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Abstract: The attention to environmental impacts of cement production has grown fast in recent
decades. The cement industry is a significant greenhouse gases emitter mainly due to the calcinations
of raw materials and the combustions of fuels. This paper investigates on the environmental
performances of cement production and on the identification of factors driving emissions. For this
purpose, a sample of 193 different recipes of gray cement produced in Italy from 2014 to 2019 according
to the European standard EN 197-1. This paper identifies the consumption impact categories (e.g.,
fossil fuels, renewable and non-renewable secondary fuels) that explain the assessment of the Global
Warming Potential, one of the most crucial impacts of cement production. Having regard to the overall
examined dataset and each cement type, a set of predictive models is implemented and evaluated.
A similar approach has been adopted to produce accurate predictive models for further environmental
impact categories that quantify emissions to air. The obtained results provide important information
that can support cement producers to develop low-impacting cement recipes.
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1. Introduction

In recent years, the interest for environmental protection has grown faster, becoming an important
criterion for public policy in social and political contexts [1,2]. The most pursued objective is to
reduce emissions of greenhouse gases (e.g., carbon dioxide, nitrous oxide and methane), which are
responsible for the greenhouse effect [3]. In particular, the cement industry contributes about 5%
of global anthropogenic CO2 emissions excluding land-use change [4,5], as the production of the
binder is a highly energy-intensive and emitting process. Calcination of raw materials for the cement
production (e.g., limestone, clay, calcareous marl and other clay-like materials) and burning (fossil)
fuels to maintain high temperature in the kiln are the processes with highest environmental impact.
The former is a chemical emission, the latter a physical emission. Indeed, raw materials are heated
inside large rotating furnaces at 1400 ◦C to form a solid substance called clinker [6]. During this process,
chemical emissions mainly come from calcium carbonate (CaCO3) and magnesium carbonate (MgCO3)
calcination according to Equations (1) and (2) [7,8]:

CaCO3(s) + heat→ CaO(s) + CO2 (g) (1)

MgCO3(s) + heat→MgO(s) + CO2 (g) (2)

Clinker is then ground or milled with gypsum and other constituents (e.g., products, raw materials,
additives, recycled waste) to produce cement [9]. According to [9], 5 main types of cement (CEM I to
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CEM V) and 27 products in the family of common cements are defined. They differ for composition
(proportion by mass) of the main constituents, but all contain clinker. Therefore, its production
affects the environmental performances of the final product and cannot be overlooked in this study.
The chemical process described in Equations (1) and (2) implies more than 60% of total CO2 emissions
due to clinker production, as confirmed by the mass balance published in the last Environmental
Product Declaration (EPD) of the Italian cement production [10]. Chemical emissions are not reducible,
but physical emissions resulting from fuel combustion for kiln firing can be managed and reduced
using alternative/waste fuels [11] and/or by adopting energy-saving technologies [12]. However,
these changes in production processes have to turn out in agreement with the required quality of the
obtained products, related to construction or industrial uses [13], or with some special performances
to obtain [14–16]. Moreover, in order to reduce the impacts of cement production, in the last decade
the content of clinker in cement has decreased [17] using supplementary cementitious materials (e.g.,
gypsum, ground limestone, coal fly ash or blast furnace slag) [18–20]. Therefore, the cement industry
is making efforts to reduce its environmental impacts in terms of greenhouse gases that reflect on
other environmental performances. The standard EN 15804 “Sustainability of construction works,
environmental product declarations, core rules for the product category of construction products” [21]
defines the core rules for the product category of construction Products in order to assess the life cycle
impact and develop a Type III environmental declaration (i.e., EPD) for any construction product and
construction service [22].

According to [21], different parameters describe the environmental performances of a product,
such as environmental impacts, resource use, waste categories, and output flows [23–27]. In the
literature, several studies assessed the impacts of cement production considering its upstream processes
(i.e., production of commodities, raw materials, transport to the factory plant, production process) [28].
The obtained results allow the cement industry to identify the best strategies to reduce its environmental
impact. More in detail, the authors have Life Cycle Analysis (LCA) results of the Italian cement
production from 2014 to 2019; this data refers to the environmental performances of one of the most
important cement industries in Europe with over 19 million of Mg produced in 2019 [29]. The impacts
of more than 190 cement powders produced according to [9] have been assessed with a “from cradle to
gate” boundary approach using the database Ecoinvent 2.2 (Version 2.2, Ecoinvent, Zurich, Switzerland,
2007) and the software package SimaPro 8.0.5.13 (Version 8.0.5.13, Pré Consultants: Amersfoort,
The Netherlands, 2016) [30]. 15 different impact categories were assessed to describe the characteristics
of each cement powder recipe.

The goal of this work is to identify among these features the most relevant variables to predict
the behavior of Global Warming Potential (GWP). To obtain these results, different models have been
implemented, by means of linear regression and variable selection procedures, more specifically,
the Akaike Information Criterion. Analogous models are developed also for the other impact categories
that quantify emissions to air. A comparative analysis shows that the most important impact category
to control GWP and other emissions is represented by the Abiotic depletion-fossil fuels (ADPf).

2. Data and Methods

After a quick introduction of the available dataset, this section provides the reader with the key
concepts to investigate the behavior of the Global Warming Potential (GWP) and its connections with
the production parameters, as well as a short summary of the statistical methods here employed.

The examined impact categories (ICs) comply with the standard EN 15804 [21]; Table 1 lists their
name and units of measure.
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Table 1. Assessed impact categories.

Impact Category IC Unit

Global Warming Potential GWP kg CO2 eq
Ozone layer Depletion Potential ODP kg CFC-11 eq

Acidification Potential AP kg SO2 eq
Eutrophication Potential EP kg PO4 eq

Photochemical oxidation Potential POCP kg C2H4 eq
Abiotic depletion-elements ADPe kg Sb eq

Abiotic depletion-fossil fuels ADPf MJ
Total Use of Renewable Primary Energy TRPE MJ

Total Use of non-Renewable Primary energy TNRPE MJ
Use of secondary raw materials SRM kg
Non-renewable secondary fuels nonRSF MJ

Renewable secondary fuels RSF MJ
Water depletion Water m3

Electricity El kWh
Particulates P kg PTS

ICs in Table 1 are available for a sample of 193 different recipes to produce 1 kg of gray cement,
which can be classified into four types of cement (from CEM I to CEM IV according to [9]):

• CEM I (i.e., Portland cement). It is the most impacting type because it contains at least 95% by
mass of clinker and gypsum as minor additional constituent to control the “setting of cement”.

• CEM II (i.e., Portland composite cement). It is composed of clinker with different proportion
by mass (65–94%), main constituents (e.g., bastfurnace slag, silica fume, pozzolana, fly ash,
burnt shale or limestone), and gypsum as minor additional constituent. In the examined panel,
CEM II A-LL and CEM II-BLL (i.e., portland limestone cements) are taken into account. The former
has 80–94% clinker, 6–20% limestone and 0–5% gypsum by mass, the latter has 65–79% clinker,
21–35% limestone and 0–5% gypsum by mass:

• CEM III (i.e., blastfurnace cement) is composed of 35–64% clinker, 36–65% blastfurnace slag, 0–5%
gypsum by mass; and

• CEM IV (i.e., pozzolanic cement). It is composed of clinker and pozzolanic constituents (i.e.,
bastfurnace slag, silica fume, pozzolana, and fly ash). Two types of CEM IV are in the panel:
CEM IV/A (65–89% clinker, 11–35% pozzolanic materials, 0–5% gypsum) and CEM IV/B (45–64%
clinker, 11–35% pozzolanic materials, 0–5% gypsum).

A preliminary analysis on the correlation matrix, performed to study relations between variables,
is given in Figure 1. Positive and negative correlations are displayed in blue and red color, respectively,
while the intensity of the color of each circle and its size is proportional to the absolute value of
the corresponding correlation coefficient. Figure 1 shows that ODP, ADPf and TNRPE are pairwise
perfectly correlated, that is, the corresponding correlation coefficient is equal to 1. This implies that
these variables match deterministically, up to a multiplicative factor. For this reason, ODP and TNRPE
are discarded in the further analysis. The remaining ICs have been used as independent variables and
split into two groups, “Emissions” and “Consumption” (Table 2).

Table 2. Classes of ICs.

Emission Consumption

GWP, AP, EP, POCP, P ADPe, ADPf, TRPE, SRM, nonRSF, RSF, Water, El
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This work will focus on the following questions:

1. Which ones are the most relevant variables among the Consumption ICs in order to explain the
behavior of GWP?

2. Are different variables important to predict GWP for the four types of cement?
3. Are the relevant variables to predict GWP also useful to predict other Emission ICs?

The answer to the first question is given by fitting and evaluating a linear regression model linking
GWP to the Consumption ICs, (Equation (3)):

GWP = βADPe ADPe + βADPf ADPf + βTRPE TRPE + βSRM SRM + βnonRSF nonRSF + βRSF RSF +

βWater Water + βEl El + ε
(3)

where ε is the so-called noise, a vector of size n = 193 of independent and identically distributed random
variables, while (βADPe, βADPf, βTRPE, βSRM, βnonRSF, βRSF, βWater, βEl) is the vector of parameters to be
estimated [31]. In statistics, linear regression is a widely used approach to establish the relationship
between the so-called response (in our case GWP for Sections 3.2 and 3.3, the other Emission ICs
in Section 3.4) and a set of explanatory variables (here the Consumption ICs) [32]. The relationship
between the response and the explanatory variables is modeled by means of a linear predictor function
whose unknown model parameters are estimated from the data. In this work, all the linear models are
fit by means of the so-called least squares approach, which minimizes the sum of the squared residuals
(the differences between the observed value and the one predicted by the model. In our case, solving the
regression problem produces a vector of estimators (β̂ADPe, β̂ADP f , β̂TRPE, β̂SRM, β̂nSRM, β̂SRM, β̂Water, β̂El).
The most relevant estimators can be then selected by means of the so-called Akaike Information
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Criterion (AIC) [32]. This procedure results in a model where only statistically significant variables
in terms of the highest variances are selected, while the others are iteratively discarded. A model
validation is then performed by means of a 10-fold cross validation procedure [31] to assess and
compare the accuracy of the two models. Cross validation evaluates the accuracy of a predictive
model, estimating its ability to predict new data. In the k-fold cross validation, the original dataset
is randomly partitioned into k subsamples of equal size. Then, one subsample (the validation data)
is used to test the model obtained by using the remaining k-1 subsamples (the so-called training
data). This procedure is then repeated k times and averaged, so that all the observations are used
for both validation and testing. The measure of the accuracy of each method is provided by the root
mean square error, the risk function which measures the square root of the average squared difference
between observations and the estimated values [31].

As far as the second question is concerned, it is now investigated if different types of cement
influence GWP in different ways and, consequently, if the statistical model’s accuracy can be improved
by fitting a separate regression model for each class. These regression models can be expressed as
Equation (4):

GWP = βADPe;i ADPei + βADPf;i ADPfi + βTRPE;i TRPEi + βSRM;i SRMi + βnonRSF;i nonRSFi + βRSF;i

RSFi + βWater;i Wateri + βEl;i Eli + εi
(4)

where i = I, II, III, IV and solving the regression model produces estimates for the set of parameters
(βADPe;i, βADP f ;i, βTRPE;i, βSRM;i, βnonRSF;i, βWater;i, βEl;i), i = I, . . . , IV. It is also relevant to check if some
types of cement behave differently in terms of the regression models and relevant variables. Again,
10-fold cross validation procedures [31] are used to compare the results and to verify how accurate
each predictive model is.

Regarding the third question, a multiple linear regression using the full set of Consumption ICs
is performed and used to evaluate two alternative models. The first alternative model uses as input
variables only the ones selected for GWP. The other alternative model develops different variables for
each Emission IC, by means of the AIC criterion. If sufficiently accurate, the first model would allow
the producer to focus on the same subset of variables to control jointly all the emissions. If it is not the
case, the second model establishes which Consumption ICs are relevant to predict other emissions than
GWP. Also in this case, a 10-fold cross validation procedure has been applied to compare the accuracy
of the models. The statistical analysis has been performed within the R Cran environment [33] and the
support of additional packages [34,35].

3. Results

In this section, details concerning the performed data analysis are presented and discussed to
answer the questions introduced in Section 2. In particular, Section 3.1 includes some preliminary
exploratory analysis. Section 3.2 concentrates on Question 1, by studying and comparing two models to
predict GWP, the first model obtained by fitting a linear regression, and the second model by selecting
the most relevant variables by means of the AIC criterion. Section 3.3 is concerned with Question 2.
For each type of cement, a linear regression is fit and then the most important Consumption ICs are
selected by the AIC criterion. Analogies and differences shown by the models here developed and the
ones in Section 3.1 are then investigated. Section 3.4 is focused on the other Emission ICs and, then,
on Question 3. For each type of Cement and for each Emission, three different models are studied and
then compared. The first model is a linear regression which uses all the available Consumption ICs
to predict each emission. The second model is a linear regression where only the relevant variables
to GWP established in Section 3.2 are used. The third model selects the relevant variables for each
Emission by the AIC criterion. The three models are then examined and compared to establish whether
the same Consumption ICs can be used to predict accurately all the Emissions or not.
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3.1. Exploratory Analysis

First, it is investigated if there is some relation linking GWP with the other Emission ICs, and it
can be observed that all the Emission variables are positively correlated (i.e., green lines) with GWP,
as shown in Table 3 and described in Figure 2.

Table 3. Correlation of GWP with Emission ICs.

IC AP EP POCP P

Correlation coefficients 0.575 0.703 0.381 0.529
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Table 4 presents the correlation coefficients of GWP with the Consumption variables, presented in
Figure 4.

Table 4. Correlation of GWP with Consumption ICs.

IC ADPe ADPf TRPE SRM NRSF RSF Water El

Correlation coefficients −0.018 0.706 −0.387 −0.372 −0.213 −0.152 0.221 0.757

Having regard to the correlation coefficients, Figure 2 shows that all Emission ICs are
positively correlated.

Figure 3 shows the correlation between GWP and the Consumption ICs. GWP is strongly positively
correlated to ADPf and El and mildly negatively correlated to TRP and SRM. The results about GWP,
El and ADPf comply with the physical meaning of these ICs. Indeed, the more fossil fuels and electricity
are consumed, more greenhouse gases are emitted. On the other hand, the use of secondary fuels (both
renewable and non-renewable) reduces the consumption of fossil fuels. Correlation between ADPe
and water is due to the upstream processes (i.e., quarry extraction) of the cement production.
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Therefore, the most relevant variables among the Consumption ICs that could explain the
behavior of GWP are electricity and fossil fuels consumption. This complies with the Italian energy
mix, whose main energy consumption is driven by petroleum and other liquids and natural gas [36].
On the other hand, the correlations between GWP and other Emission ICs (Table 3) and GWP and
the Consumption ICs (Table 4) justify the international approach to protect the environment reducing
greenhouse gas emissions. At this purpose, in 2003 the European Parliament and the Council established
the Emissions Trading Scheme [37] to limit or reduce greenhouse gas emissions.

Figure 4 provides the reader with explicit correlation coefficients (in the top-right cells with
respect to the main diagonal), an estimation of the density function by a histogram and a kernel
density estimation (KDE) (in the main diagonal) and, finally, scatterplots with fitted nonparametric
regression lines to stress the relationship between pairs of different variables (in the bottom-left cells
with respect to the main diagonal). In the first column, each plot displays values for GWP paired
with all the Consumption ICs, while in the first row the correlation coefficients between GWP and the
Consumption ICs are listed.

In Figure 4 both x- and y- axis labels refer to the corresponding iCs listed in the main diagonal;
their units comply with those listed in Table 1. Therefore, GWP values obtained in the LCA range
between 0.6 and 1.0 kg CO2 eq./1 kg of produced cement; ADPe ranges between 1.0 × 10−7 and
5.0 × 10−7 kg Sb eq./1 kg of produced cement.
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3.2. Linear Regression and Variable Selection for GWP

In this Section two predictive models for GWP are fit. The first model is a linear regression where
GWP is the scalar response and the Consumption ICs are the input variables. All variables have been
preliminarily normalized to simplify the interpretation. The estimated coefficients are listed in Table 5,
together with the related standard deviations (St. dev.) and the corresponding significance for the
p-values associated to the significance test of the model.

Table 5. Linear regression summary (GWP vs. Consumption ICs).

ICs
Linear Regression (GWP vs. Consumption ICs)

Coefficients St. Dev. p-Value

ADPe −0.127 0.038 **
ADPf 1.503 0.077 ***
TRPE −0.082 0.026 **
SRM 0.532 0.025 **
NRSF 0.531 0.052 ***
RSF 0.563 0.039 ***

Water −0.017 0.041
El −0.006 0.043

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01) and “ ” otherwise.

To develop the second model, an AIC backward selection procedure is then performed on the
linear regression, to find the best subset of Consumption ICs to accurately predict GWP, leading to the
model described in Table 6.

Table 6. Linear regression model summary (after variable selection).

ICs
Linear Regression (GWP vs. Selected Consumption ICs)

Coefficients St. Dev. p-Value

ADPe −0.140 0.022 ***
ADPf 1.486 0.044 ***
TRPE −0.085 0.025 ***
SRM 0.527 0.024 **
NRSF 0.527 0.040 ***
RSF 0.558 0.037 ***

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01).

Then, a 10-fold cross-validation procedure is performed to compare the two models. The root
mean square errors (RMSE) are computed by Equations (5) and (6):

RMSElin = ( 1
n

n∑
i=1

(GWPi − β̂
lin
ADPeADPei − β̂

lin
ADP f ADP fi − β̂lin

TRPETRPEi − β̂
lin
SRMSRMi

−β̂lin
NRSFNRSFi − β̂

lin
RSFRSFi − β̂

lin
WaterWateri − β̂

lin
ELELi)

2
)

1/2
(5)

RMSEAIC = ( 1
n

n∑
i=1

(GWPi − β̂
AIC
ADPeADPei − β̂

AIC
ADP f ADP fi − β̂AIC

TRPETRPEi − β̂
AIC
SRMSRMi

−β̂AIC
NRSFNRSFi − β̂

AIC
RSFRSFi − β̂

AIC
WaterWateri − β̂

AIC
EL ELi)

2
)

1/2
(6)

for the linear and AIC model, respectively. The sample size n = 193 is the number of observations,

while
(
β̂lin

ADPe, β̂
lin
ADP f , β̂lin

TRPE, β̂lin
SRM, β̂lin

NRSF, β̂lin
RSF, β̂lin

Water, β̂
lin
E

)
, and

(
β̂AIC

ADPe, β̂
AIC
ADP f , β̂AIC

TRPE, β̂AIC
SRM, β̂AIC

NRSF, β̂AIC
RSF

)
are the estimated parameters with the linear model and then selected by the AIC criterion, respectively.
Recall that the RMSE is a risk function aimed to measure the discrepancy between the observations



Appl. Sci. 2020, 10, 8212 10 of 25

and the corresponding estimated values. In Table 7 RMSElin is higher than RMSEAIC, thus the variable
reduction produces a more accurate model.

Table 7. Comparison of RMSE between the two models.

Model RMSE

Linear 0.313
AIC 0.305

Finally, Figure 5 describes the size of each regression slope coefficient, after the variable selection.
The highest contribution to GWP is given by ADPf. This result complies with the release of carbon
dioxide into the atmosphere by burning of fossil fuels [38–40].
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Figure 5. Size of the coefficients (AIC selected components—absolute values).

In answer to Question 1, the most relevant variables among the Consumption ICs to predict GWP
are ADPf, NRSF and RSF. The energy-intensive industry of cement manufacturing can motivate this
variable selection: all these ICs quantify the energy, mainly fossil but also alternative, spent in the process.
This result complies with the efforts to implement in the cement sector different management systems,
process-integrated techniques and end-of-pipe measures identified as Best Available Techniques (BAT)
to have environmental benefits (e.g., thermal energy optimization techniques in the kiln system;
reduction of electrical energy use; recovery of excess heat from the process and cogeneration of steam
and electrical power) [41].

3.3. Linear Regression and Variable Selection for Each Type of Cement

The different types of cement are now studied separately to evaluate their impact on GWP.
Figure 6, which contains the scatterplots related to GWP and the Consumption ICs, shows that the
points associated to the class CEM I (in blue) are isolated in the GWP scatterplots with respect to the
data belonging to the other types. Moreover, the environmental impacts of CEM I are higher than
other investigated cement types: both the qualitative and the quantitative observed trends suggest
investigating whether predictive models built separately for each class (type of cement) could achieve
more accurate predictions for GWP. Furthermore, it is of extreme interest to check if different variables
result to be important for each separate class with respect to the ones selected for the whole dataset.
Figure 6 contains a matrix of scatterplots used to visualize the relationship between pairs of variables,
all listed in the main diagonal. For each scatterplot, the variables in the x-axis (y-axis, respectively) can
be found in the entry belonging to the main diagonal in the same column (row, respectively). The units
of each axis label are listed in Table 1.
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The dimensions of each class are given in Table 8.

Table 8. Dimensions of datasets related to each type of cement.

Cement Type Dimension of Classes

CEM I 44
CEM II 84
CEM III 4
CEM IV 61

Due to the small number of observations, CEM III is filtered out.
For each class, a linear regression is fit, where GWP corresponds to the scalar response and the

ICs to the explanatory variables. The estimated regression coefficients for CEM I, II, and IV are listed
in Tables 9–11, respectively.

Table 9. Linear regression summary (GWP vs. Consumption ICs)—CEM I.

ICs
Linear Regression (GWP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 0.217 0.115
ADPf 0.701 0.128 ***
TRPE 0.105 0.115
SRM 0.046 0.111
NRSF 0.090 0.079
RSF 0.181 0.061 **

Water −0.165 0.092 .
El 0.052 0.050

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “.” (p-value ≤ 0.1), and “ ” otherwise.

Table 10. Linear regression summary (GWP vs. Consumption ICs)—CEM II.

ICs
Linear Regression (GWP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe −0.052 0.099
ADPf 1.237 0.156 ***
TRPE −0.132 0.044 **
SRM 0.052 0.148
NRSF 0.389 0.104 ***
RSF 0.414 0.077 ***

Water −0.029 0.089
El −0.052 0.081

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01) and “ ” otherwise.

Table 11. Linear regression summary (GWP vs. Consumption ICs)—CEM IV.

ICs
Linear Regression (GWP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe −0.049 0.045
ADPf 1.234 0.157 ***
TRPE −0.095 0.037 *
SRM −0.007 0.032
NRSF 0.420 0.091 ***
RSF 0.412 0.082 ***

Water −0.016 0.062
El −0.038 0.064

“***” (p-value ≤ 0.001), “*” (p-value ≤ 0.05), and “ ” otherwise.
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Then, AIC backward selection procedures yield the models for the classes CEM I, II and IV
described in Tables 12–14, respectively.

Table 12. AIC selection model (GWP vs. Consumption ICs)—CEM I.

ICs
Linear Regression (GWP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 0.267 0.103 *
ADPf 0.598 0.069 ***
RSF 0.163 0.053 **

Water −0.190 0.085 *
El 0.094 0.041 *

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05).

Table 13. AIC selection model (GWP vs. Consumption ICs)—CEM II.

ICs
Linear Regression (GWP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe −0.082 0.043 .
ADPf 1.18 0.117 ***
TRPE −0.133 0.042 **
NRSF 0.364 0.075 ***
RSF 0.409 0.072 ***

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “.” (p-value ≤ 0.1).

Table 14. AIC selection model (GWP vs. Consumption ICs)—CEM IV.

ICs
Linear Regression (GWP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe −0.057 0.059
ADPf 1.173 0.035 ***
TRPE −0.100 0.114 **
NRSF 0.387 0.073 ***
RSF 0.394 0.075 ***

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), and “ ” otherwise.

A 10-fold cross-validation procedure shows that the root mean square error (RMSE) related to the
AIC selection model, is lower than the one computed for the full linear regression model (Table 15).

Table 15. Comparison of RMSE between the two models.

Model RMSE

linear 0.275
AIC 0.266

To answer to Question 2, also in this case a variable selection procedure leads to a more accurate
model. Furthermore, different variables are selected as relevant depending on the type of cement.
It can be observed that while for the class CEM I, the ICs TRPE and NRSF are discarded, for the classes
CEM II and CEM IV the ones rejected by the AIC criterion are Water and El and the same ICs are
selected. These ICs are also consistent also with the ones chosen for the whole dataset (except to SRM).
The model for the class CEM I is characterized by a different set of variables and associated sizes,
including Water and El (Figure 7 shows the size of the coefficients for each class and for the aggregate
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data, Figure 7a–d, respectively). It also confirms the qualitative interpretation of Figure 6, where data
belonging to CEM I was mostly isolated.
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The results of CEM I (Figure 7b) differ from CEM II and CEM IV (Figure 7c,d) due to its composition
(i.e., at least 95% by mass of clinker and not more than 5% by mass of gypsum according to [9]),
while other cement types contain less clinker and other main constituents.

3.4. Other Emission Variables

This section focuses on producing accurate models for the other Emission ICs. The first model
here fit is a multiple linear regression model containing as target variables all the emissions. The results
are collected in Tables 16–18 for CEM I, II and IV, respectively. Since in Section 3.3, subsampling data
with respect to the type of cement has led to a more accurate model, also in this Section each type of
cement is examined separately.
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Table 16. Linear regression summary—CEM I.

ICs
Linear Regression (AP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 0.199 0.314
ADPf 0.184 0.349
TRPE 0.424 0.313
SRM 0.424 0.302
NRSF −0.148 0.217
RSF −0.057 0.166

Water 0.380 0.251
El −0.070 0.135

ICs
Linear Regression (EP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 0.744 0.409
ADPf 1.571 0.454 **
TRPE 0.085 0.408
SRM 0.732 0.394 .
NRSF 0.187 0.283
RSF 0.355 0.216

Water −0.615 0.327 .
El −0.273 0.176

ICs
Linear Regression (POCP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe −0.034 0.427
ADPf −0.567 0.474
TRPE 0.364 0.425
SRM 0.798 0.410 .
NRSF −0.440 0.295
RSF −0.314 0.226

Water 0.786 0.341 *
El −0.105 0.183

ICs
Linear Regression (P vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe −0.341 0.471
ADPf −1.325 0.523 *
TRPE −0.514 0.469
SRM −0.504 0.453
NRSF −0.873 0.325 *
RSF −0.590 0.249 *

Water 0.514 0.376
El 0.520 0.203 *

“**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), “.” (p-value ≤ 0.1), and “ ” otherwise.
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Table 17. Linear regression summary—CEM II.

ICs
Linear Regression (AP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe 0.067 0.180
ADPf 0.638 0.284 *
TRPE −0.003 0.079
SRM 0.175 0.269
NRSF 0.116 0.189
RSF 0.017 0.140

Water 0.605 0.160 ***
El −0.160 0.147

ICs
Linear Regression (EP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe 0.084 0.187
ADPf 1.709 0.296 ***
TRPE 0.145 0.083 .
SRM 0.627 0.281 *
NRSF 0.411 0.197 *
RSF 0.427 0.146 **

Water −0.025 0.168
El −0.394 0.153 *

ICs
Linear Regression (POCP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe −0.178 0.199
ADPf −0.289 0.314
TRPE −0.033 0.088
SRM 0.495 0.298 .
NRSF 0.094 0.209
RSF −0.065 0.155

Water 0.950 0.178 ***
El −0.296 0.162 .

ICs
Linear Regression (P vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe −0.010 0.249
ADPf −0.045 0.393
TRPE −0.084 0.110
SRM −0.022 0.372
NRSF 0.022 0.261
RSF −0.287 0.193

Water 0.141 0.222
El −0.028 0.203

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), “.” (p-value ≤ 0.1), and “ ” otherwise.



Appl. Sci. 2020, 10, 8212 17 of 25

Table 18. Linear regression summary—CEM IV

ICs
Linear Regression (AP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.199 0.314 *
ADPf 0.185 0.349
TRPE 0.424 0.313
SRM 0.424 0.302
NRSF −0.148 0.217
RSF −0.057 0.166

Water 0.380 0.251
El −0.070 0.135

ICs
Linear Regression (EP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.744 0.409 .
ADPf 1.571 0.454 **
TRPE 0.084 0.408
SRM 0.732 0.394 .
NRSF 0.187 0.283
RSF 0.355 0.216

Water −0.615 0.327 .
El −0.273 0.176

ICs
Linear Regression (POCP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe −0.033 0.427
ADPf −0.568 0.474
TRPE 0.364 0.425
SRM 0.798 0.411
NRSF −0.440 0.295 .
RSF −0.314 0.226

Water 0.785 0.341 *
El −0.105 0.184

ICs
Linear Regression (P vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe −0.340 0.471
ADPf −1.325 0.523 *
TRPE −0.514 0.470
SRM −0.505 0.453
NRSF −0.873 0.326 *
RSF −0.589 0.249 *

Water 0.514 0.376
El 0.520 0.202 *

“**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), “.” (p-value ≤ 0.1), and “ ” otherwise.

For each class, the second model consists in a linear model, which exploits only the variables
established in Section 3.3 as relevant to predict GWP. The models are summarized in Tables 19–21 for
CEM I, II, and IV, respectively.
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Table 19. AIC selection for GWP regression summary—CEM I.

ICs
Linear Regression (AP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 0.340 0.288
ADPf 0.478 0.191 *
RSF 0.031 0.148

Water 0.262 0.237
El −0.051 0.115

ICs
Linear Regression (EP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 1.080 0.370 **
ADPf 1.411 0.247 ***
RSF 0.302 0.190

Water −0.850 0.306 **
El −0.170 0.149

ICs
Linear Regression (POCP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 0.158 0.407
ADPf 0.147 0.270
RSF −0.149 0.209

Water 0.588 0.335 .
El −0.167 0.163

ICs
Linear Regression (P vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe −0.816 0.462
ADPf −0.278 0.307 .
RSF −0.365 0.237

Water 0.759 0.381 .
El 0.164 0.186

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), “.” (p-value ≤ 0.1), and “ ” otherwise.

Table 20. AIC selection for GWP regression summary—CEM II.

ICs
Linear Regression (AP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe 0.671 0.084
ADPf 0.368 0.231 ***
TRPE −0.041 0.083
NRSF −0.205 0.147
RSF −0.098 0.142

ICs
Linear Regression (EP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe 0.055 0.085
ADPf 1.272 0.235 ***
TRPE 0.130 0.084
NRSF 0.173 0.150
RSF 0.372 0.145 *
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Table 20. Cont.

ICs
Linear Regression (AP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe 0.766 0.101
ADPf −0.176 0.278 ***
TRPE −0.091 0.100
NRSF −0.429 0.178 *
RSF −0.246 0.171

ICs
Linear Regression (P vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPe 0.132 0.107
ADPf −0.103 0.293
TRPE −0.094 0.105
NRSF −0.049 0.187
RSF −0.315 0.181 .

“***” (p-value ≤ 0.001), “*” (p-value ≤ 0.05), “.” (p-value ≤ 0.1), and “ ” otherwise.

Table 21. AIC selection for GWP regression summary—CEM IV.

ICs
Linear Regression (AP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.379 0.071 ***
ADPf 0.828 0.235 ***
TRPE −0.015 0.063
NRSF 0.094 0.150
RSF 0.135 0.154

ICs
Linear Regression (EP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.211 0.059 ***
ADPf 0.858 0.195 ***
TRPE −0.037 0.052
NRSF −0.006 0.124
RSF 0.178 0.129

ICs
Linear Regression (POCP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.379 0.096
ADPf 0.357 0.314 ***
TRPE −0.028 0.084
NRSF −0.115 0.200
RSF 0.040 0.207

ICs
Linear Regression (P vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.071 0.095
ADPf 1.021 0.314 **
TRPE −0.172 0.084 *
NRSF 0.292 0.200
RSF 0.231 0.206

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), and “ ” otherwise.
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A third model is finally produced applying the AIC criterion separately to each Emission IC for
each class. Then, each of this model selects the most important variables for the corresponding IC.
The results are summarized in the Tables 22–24 for CEM I, II, and IV, respectively.

Table 22. AIC selection regression summary—CEM I.

ICs
Linear Regression (AP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPf 0.310 0.71 ***
SRM 0.505 0.260 .
Water 0.530 0.68 ***

ICs
Linear Regression (EP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe 0.821 0.387 *
ADPf 1.338 0.243 ***
SRM 0.687 0.379 .
RSF 0.305 0.185

Water −0.649 0.317 *
El −0.203 0.146

ICs
Linear Regression (POCP vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPe −0.593 0.344 .
SRM 0.766 0.355 *
NRSF −0.470 0.225 *
RSF −0.292 0.196

Water 0.765 0.114 ***

ICs
Linear Regression (P vs. Consumption ICs) CEM I

Coefficients St. Dev. p-Value

ADPf −1.465 0.502 **
SRM −0.667 0.414
NRSF −1.004 0.307 **
RSF −0.709 0.231 **

Water 0.255 0.128 .
El 0.479 0.199 *

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), “.” (p-value ≤ 0.1), and “ ” otherwise.

Table 23. GWP significant—AIC selection regression summary—CEM II.

ICs
Linear Regression (AP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPf 0.437 0.068 ***
Water 0.660 0.061 ***

ICs
Linear Regression (EP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPf 1.819 0.251 ***
TRPE 0.165 0.077 *
SRM 0.611 0.278 *
NRSF 0.468 0.166 **
RSF 0.486 0.120 ***
El −0.403 0.148 **
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Table 23. Cont.

ICs
Linear Regression (AP vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

ADPf 0.313 0.083 ***
SRM 0.486 0.292
Water 0.778 0.070 ***

El −0.268 0.118 *

ICs
Linear Regression (P vs. Consumption ICs) CEM II

Coefficients St. Dev. p-Value

RSF −0.225 0.078 **
Water 0.120 0.078

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), and “ ” otherwise.

Table 24. AIC selection regression summary—CEM IV.

ICs
Linear Regression (AP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.148 0.075 *
ADPf 0.375 0.080 ***
TRPE −0.179 0.053 **
SRM −0.162 0.053 **
Water 0.500 0.97

ICs
Linear Regression (EP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.280 0.071 ***
ADPf 1.009 0.147 ***
RSF 0.254 0.122 *

Water −0.132 0.090
El −0.122 0.087

ICs
Linear Regression (POCP vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

TRPE −0.178 0.065 **
NRSF −0.233 0.081 **
Water 0.721 0.092 ***

ICs
Linear Regression (P vs. Consumption ICs) CEM IV

Coefficients St. Dev. p-Value

ADPe 0.314 0.107 **
ADPf 1.504 0.272 ***
NRSF 0..411 0.172 *
RSF 0.458 0.180 *

Water −0.557 0.134 ***

“***” (p-value ≤ 0.001), “**” (p-value ≤ 0.01), “*” (p-value ≤ 0.05), and “ ” otherwise.

A 10-fold cross-validation procedure shows that the root mean square error (RMSE) computed for
AIC selection model built for each emission IC is lower than the one related to the full linear regression
model and to the one associated to the variables selected to predict GWP. The two last RMSEs are
among them comparable (Table 25).
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Table 25. Comparison of RMSE between the two models.

IC Model RMSE

AP
linear 0.54

AIC (GWP variables) 0.53
AIC 0.44

EP
linear 0.59

AIC (GWP variables) 0.61
AIC 0.56

POCP
linear 0.61

AIC (GWP variables) 0.67
AIC 0.54

P
linear 0.73

AIC (GWP variables) 0.75
AIC 0.71

In answer to Question 3, the results in Table 25 highlight that, while in general using the same
subset of Consumption IC relevant to predict GWP does not improve the accuracy of the linear model,
performing separately for each Emission IC a variable selection procedure leads to a meaningful
enhancement in terms of predictive assessment of the model.

In Figure 8, all the important variables related to each Emission IC listed in Tables 19–21 are
represented proportionally to their size.
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Figure 8 confirms that ADPf plays a pivotal role for the majority of IC emissions, that is, AP, EP,
POCP and P (CEM I and CEM IV). CEM II differs from CEM I and CEM IV due to its limestone-based
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composition; particularly, POCP CEM II has its highest correlation with the Water consumption IC.
It is confirmed by the upstream processes necessary to quarry natural raw materials.

4. Discussion

Due to a dependence on fossil fuels and the calcination of raw materials, the cement industry
generates about 5% of global greenhouse gas emissions. Within this framework, several efforts are
on-going to protect the environment and increase energy efficiency using renewable resources or
alternative fuels. In order to analyze comparable environmental performances, cement companies are
conducting life cycle assessment of their “from cradle to gate” processes in order to identify the best
strategies to meet the need for sustainable development.

In this study, having regard to the European approach compliant with the standard EN 15804,
the environmental impacts of 193 different recipes of gray cement produced in Italy from 2014 to 2019
have been assessed. Fifteen different impact categories have been considered and split into two classes,
“Emissions” and “Consumption”. One of the main results of this work concerns the identification of
the significant Consumption ICs to predict the behavior of Emission ICs, In particular, the target of this
paper consists in answering to the following questions:

1. Which ones are the most relevant variables among the Consumption ICs in order to explain the
behavior of GWP?

2. Are different variables important to predict GWP for the four types of cement?
3. Are the relevant variables to predict GWP also useful to predict other Emission ICs?

As far as Question 1 is concerned, it is shown that the most important variable to predict the
behavior of GWP is ADPf (Figure 8), while NRSF and RSF are the two other most relevant consumption
variables. To answer Question 2, a more accurate model is produced by fitting a linear regression
and applying the AIC criterion for different types of cement (i.e., CEM I, CEM II, CEM IV) separately.
Also in this case, ADPf is proved to be the most important Consumption IC. However, scatterplots
related to GWP and the Consumption ICs show that the environmental performances of CEM I differ
from those of the other types, and their values are higher. Predictive models built separately for each
type of cement revealed more accurate predictions for GWP. Finally, concerning Question 3, the authors
investigated if the relevant variables to predict GWP could predict other Emission ICs. In this case,
it is shown that fitting separately regression models and selecting the most important variables leads
to more accurate predictions for all the other Emissions ICs (Table 25) in comparison to the standard
linear model or the one which uses the same Consumption ICs for GWP. Also in this case, ADPf is
confirmed to be a strong predictor in the models related to the emission variables AP, EP, POCP (for
CEM I and CEM II), and P (for CEM I and CEM IV). Therefore, the obtained results underline the
need for policies and strategies that could reduce consumption of energy, both fossil and secondary
fuels, and justify the European policies about Emission trading and Best Available Techniques to be
implemented in the cement industry.
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