-understand tool, but it is not practical for more than two criteria and involves too much
subjectivity. The analytic hierarchy process (AHP) is a popular methodology, but it involves subjectivity
as well. Methods for solving the ABC inventory classification problem have been systematically and
thoroughly reviewed and discussed in the relevant literature [9–12]. A number of methods were
suggested in order to achieve multi-criteria classification of SKUs. These methods contribute much to
the classification of items and help improve the efficiency and performance of a firm through better
inventory management. However, these approaches contain some shortcomings, such as involving too
much subjectivity or being overly complicated.

To facilitate better allocation of the priorities of items and further classification, it is worth
developing a model that can accommodate multiple criteria to create guidelines for inventory control.
This study builds a proper model for categorizing SKUs and demonstrates an efficient algorithm for
solving the nonlinear programming model, in which the feasible solution set does not have to be
convex. The rest of this paper is structured as follows. Section 2 provides the details of the model’s
development. The solution algorithm and its improvement are presented in Section 3. Section 4 details
the results of the model constructed herein, with comparisons to previous studies using a benchmark
data set. Conclusions and recommendations for future research are offered in the final section.

2. Literature Review on the HV Model and the WPM

Hadi-Vencheh [13] proposed a multi-criteria weighted nonlinear model for ABC inventory
classification. The proposed model (hereafter the HV model) is an extension of the Ng model [1].
The Ng model transforms the inventory object to a scalar value. The grouping, according to the
measured values, is then applied according to the ABC theory. Hadi-Vencheh also extended the Ng
model to resolve the condition in which the score is independent of the weights from the model
for each item. Despite the improvement in maintaining the influences of weights in the final score,
one notable problem remains: the HV model calculates the scores assigned to each item using the
weighted sum method (WSM) for criteria with different measurement units, which therefore requires
converting the performance of individual inventory items into a normalized attribute value, expressed
in terms of every criterion. Triantaphyllou [14] contended that if the problem involved criteria with
different measurement units, the weighted product method (WPM) would be a more suitable tool to
calculate the scores given to each item. To avoid an erroneous extreme value leading to inventory
item misclassification, we propose the following nonlinear WPM to model the classification problem
involving criteria with different measurement units. This study presents a broader version of the HV
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model, taking weight values into account in the ABC inventory classification for multiple criteria by
using the WPM, which applies multiplication weights and forms a nonlinear optimization problem.
To solve the nonlinear optimization problem efficiently, the canonical coordinates method (CCM)
algorithm is used to calculate the weights of the criteria for each inventory item.

Suppose that I inventory items are present, and that the items must be graded as A, B, or C
based on their results, according to J criteria. In particular, let the output of the ith inventory item
be referred to as yi, j with respect to each criterion. For simplicity, all parameters are beneficial; in
other words, they are positively connected with the degree of value of an item. The goal is to combine
many performance scores in the subsequent ABC inventory classification, in regard to different
parameters, into a single score. In both the Ng and HV models, a nonnegative weight wi, j is the
weight of performance contribution of the ith item under the jth criteria to the score of the item. The
parameters are supposed to be listed in descending order such that wi,1 ≥ wi,2 ≥ · · · ≥ wi,J for all items i.
The proposed model by Hadi-Vencheh [13] is as follows:

max Si =
J∑

j=1
yi, jwi, j

s.t.
J∑

j=1
wi, j

2= 1

wi, j −wi, j+1 ≥ 0, j = 1, 2, . . . , J − 1
wi, j ≥ 0, j = 1, 2, . . . , J

(1)

In the HV model, the performance in each criterion of the ith inventory item yi, j is further
normalized to si, j, and the objective function of the nonlinear programming (NLP) model from Equation
(1) is found to be

max Si =
J∑

j=1
si, jwi, j

Ng [1] indicated that normalization scaling involves extreme measurement values and would
thus have an effect on all normalized measurements if the extremes changed. To avoid an invalid
extreme value leading to inventory item misclassification, we propose the following nonlinear WPM to
model the classification problem involving criteria with different measure units:

max Si =
J

Π
j=1

yi, j
wi, j

s.t.
J∑

j=1
wi, j

2= 1

wi, j −wi, j+1 ≥ 0, j = 1, 2, . . . , J − 1
wi, j ≥ 0, j = 1, 2, . . . , J

(2)

3. The Solution Algorithm

3.1. Nomenclature

3.1.1. Notation of the Weighted Product Method for ABC Classification

• I: set of inventory items;
• J: set of evaluation criteria;
• yi, j: the ith inventory item in terms of the jth criteria;
• wi, j: the weight of performance contribution of the ith item under the jth criteria;
• Si: score of the item i.
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3.1.2. Notation of the CCM Algorithm

• <: the set of all real numbers;
• ξ: decision variables;
• ξ0: feasible initial solution;
• φi(ξ): set of constraints, i = 1, . . . , m;
• f (ξ): the objective function;
• ξ∗: the optimal solution.

3.2. The CCM Algorithm

This section presents the canonical coordinates method (CCM) algorithm [15,16], which is applied
to solve nonlinear programming problems in which the feasible solution set does not have to be convex.
Convexity is a strong property that often replaces differentiability as a desirable property in most
constrained optimization problems. However, the CCM efficiently addresses continuous search spaces
and benefits from the low computational cost for solving constrained optimization. A set containing
nonlinear constraints may or may not be convex. This study mainly demonstrates an efficient algorithm
for solving nonlinear programming problems in which the feasible solution set does not have to be
convex. The main difference between linear and nonlinear programming is that linear programming
helps find the best solution from a set of parameters or requirements that have a linear relationship,
whereas nonlinear programming helps find the best solution from a set of parameters or requirements
that have a nonlinear relationship. The prerequisite for applying the CCM algorithm is that the implicit
function theorem can be used in any feasible set. That is, at any point in the feasible set, one can
find m variables, such as z = (z1, . . . , zm), in such a way that the Jacobian matrix of the constraint
functions φ = (φ1, . . . ,φm), with respect to z, are nonsingular. In the implicit function theorem, there
exist functions g j such that z j = g j(x1, . . . , xn), j = 1, . . . , m. We describe the Algorithm 1 below:

Algorithm 1. CCM Algorithm

Input: The nonlinear program:
max

{
f (ξ)

∣∣∣φi(ξ) = 0, i = 1, . . . , m
}

with given differentiable functions f , φi :<m+n
→<, i = 1, . . . , m , and a feasible point ξ0

∈ <
m+n satisfying

φi
(
ξ0

)
= 0, i = 1, . . . , m.

Output: A critical point ξ∗ of f satisfying φ(ξ∗) = 0.
Steps:

1. ξ0 is partitioned into ξ0 =
(
x0, z0

)
, where x0

∈ <
n and z0

∈ <
m are such that det

(
J(φ, z)

∣∣∣(x0,z0)

)
, 0.

2. For i, j = 1, . . . , m and k = 1, . . . , n, we calculate the following partial derivatives at point ξ0 =
(
x0, z0

)
:

∂ f /∂xk, ∂ f /∂z j, ∂φi/∂xk, and ∂φi/∂z j.

3. We then calculate the m× n matrix for the implicit function g (i.e., (∂g/∂x) = −(∂φ/∂z)−1(∂φ/∂x)) and

then find the direction D0 := (∂ f /∂x) = (∂ f /∂x1, . . . , ∂ f /∂xn) and D0 = (∂ f /∂x)T + (∂ f /∂z)(∂g/∂x).
4. We perform a line search along the ray through x0 with the direction D0 = D

(
x0

)
; that is to say, we find a

one-dimensional local optimal t∗ of F̂(t) := f
(
x0 + tD0, z(t)

)
, t ≥ 0. To do so, we need to solve for z(t),

which is done by solving the following system of ordinary differential equations:{
z(0) = z0

(∂φ/∂x)(∂F/∂x)T + (∂φ/∂z)(dz/dt)T = 0

where we set x∗ ← x0 + t∗D0 .
5. We compute z∗j = g j(x∗), j = 1, . . . , m using Taylor polynomial approximation and then apply Newton’s

method to solve the system of ordinary differential equations at t = t∗ above.
6. If ∇ f (x∗, z∗) ≈ 0, then we have found a local optimal point. Otherwise, we replace

(
x0, z0

)
with (x∗, z∗)

and repeat the procedure.
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The CCM algorithm helped us identify the local optimal points of NLP so that the feasible set
fulfilled the requirements of the implicit function theorem. The problem could then be turned into an
NLP problem on a subspace<n of the original space<m+n.

3.3. Improvement of the Algorithm Using Efficient Selection of Bases

Step 1 in the CCM algorithm is to find a subset of m variables among the (m + n) variables so
that a resulting Jacobian matrix is non-singular [8]. This is equivalent to finding a subset of column
vectors in the original m× (m + n) matrix that is linearly independent. Let φ1, · · · ,φm be differentiable
functions in (m + n) variables:

A =


∂φ1/∂x1 ∂φ1/∂x2 · · · ∂φ1/∂xm+n

∂φ2/∂x1 ∂φ2/∂x2 · · · ∂φ2/∂xm+n
...

...
...

...
∂φm/∂x1 ∂φm/∂x2 · · · ∂φm/∂xm+n


In order to find a subset of m columns of A that is linearly independent, the original method by

Chang and Prabhu [15] was to choose any m subset of the (m + n) columns to check if it qualified.
There are two drawbacks to doing this. First, there are Cm+n

m choices of such subsets, and second,
each choice will require a calculation of the determinant of an m ×m matrix, which has the same
complexity as a Gaussian elimination process. We will show that, by using Gaussian elimination
on A to reach its reduced row echelon form, we can find one subset of columns of A that is linearly
independent. The process of Gaussian elimination involves performing a sequence of row operations
to a given matrix to reach its reduced row echelon form. Each type of row operation corresponds to a
type of elementary matrix, all of which are nonsingular. Each time a row operation is performed, it is
equivalent to multiplying the original matrix by an elementary matrix on the left. We can also see that
in an m× (m + n) matrix with rank m, there is a subset of column vectors that is linearly independent.
Now, let us state the proposition that yields the discovery of the desired linearly independent subset of
columns of A.

Proposition 1. Let m and n be positive integers, A be an m× (m + n) matrix with rank m, and u1, . . . , um+n be
the column vectors of A. Suppose B is the reduced row echelon form of A, and that v1, . . . , vm+n are the columns
of B. Then, there exist integers 1 ≤ j1 < j2 < · · · < jm ≤ (m + n) such that

[
v j1 , · · · , v jm

]
= Im×m forms the

m×m identity matrix. Moreover, the corresponding subset of columns of A,
[
u j1 , · · · , u jm

]
, is non-singular.

Proof. Matrix B must also have a rank of m because it is the reduced row echelon form of A, whose rank
is m. Thus, there are m columns of B that form the m×m identity matrix. That is, there exist integers
1 ≤ j1 < j2 < · · · < jm ≤ (m + n) such that

[
v j1 , · · · , v jm

]
= Im×m. During the process of Gaussian

elimination, performed to obtain the reduced row echelon form of A, we can find elementary matrices
E1, E2, · · · , Ep such that

B = Ep · · ·E2E1A

Note that the kth column of B is also obtained from performing the same row operations on the
kth column of A. Thus, we can say

v jk = Ep · · ·E2E1u jk , k = 1, 2, · · · , m

Additionally, we can say

Ep · · ·E2E1
[
u j1 , · · · , u jm

]
=

[
v j1 , · · · , v jm

]
= I
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Since all the elementary matrices E1, E2, · · · , Ep and the identity matrix I are nonsingular,
then

[
u j1 , · · · , u jm

]
must also be nonsingular. Now, we can simply apply Gaussian elimination

to the matrix and find a linearly independent subset of column vectors that allows the implicit function
theorem and the CCM algorithm to be applied. �

3.4. Accuracy Improvement

A line search in the fourth step, whereby a system of nonlinear ordinary differential equations
with initial values is resolved [15], must be carried out in the implementation of the CCM algorithm.
The desired unidimensional direction can be approximated numerically from any line search, but its
explicit functional expression cannot be calculated. This drawback impedes the output of the points
found in any line search system. We present a modification of the CCM algorithm used by Chang and
Prabhu [15], which adopted the gradient method to determine the next point without any line searching.

Suppose the feasible set S =
{
u ∈ Rm+n

∣∣∣φi(u) = 0, i = 1, · · · , m
}

satisfies the condition of the
implicit function theorem. That is, φi(u) is a holomorphic function in the m + n variables, if one treats
the m+ n variables as complex variables such that one of its Jacobians is nonsingular. Therefore, one can
find an m subset of the m + n variables, such as z1, · · · , zm, so that the corresponding Jacobian matrix
(∂φ/∂z) is nonsingular. Furthermore, there exist implicit functions g j, j = 1, · · · , m in terms of the
remaining n variables, x1, · · · , xn for example, such that z j = g j(x1, . . . , xn), j = 1, · · · , m. The original
NLP can now be viewed as the following induced NLP:

Maximize F(x)
Subject to x ∈ U

where F(x) = f (x, g1(x), · · · , gm(x)) and U is a neighborhood of the point x0
∈ Rn that the implicit

function theorem holds. Because U contains an open subset of Rn, the induced NLP can be viewed as a
locally non-constrained NLP model. One important benefit is that moving along the induced gradient
direction D = (∂F/∂x) will stay in U if the distance is small enough.

One common issue with solving an NLP model using the gradient method is that it is likely to
leave S by traveling along the gradient direction of a feasible point. This causes a big problem in
keeping the NLP model’s feasibility. Applying the CCM algorithm does not present such a problem,
as every iteration remains within the feasible region. This is because the gradient of the inducted
objective function F, with regard to the selected value x1, · · · , xn, will locally move inside the feasible
set U if selected carefully. When using the CCM algorithm in a small-scale NLP model, one can conduct
a line search along the gradient direction of the induced objective function. The relation between the
induced line search and the movement along the original feasible set is illustrated in Figure 1.

Because there is one-to-one mapping between U and a neighborhood of
(
x0, z0

)
in S, there is a

one-dimensional curve C in S, corresponding to the line L =
{
x(t)|t ≥ 0

}
in U such that

C =
{
x(t), z(t)

∣∣∣x(t) ∈ L, z(t) = g(x(t))
}

The problem can be viewed as lifting a straight line in Rn to a curve in Rm+n. In performing a line
search, one has to find a one-dimensional, local, optimal point on such a curve with only the knowledge
of the projection of the curve, while the other coordinates are unknown. Fortunately, we also know
the explicit objective and constraint functions, so we can approximate the change of the unknown
coordinates ∆z with the derivatives dz/dt. That is, we can approximate ∆z by

∆z ∼
(

dz
dt

)
∆t
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Let D0 = D
(
x0

)
= (d1, · · · , dn), in which case

dz j

dt
=
∂g j

∂x1

dx1

dt
+ · · ·+

∂g j

∂xn

dxn

dt

In addition, (
dz
dt

)
=

(
∂g
∂x

)
d1
...

dn

 = −
(
∂φ

∂z

)−1(∂φ
∂x

)
d1
...

dn


We can now move the previous point along its gradient direction (∆x, ∆z) where ∆x = D0∆t,

in which D0 is the exact induced gradient of the induced objective function in the projection space
and ∆z is the change in z by the above approximation. We can choose ∆t carefully to avoid any line
searching. There are two reasons to avoid a line search.
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First, it requires the knowledge of the lifted curve for any z > 0. When an NLP model is a
small-scale problem and the corresponding system of ordinary differential equations is possible to
solve, the CCM algorithm can locate or approximate the exact lifted curve C at any t > 0. To do so,
we may need to apply some Ordinary Differential Equation methods, such as the Euler and Runge–Kutta
methods. As t gets larger, the feasibility of the point (x(t), z(t)) is likely disappearing.

Second, we use numerical data to approximate the partial derivatives at all the points involved.
The ODE problem in the fourth step is a point-by-point case without an explicit global expression
for the coefficients (∂φ/∂x)(∂F/∂x)T and ∂φ/∂z in it. Thus, it might be impossible to solve for it in
practice. We have chosen to avoid any line searching. Instead, as mentioned above, we move a point to
the next one in its gradient direction (∆x, ∆z) with a chosen ∆t. This way, we have control over staying
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as close to the feasible set as we need. Not only is the feasibility better kept, but the calculation is also
reduced, since we are not solving for the system of ordinary differential equations globally.

4. Illustrative Example

We applied the WPM to the same problem of the multi-criteria inventory classification problem
as reported in the referenced literature [1,6,7,13,17]. Following Ng [1] and Hadi-Vencheh [13],
we considered three criteria for inventory classification: annual dollar usage (ADU), average unit cost
(AUC), and lead time (LT). We also assumed the importance of the criteria to be ADU, AUC, and LT,
in descending order. All of the criteria held positive inventory item scores.

4.1. Quality of Solutions

The 47 inventory items’ optimal scores and weights are shown in Table 1. As demonstrated,
the optimal scores derived by using the CCM algorithm to solve the WPM of multicriteria ABC
classification were as good as those derived using LINGO [18], the off-the-shelf optimization software.
If we look carefully at the weights derived using LINGO, it is obvious that most item weights for ADU
and AUC were identical, and that some item weights (4, 25, 27, and 30) for LT were zero. This is because
the primary underlying technique used by LINGO’s nonlinear solver is to reach a feasible solution for
nonlinear models quickly. The weight values derived by using the CCM better fit the assumption that
the criteria were graded in descending order, such that wi,1 ≥ wi,2 ≥ · · · ≥ wi,J for all items i. Therefore,
the CCM is superior to LINGO in terms of solution quality in this illustrative example.

Next, the maximal overall scores were sorted in descending order, and inventory classification was
conducted based on the WPM (shown in Table 2). For comparison purposes, we maintained the same
distribution of items in the A, B, and C classes as in studies within the cited literature [1,13,17]; that is,
there were 10 class A items, 14 class B items, and 23 class C items. The ABC analysis using the Ng [1],
Hadi-Vencheh [13], and Zhou and Fan (ZF) models [17] are also shown in Table 2. There were ten items
(8, 29, 15, 16, 27, 33, 39, 40, 34, and 45) that did not have the same classifications in the WPM model
as in the Ng, HV, and ZF models. The difference in classification was due to the difference in score
computation schemes. Of the 10 class A items identified in the WPM, only item 8 was recognized as a
class B item in the Ng, ZF, and HV models. Moreover, in these models, item 29 was classified as a class
A item, while the WPM reclassified it as a class B item. A comparison of items 8 and 29 revealed that
item 8 was superior to item 29 in terms of ADU value (y8,1 = 2640 > y29,1 = 268.68). Although item 29
outperformed item 8 in AUC (y8,2 = 55 < y29,2 = 134.34) and LT (y8,3 = 4 < y29,3 = 7), the differences
were not significant. Therefore, based on the most important consideration, the value of the annual
consumption of inventory items (ADU) in a year, the WPM provided a more reasonable classification.

Regarding the 14 class B items in the HV model, eight items (6, 7, 23, 18, 19, 28, 12, and 31) were
retained in class B when the WPM was adopted, five of the class B items (33, 39, 40, 34, and 45) were
reclassified as C, and the remaining one (item 8) was moved up to class A. Out of the 23 class C
items, 18 items were retained as such, whereas the remaining five (15, 16, 22, 20, and 27) were moved
up to class B. Items 33, 39, 40, 34, and 45, classified as class B items in the Ng, HV, and ZF models,
were reclassified as class C items when using the WPM (see Table 3) and had relatively higher LT
measurements (more than 4), but lower performance in terms of AUC and ADU, which were the two
more important criteria. However, the maximum ADU value (197.92) of these five items was much
less than the minimum ADU value (336.12) of items 15, 16 and 27, which were reclassified as class C
items by the WPM, while their AUC values were about even. Therefore, the WPM provided a more
reasonable ranking of items.
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Table 1. Measures of inventory items, including their optimal scores and weights.

Item Parameter
LINGO CCM

Objective Value Decision Variable Objective Value Decision Variable

ADU AUC LT Score ADU Weight AUC Weight LT Weight Score ADU Weight AUC Weight LT Weight

1 5840.64 49.92 2 8.92 7.050 × 10−1 7.050 × 10−1 7.770 × 10−2 8.92 7.050 × 10−1 7.049 × 10−1 7.790 × 10−2

2 5670 210 5 10.02 6.979 × 10−1 6.979 × 10−1 1.606 × 10−1 10.02 6.980 × 10−1 6.978 × 10−1 1.608 × 10−1

3 5037.12 23.76 4 8.38 6.974 × 10−1 6.974 × 10−1 1.654 × 10−1 8.38 6.974 × 10−1 6.973 × 10−1 1.658 × 10−1

4 4769.56 27.73 1 8.34 7.071 × 10−1 7.071 × 10−1 0.000 × 100 8.34 7.072 × 10−1 7.071 × 10−1 2.360 × 10−4

5 3478.8 57.98 3 8.71 7.015 × 10−1 7.015 × 10−1 1.262 × 10−1 8.71 7.015 × 10−1 7.014 × 10−1 1.264 × 10−1

6 2936.67 31.24 3 8.15 7.007 × 10−1 7.007 × 10−1 1.347 × 10−1 8.15 7.007 × 10−1 7.006 × 10−1 1.350 × 10−1

7 2820 28.2 3 8.05 7.005 × 10−1 7.005 × 10−1 1.364 × 10−1 8.05 7.005 × 10−1 7.004 × 10−1 1.367 × 10−1

8 2640 55 4 8.52 6.977 × 10−1 6.977 × 10−1 1.627 × 10−1 8.52 6.977 × 10−1 6.976 × 10−1 1.630 × 10−1

9 2423.52 73.44 6 8.73 6.921 × 10−1 6.921 × 10−1 2.051 × 10−1 8.73 6.921 × 10−1 6.920 × 10−1 2.053 × 10−1

10 2407.5 160.5 4 9.20 6.990 × 10−1 6.990 × 10−1 1.507 × 10−1 9.20 6.991 × 10−1 6.989 × 10−1 1.509 × 10−1

11 1057.2 5.12 2 6.12 7.026 × 10−1 7.026 × 10−1 1.133 × 10−1 6.12 7.025 × 10−1 7.024 × 10−1 1.145 × 10−1

12 1043.5 20.87 5 7.24 6.894 × 10−1 6.894 × 10−1 2.222 × 10−1 7.24 6.894 × 10−1 6.893 × 10−1 2.226 × 10−1

13 1038 86.5 7 8.30 6.874 × 10−1 6.874 × 10−1 2.346 × 10−1 8.30 6.875 × 10−1 6.873 × 10−1 2.347 × 10−1

14 883.2 110.4 5 8.28 6.936 × 10−1 6.936 × 10−1 1.944 × 10−1 8.28 6.938 × 10−1 6.934 × 10−1 1.945 × 10−1

15 854.4 71.2 3 7.87 7.002 × 10−1 7.002 × 10−1 1.397 × 10−1 7.87 7.003 × 10−1 7.000 × 10−1 1.399 × 10−1

16 810 45 3 7.51 6.995 × 10−1 6.995 × 10−1 1.463 × 10−1 7.51 6.996 × 10−1 6.994 × 10−1 1.465 × 10−1

17 703.68 14.66 4 6.68 6.917 × 10−1 6.917 × 10−1 2.075 × 10−1 6.68 6.917 × 10−1 6.916 × 10−1 2.081 × 10−1

18 594 49.5 6 7.49 6.866 × 10−1 6.866 × 10−1 2.391 × 10−1 7.49 6.867 × 10−1 6.865 × 10−1 2.393 × 10−1

19 570 47.5 5 7.39 6.902 × 10−1 6.902 × 10−1 2.177 × 10−1 7.39 6.902 × 10−1 6.900 × 10−1 2.178 × 10−1

20 467.6 58.45 4 7.36 6.944 × 10−1 6.944 × 10−1 1.885 × 10−1 7.36 6.946 × 10−1 6.942 × 10−1 1.887 × 10−1

21 463.6 24.4 4 6.74 6.920 × 10−1 6.920 × 10−1 2.056 × 10−1 6.74 6.920 × 10−1 6.919 × 10−1 2.058 × 10−1

22 455 65 4 7.41 6.946 × 10−1 6.946 × 10−1 1.871 × 10−1 7.41 6.948 × 10−1 6.944 × 10−1 1.873 × 10−1

23 432.5 86.5 4 7.57 6.952 × 10−1 6.952 × 10−1 1.830 × 10−1 7.57 6.954 × 10−1 6.949 × 10−1 1.832 × 10−1

24 398.4 33.2 3 6.80 6.978 × 10−1 6.978 × 10−1 1.616 × 10−1 6.80 6.979 × 10−1 6.977 × 10−1 1.618 × 10−1

25 370.5 37.05 1 6.74 7.071 × 10−1 7.071 × 10−1 0.000 × 10−0 6.74 7.071 × 10−1 7.071 × 10−1 2.570 × 10−4

26 338.4 33.84 3 6.70 6.975 × 10−1 6.975 × 10−1 1.640 × 10−1 6.70 6.975 × 10−1 6.975 × 10−1 1.642 × 10−1

27 336.12 84.03 1 7.25 7.071 × 10−1 7.071 × 10−1 0.000 × 100 7.25 7.071 × 10−1 7.071 × 10−1 2.860 × 10−4

28 313.6 78.4 6 7.37 6.859 × 10−1 6.859 × 10−1 2.431 × 10−1 7.37 6.859 × 10−1 6.859 × 10−1 2.433 × 10−1

29 268.68 134.34 7 7.67 6.840 × 10−1 6.840 × 10−1 2.537 × 10−1 7.67 6.840 × 10−1 6.840 × 10−1 2.539 × 10−1

30 224 56 1 6.67 7.071 × 10−1 7.071 × 10−1 0.000 × 100 6.67 7.071 × 10−1 7.071 × 10−1 2.880 × 10−4

31 216 72 5 7.01 6.882 × 10−1 6.882 × 10−1 2.295 × 10−1 7.01 6.882 × 10−1 6.882 × 10−1 2.297 × 10−1

32 212.08 53.02 2 6.63 7.032 × 10−1 7.032 × 10−1 1.045 × 10−1 6.63 7.032 × 10−1 7.032 × 10−1 1.048 × 10−1

33 197.92 49.48 5 6.69 6.864 × 10−1 6.864 × 10−1 2.404 × 10−1 6.69 6.864 × 10−1 6.864 × 10−1 2.406 × 10−1

34 190.89 7.07 7 5.46 6.606 × 10−1 6.606 × 10−1 3.567 × 10−1 5.46 6.606 × 10−1 6.606 × 10−1 3.595 × 10−1

35 181.8 60.6 3 6.67 6.975 × 10−1 6.975 × 10−1 1.647 × 10−1 6.67 6.975 × 10−1 6.975 × 10−1 1.649 × 10−1

36 163.28 40.82 3 6.32 6.963 × 10−1 6.963 × 10−1 1.738 × 10−1 6.32 6.963 × 10−1 6.963 × 10−1 1.740 × 10−1
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Table 1. Cont.

Item Parameter
LINGO CCM

Objective Value Decision Variable Objective Value Decision Variable

ADU AUC LT Score ADU Weight AUC Weight LT Weight Score ADU Weight AUC Weight LT Weight

37 150 30 5 6.16 6.826 × 10−1 6.826 × 10−1 2.612 × 10−1 6.16 6.826 × 10−1 6.826 × 10−1 2.613 × 10−1

38 134.8 67.4 3 6.54 6.971 × 10−1 6.971 × 10−1 1.680 × 10−1 6.54 6.971 × 10−1 6.971 × 10−1 1.683 × 10−1

39 119.2 59.6 5 6.47 6.849 × 10−1 6.849 × 10−1 2.486 × 10−1 6.47 6.849 × 10−1 6.849 × 10−1 2.488 × 10−1

40 103.36 51.68 6 6.33 6.782 × 10−1 6.782 × 10−1 2.831 × 10−1 6.33 6.782 × 10−1 6.782 × 10−1 2.833 × 10−1

41 79.2 19.8 2 5.25 7.009 × 10−1 7.009 × 10−1 1.321 × 10−1 5.25 7.009 × 10−1 7.009 × 10−1 1.323 × 10−1

42 75.4 37.7 2 5.67 7.018 × 10−1 7.018 × 10−1 1.223 × 10−1 5.66 7.018 × 10−1 7.018 × 10−1 1.227 × 10−1

43 59.78 29.89 5 5.53 6.765 × 10−1 6.765 × 10−1 2.908 × 10−1 5.53 6.765 × 10−1 6.765 × 10−1 2.910 × 10−1

44 48.3 48.3 3 5.59 6.933 × 10−1 6.933 × 10−1 1.964 × 10−1 5.59 6.933 × 10−1 6.933 × 10−1 2.000 × 10−1

45 34.4 34.4 7 5.37 6.590 × 10−1 6.590 × 10−1 3.625 × 10−1 5.37 6.590 × 10−1 6.590 × 10−1 3.639 × 10−1

46 28.8 28.8 3 4.88 6.889 × 10−1 6.889 × 10−1 2.252 × 10−1 4.88 6.889 × 10−1 6.889 × 10−1 2.291 × 10−1

47 25.38 8.46 5 4.12 6.510 × 10−1 6.510 × 10−1 3.903 × 10−1 4.12 6.510 × 10−1 6.510 × 10−1 3.931 × 10−1

Table 2. Comparison of ABC classifications using the optimal weighted product model (WPM), Zhou and Fan (ZF) model, Ng model, and Hadi-Vencheh (HV) model inventory scores.

Item Optimal Score (CCM) ADU AUC LT WPM Model (CCM) WPM Model (LINGO) HV model Ng Model ZF Model

2 10.0222 5670 210 5 A A A A A

10 9.20134 2407.5 160.5 4 A A A A A

1 8.92424 5840.64 49.92 2 A A A A A

9 8.73406 2423.52 73.44 6 A A A A A

5 8.70633 3478.8 57.98 3 A A A A B

8 8.51791 2640 55 4 A A B B B

3 8.38316 5037.12 23.76 4 A A A A A

4 8.33829 4769.56 27.73 1 A A A A C

13 8.29587 1038 86.5 7 A A A A A

14 8.28055 883.2 110.4 5 A A A B A

6 8.15406 2936.67 31.24 3 B B B A C

7 8.05394 2820 28.2 3 B B B B C

15 7.86615 854.4 71.2 3 B B C C C

29 7.67051 268.68 134.34 7 B B A A A

23 7.57315 432.5 86.5 4 B B B B B

16 7.50776 810 45 3 B B C C C
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Table 2. Cont.

Item Optimal Score (CCM) ADU AUC LT WPM Model (CCM) WPM Model (LINGO) HV model Ng Model ZF Model

18 7.49247 594 49.5 6 B B B B A

22 7.40991 455 65 4 B B C C B

19 7.39402 570 47.5 5 B B B B B

28 7.36954 313.6 78.4 6 B B B B A

20 7.35514 467.6 58.45 4 B B C C B

27 7.24598 336.12 84.03 1 B B C C C

12 7.24393 1043.5 20.87 5 B B B B B

31 7.01167 216 72 5 B B B B B

24 6.79949 398.4 33.2 3 C C C C C

21 6.74367 463.6 24.4 4 C C C C C

25 6.73618 370.5 37.05 1 C C C C C

26 6.69892 338.4 33.84 3 C C C C C

33 6.69389 197.92 49.48 5 C C B B B

17 6.67996 703.68 14.66 4 C C C C C

30 6.67213 224 56 1 C C C C C

35 6.67164 181.8 60.6 3 C C C C C

32 6.63135 212.08 53.02 2 C C C C C

38 6.53696 134.8 67.4 3 C C C C C

39 6.47356 119.2 59.6 5 C C B B B

40 6.32774 103.36 51.68 6 C C B B B

36 6.32156 163.28 40.82 3 C C C C C

37 6.16169 150 30 5 C C C C B

11 6.11791 1057.2 5.12 2 C C C C C

42 5.66488 75.4 37.7 2 C C C C C

44 5.59151 48.3 48.3 3 C C C C C

43 5.5337 59.78 29.89 5 C C C C C

34 5.45517 190.89 7.07 7 C C B B B

45 5.36813 34.4 34.4 7 C C B B B

41 5.24818 79.2 19.8 2 C C C C C

46 4.87682 28.8 28.8 3 C C C C C

47 4.12265 25.38 8.46 5 C C C C C
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Table 3. The 10 items reclassified using the WPM.

Item ADU AUC LT WPM HV Model Ng Model ZF Model

8 2640 55 4 A B B B

29 268.68 134.34 7 B A A A

15 854.4 71.2 3 B C C C

16 810 45 3 B C C C

27 336.12 84.03 1 B C C C

33 197.92 49.48 5 C B B B

39 119.2 59.6 5 C B B B

40 103.36 51.68 6 C B B B

34 190.89 7.07 7 C B B B

45 34.4 34.4 7 C B B B

4.2. Elapsed Runtime and Iterations

The efficiency of solving a problem is also an important criterion for algorithm comparisons;
a good algorithm should solve problems within an acceptable time. This section compares the number
of iterations of implementations of the CCM and LINGO to solve the WPM of multi-criteria ABC
classification. The main difference between implementing the CCM algorithm and the LINGO solver
was that we did not need to specify a starting point or moving step size. When the solution region is a
polyhedron, determining the first basic solution (the starting point) would be vital, as the local optimal
solution is usually located near the basic feasible solution (BFS); the quality of the solution is highly
related to the location of the BFS. An unsuitable starting point could lead to a worse local optimal
solution. The search region of an algorithm is related to the step size of the line search, and the search
region decides whether a feasible solution can be found. The step size also determines the quality of
the final solution. A large step size within a line search could jump over the optimal solution, whereas
smaller search distances could trap in and require a significant amount of time to reach the local
optimal solution. A good starting point and step size for a search can help researchers find acceptable
solutions in less time. Table 4 illustrates the process of tuning the step size in order to reach a feasible
solution. The CCM algorithm provides more flexibility than other solvers from commercial package
software, which presents a higher probability of finding better solutions. In this study, using CCM to
solve the problem required more time to achieve the local optimal solution than using LINGO because
the step size of the line search determined whether the CCM could find feasible solutions. In this
study, LINGO took mere seconds to find a feasible solution, whereas CCM took more time—sometimes
nearly a minute—to find a solution.

Table 4. Tuning the step size to reach a feasible solution.

Item 4

Step size
J∑

j=1
w2

j

Item 5

Step size
J∑

j=1
w2

j

0.0003 1.000009 0.00045 1.000062

0.000295 0.999993 0.000448 1.000059

0.000298 1.000003 0.00044 1.000046

0.000297 1 0.00041 0.999997

0.000413 1.000002

0.000412 1
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When looking at the number of iterations each algorithm needs, CCM requires more iterations
to solve the problem, even with a larger step size. As presented in Table 5, LINGO can solve most
problems in only 60 iterations, whereas CCM might need approximately one thousand iterations.
In conclusion, LINGO is more efficient than CCM in this study, which contradicts the results of the
previous study, which stated that CCM can solve nonlinear problems more quickly than other software
packages. The result of the current study might stem from the fact that the problem in this study is too
simple to demonstrate the power of CCM.

Table 5. The number of iteration for LINGO and the canonical coordinates method (CCM) to find the
local optimal solution.

Item LINGO CCM Item LINGO CCM Item LINGO CCM Item LINGO CCM

1 60 1720 13 60 1505 25 35 2482 37 60 1367

2 60 1866 14 55 1852 26 60 1646 38 50 2369

3 60 1207 15 60 1911 27 35 3213 39 50 1888

4 35 1867 16 59 1673 28 55 1741 40 50 1657

5 60 1627 17 60 1090 29 50 2024 41 58 1903

6 60 1419 18 59 1377 30 35 3045 42 50 2452

7 60 1388 19 57 1456 31 55 1900 43 55 1496

8 60 1495 20 60 1729 32 55 2397 44 75 555

9 58 1428 21 60 1287 33 55 1645 45 55 215

10 57 1995 22 55 1802 34 60 1158 46 75 492

11 60 1086 23 55 2009 35 50 2223 47 60 2712

12 60 1105 24 60 1612 36 55 1932

5. Conclusions

In this paper, we presented an extended version of the HV model to improve multi-criteria ABC
inventory classification. Our proposed nonlinear weighted product model (WPM) incorporates multiple
criteria with different measurement units without converting the performance of each inventory item
in terms of each criterion into a normalized attribute value. This represents an improvement over the
model proposed by Hadi-Vencheh. The WPM could also be viewed as providing a more reasonable
classification for inventory items from the illustrated example, presented and used to compare our
model with the HV model. In this paper, we also presented the improved CCM algorithm for solving the
WPM, in which nonconvex nonlinearity was present in both the objective function and the constraints.
The strategy presented here involved greatly reducing the steps in choosing m variables among (m+ n)
variables, such that the corresponding m×m Jacobian matrix was nonsingular. Using the improved
algorithm, we applied Gaussian elimination to the original matrix to determine which m variables to
choose. Our second improvement was to remove solving the nonlinear differential equations system,
which occurs in the line search method of the CCM algorithm. This paper demonstrates an efficient
algorithm for solving nonlinear programming problems, in which the feasible solution set does not
have to be convex. The practical implication of this study is to further improve the efficient nonlinear
optimization solver based on the CCM by optimizing the quality of existing solutions, thus improving
time and space efficiency.

Future research should continue to investigate the feasibility of implementing this proposed CCM
algorithm in discrete domain issues for engineering applications in order to decide if the algorithm
could be superior to off-the-shelf software. Future studies could apply the CCM to other nonlinear
programs that arise in practice. For instance, autonomous vehicles represent one of many developments
that will influence future mobility needs and planning needs. Traffic assignment models seek the same
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objective as route guidance strategies and provide turning points with information for implementing
route guidance control strategies. Faster algorithms developed specifically for traffic assignment can
be adapted and used in vehicle route guidance systems. The minimization of total travel time is a
common goal, both globally and from a traffic administration perspective. The current road network
manages more traffic by achieving system optimization. Some researchers have focused their efforts
on dynamic traffic assignment because of the unrealistic assumptions of static traffic assignment.
Difficulties encountered by the dynamic model result from route calculation being related to travel time
on an arc, which is also dependent on the traffic along the route. It is difficult to solve such relationships
analytically under a dynamic circumstance. In response to the difficulties of dynamic traffic modeling,
Jahn et al. [19] therefore developed a model in which flow represents the traffic patterns in a steady state,
and the results are the boundary for the total travel time. However, the algorithm by Jahn et al. [19]
only solves problems with convex, nonlinear objective functions and linear constraints. To avoid this
restriction, future studies could adopt the CCM to solve nonlinear optimization models and provide
strategies for route guidance.
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