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Abstract: The type of steel furnace slag (SFS), including electric arc furnace (EAF) slag, basic oxygen
furnace (BOF) slag, ladle metallurgy furnace (LMF) slag, and argon oxygen decarburization (AOD)
slag, can significantly affect the composite properties when used as an aggregate or as a supplementary
cementitious material in bound applications, such as concretes, mortars, alkali-activated materials,
and stabilized soils. This review seeks to collate the findings from the literature to express the
variability in material properties and to attempt to explain the source(s) of the variability. It was
found that SFS composition and properties can be highly variable, including different compositions
on the exterior and interior of a given SFS particle, which can affect bonding conditions and be
one source of variability on composite properties. A suite of tests is proposed to better assess a
given SFS stock for potential use in bound applications; at a minimum, the SFS should be evaluated
for free CaO content, expansion potential, mineralogical composition, cementitious composite
mechanical properties, and chemical composition with secondary tests, including cementitious
composite durability properties, microstructural characterization, and free MgO content.

Keywords: steel furnace slag; electric arc furnace slag; basic oxygen furnace slag; ladle metallurgy
furnace slag; argon oxygen decarburization slag; concrete

1. Introduction

As a by-product of the various processes of smelting metallic ores, slags are a potentially
useful commodity in civil infrastructure applications. Specifically, this review focuses on the use
of slags produced from various steelmaking processes. During the production of steel, the initial
refinement occurs at a blast furnace, where iron ore is processed to make pig iron. The slag from
this process—blast furnace slag—can be used as an aggregate in the form of air-cooled blast furnace
slag (ACBFS), but is commonly used as a supplementary cementitious material (SCM) in the form of
ground granulated blast furnace slag (GGBFS) [1–5]. However, blast furnace slags will not be covered
in this review.

After the blast furnace, the pig iron is refined to produce crude steel. Other crude steels are
produced by refining recycled and scrap steel. There are a number of different processes that can
be used, and the slag from these processes is broadly termed steel furnace slag (SFS). An estimated
1.8 billion tonnes of crude steel was produced worldwide in 2018 [6], with an estimated worldwide
production of 169 to 254 million tonnes of SFS in 2017 [7]. The worldwide effective utilization of SFS is
around 80% [8]. The scope of this review is to examine the various types of SFS and how they influence
the properties of cementitious composites when used as an aggregate and/or as an SCM. The objective
is to reveal that not all SFSs are the same and instead should be classified or qualified according to the
intended purpose or use, especially when the SFS is being considered for a bound application, such as
concrete, mortar, alkali-activated material, or soil stabilization.
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The motivation for this article stems from a previous finding that the type of SFS aggregate can
drastically affect the cementitious composite properties when the mixture volumetrics are constant [9,10].
When compared with other recycled aggregates, this finding for SFS has not been clearly explained;
for instance, nearly all (if not all) studies of concrete with reclaimed asphalt pavement aggregates have
shown a reduction in composite strength and modulus, which has been linked to the development
and properties of the concrete microstructure [11,12]. Similarly, concrete with recycled concrete
aggregates (RCAs) will typically experience reductions in strength relative to virgin aggregates,
but the degree of strength reduction is highly variable, which has been linked to microstructure
development, adhered mortar, moisture absorption and content, RCA heterogeneity, quality, and so
forth (e.g., [13–17]). In comparison, for SFS aggregates, even for the same SFS type, studies have found
that concrete strength can increase, decrease, or be similar to concrete with virgin aggregates. Therefore,
this review seeks to collate the existing literature to observe any general trends, to consider sources of
variability, and to assess test method(s) to critically analyze SFS for use in cementitious composites.

1.1. Steelmaking Processes

The basic oxygen furnace (BOF), also known as the Linz–Donawitz (LD) process, produces crude
steel from the pig iron or molten iron received from the blast furnace. The liquid metal and fluxing
agents (e.g., limestone or dolomite) are charged in a furnace, and a lance injects oxygen into the
mix, removing impurities from the charge by way of by-product gases, such as carbon monoxide,
and by molten slag formation. The molten crude steel is tapped into a ladle, while the molten slag is
tapped and removed. In the United States, 30% of the crude steel is produced by the BOF process [18],
while around 71% of the worldwide steel production uses the BOF process [6].

The electric arc furnace (EAF) process starts with a cold charge of scrap and recycled steel and
fluxing agents. An electric current is passed through graphite electrodes to produce an arc that melts
the charge. The injection of oxygen removes impurities, and additional metals or alloyants are added
to refine the steel chemistry. The molten crude steel is tapped into a ladle, while the molten slag is
tapped and removed. An estimated 29% of steelmaking worldwide uses the EAF process [6], but 70%
of the crude steel is produced by the EAF process in the United States [18].

The ladle metallurgy furnace (LMF) is a secondary steelmaking process and is an additional
refining step after the BOF or EAF process. The LMF process is similar to the EAF process, except that
additional refinements are used. Additional fluxing agents and alloyants are added to the ladle with
the molten crude steel to further remove any impurities and to adjust the steel chemistry.

The open-hearth furnace (OHF) process is obsolete and has been largely replaced by the modern
BOF and EAF processes. An estimated 0.4% of all steel worldwide is still produced by the OHF
process [6].

The argon oxygen decarburization (AOD) process is used for producing stainless and specialty
steels. For recycling stainless steels, the process usually starts with an EAF process, which is followed
by the AOD process. The AOD process refines the molten metal through decarburization, reduction,
and desulfurization. This process results in a slag that is typically very high in calcium and silicon and
may contain more fluorine and chromium than EAF and BOF slags [19].

1.2. SFS Composition

Because the various steelmaking processes are different from one another, the resultant SFS
chemistry and mineralogy changes. In general, the bulk oxide chemistry of most SFSs consists of CaO,
MgO, SiO2, and FeO, along with some Al2O3 and MnO [5,20,21], as shown in Table 1. The mineralogy
of the SFS is dependent on the steelmaking process and fluxing agents but is also dependent on the
cooling process; the molten SFS can be cooled by air, water spray, water or air quenching, box chilling,
and so forth [20]. The cooling process can influence SFS properties and composition, such as degree of
crystallinity, particle size, and free CaO and MgO contents [5,20,22–24].
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Table 1. Typical SFS composition ranges (in wt.%) [21].

Component BOF Slag EAF Slag Secondary Steelmaking Slag AOD Slag

CaO 45 to 54 25 to 35 30 to 52 48 to 68
SiO2 11 to 18 8 to 18 8 to 23 20 to 40

Al2O3 1 to 5 3 to 10 3 to 20 1 to 2.5
MgO 1 to 6 2 to 9 6 to 12 4 to 6

Total Fe 14 to 22 20 to 30 0.5 to 12 0.4 to 2
Total Mn 1 to 5 2 to 8 0.5 to 3 0.6 to 1.0 (MnO)
Total Cr 0.1 to 0.3 0.5 to 2.2 <0.1 to 0.5 0.1 to 5 (Cr2O3)

The crystalline composition of SFS also varies. One report noted that typical BOF slag compositions
by weight consist of 30%–60% dicalcium silicate (with 1%–3% P2O5 molar substitution), 0%–30%
tricalcium silicate, 0%–10% free CaO (with 2%–10% MnO and 5%–15% FeO molar substitutions),
10%–40% wüstite (with 10%–20% MnO, 10%–30% CaO, and 5%–20% MgO molar substitutions),
and 5%–20% dicalcium ferrite [21]. One partial survey of the literature found that the commonly
identified minerals in EAF slags are dicalcium silicate, merwinite, gehlenite, iron oxides (wüstite,
hematite, and magnetite), mayenite, brownmillerite, and periclase [25]. The same survey found that
the commonly identified minerals in BOF slags are dicalcium silicate, tricalcium silicate, wüstite,
lime, dicalcium ferrite, portlandite, and calcite [25]. While LMF slag compositions have not been
commonly reported, studies have shown dicalcium silicate, tricalcium silicate, wüstite, mayenite,
periclase, bredigite, and merwinite to be present [9,10,26,27].

One of the factors limiting the use of SFS is the expansion potential. SFS often contains free CaO
and free MgO, which expand by 92% and 120%, respectively, when reacted with water [28]. The typical
free CaO content ranges for BOF and EAF slags are 1%–10% and 0%–4%, respectively [21]. The free
CaO and free MgO are present primarily due to the fluxing agents and the furnace refractory lining [20].

2. Concrete and Mortar with SFS Aggregates

As the SFS quality and composition can vary based on the steelmaking process, it can perhaps be
expected that the properties of mortars and concrete containing SFS aggregates would be variable as
well. Table 2 is a summary of the literature, highlighting the effect on a given property for specific
SFS aggregates used as a partial to full replacement of the virgin fine and/or coarse aggregates in
mortar and concrete. The majority of studies have concerned the use of EAF or BOF slag aggregates,
with few studies considering LMF or AOD slag aggregates and no studies using OHF slag aggregates.
The majority of studies have focused on mechanical properties, such as strength and elastic modulus,
and few studies have considered the effect of SFS aggregates on durability properties.

It is clear from Table 2 that there are variable trends for a given SFS type. For instance, 51 studies
were identified to have considered the compressive strength of cementitious composites when using
EAF slag aggregates, of which 37 studies (72%) showed an increase in strength, 4 studies (8%) showed a
decrease in strength, and 10 studies (20%) showed no change in strength when compared with a
control. Similarly, for compressive strength with BOF slag aggregates, of 27 studies, the distribution
was 52%, 30%, and 18% for increase, decrease, and no change, respectively. Therefore, for a given
stockpile of EAF or BOF slag aggregates, what is the probability that the SFS aggregate will increase
the compressive strength relative to a control? For quality assurance concerns, this is an important
consideration since it is impractical to perform all mechanical and durability tests on all stockpiles of
all SFS aggregates. However, it should be noted that Table 2 does not attempt to factor in other effects
on concrete properties, such as water-to-cementitious ratio, cement content, age, curing conditions,
use of SCMs, SFS replacement amount, coarse vs. fine aggregate replacements, gradation effects,
control mixture, virgin aggregate type, and so forth. Therefore, the conclusions drawn from Table 2
should remain fairly general.
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Table 3 details the use of SFS aggregates in geopolymer and alkali-activated concretes.
Significantly fewer studies have been performed on SFS aggregates in geopolymer and alkali-activated
concretes (Table 3) than portland cement composites (Table 2), although the trends more clearly
suggest a positive effect on strength; for compressive strength, of 25 studies identified, 20 studies (80%)
indicated that SFS aggregates can increase strength.

3. SFS as a Cementitious Material

Even though SFS often contains dicalcium silicate and sometimes tricalcium silicate, these phases
are not always reactive. The dicalcium silicate in SFS can be present as theβ and/orγpolymorphs [20,29].
While β-dicalcium silicate is present and reactive in portland cements [30], it is reportedly relatively
nonreactive in SFS [31], and γ-dicalcium silicate is not a hydraulic mineral phase [32]. However,
some studies have shown evidence of hydration of the calcium silicate phases in SFS [33,34], while other
studies have shown evidence of hydration of the calcium aluminate phases [35,36]. In addition, both free
CaO and free MgO present in the SFS are hydraulic, which could contribute to the hydration of portland
cement when SFS is used as an SCM. In general, the use of SFS as an SCM will be detrimental to
the mechanical properties of cementitious composites [37], which is somewhat evident in Table 4.
While Table 4 demonstrates that some SFS studies indicate a usefulness as an SCM, it is clear that not all
studies conclude with this finding. Since SFS can have variable chemistry and mineralogy, it is perhaps
not surprising that the hydraulic or pozzolanic reactivity is also variable. Therefore, to assess the relative
reactivity of a given SFS, the mineralogy of the slag should be assessed (see Section 5.1) to determine
whether any reactive phases are present. A pozzolanic reactivity test can also be performed [38].

High pH solutions will accelerate the hydration of SFS [39], so instead of using it as an
SCM in portland cement composites, SFS has also been considered for alkali-activated binders.
Favorable performance has been reported for alkali-activated binders using LMF slags [40–43],
EAF slags [43], BOF slags [44], and stainless steel slags [45–48]. BOF and LMF slags have also been
suggested as activators for GGBFS pastes [49,50].

SFS has also been considered for use in soil stabilization, as shown in Table 4. Specifically, due to
the potentially high free CaO and free MgO contents in SFS and since lime is known to chemically react
with clays [51–55], SFS has the potential to act as a clayey soil stabilizer. In addition, the discussion
of SFS as an SCM revealed that calcium silicate and/or calcium aluminate phases present in the
SFS may contribute to the reaction. In general, Table 4 indicates the favorable effects of using SFS
in soil stabilization, which can be attributable, at least in part, to chemical reactions. In addition,
some studies have suggested that a mechanical stabilization mechanism may contribute as well owing
to the angularity and roughness of the SFS particles. It is unclear which stabilization mechanism(s) is
dominating, as it is likely a function of multiple factors, such as SFS chemistry, mineralogy, reactivity,
shape and texture, particle size distribution, and so forth.
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Table 2. Effect of SFS used as a partial to full replacement of virgin coarse and/or fine aggregate in portland cement concrete relative to the control with virgin aggregates.

Property EAF Slag

Increase Decrease No Change

Compressive strength [9,10,34,56–90] [82,91–93] [94–102]

Split tensile strength [10,58–61,65,69,70,73,74,77,78,82,84–86,90,101] [9,75,76] [87,93,96,97,102]

Flexural strength [60–63,69,70,73,74,77,83–85,88] [92,100] [75,97,98,101,103]

Modulus of elasticity [59,60,62,64,66,73,74,77,82,85,86,90,97,101] [75,82,83] [67,75,87,94,96,98]

Dynamic modulus [10,63,65,77,103] [67]

Stress intensity factor [9,84]

Total fracture energy [9,60,83,84] [65]

Free drying shrinkage [9,65,74,89] [100,101,104,105] [67,70,102]

Water absorption [56,57,73,76,87,98] [78,99,101] [70,79,102]

Freeze/thaw durability [56,62,63,70,86,90,99,104] [60,98,102]

Wetting/drying durability [56,60,62,73,74,77,90,100,104] [86,106] [102,107]

Abrasion resistance [60,69–71,73,78]

High-temperature resistance [83,108] [70,75,76]

Porosity [56,60,63,68,77,87,94,102]

Workability and fresh properties [58,62,65,69,76,86,87,97] [9,61,85,86,109]

Density and specific weight [9,56–58,60,62,65,66,70,76,85–87,90,97,102]

Shear capacity [85,88]

Expansion [63,73,79] [57,86,110,111]

Property BOF and LD Slag LMF Slag

Increase Decrease No Change Increase Decrease No Change

Compressive strength [33,34,80,112–122] [9,10,81,123–126] [95,105,127–129] [10,80,81,130–132] [26,27,133] [102,134,135]
Split tensile strength [115,116] [9,10] [10,134] [102]

Flexural strength [115,116,136] [128] [132]
Modulus of elasticity [115] [105]

Dynamic modulus [10] [10]
Stress intensity factor [9]
Total fracture energy [9]

Free drying shrinkage [9] [124] [131] [102]
Water absorption [124,137] [105,115] [116] [115] [102]

Freeze/thaw durability [137] [29,112,114,116,137] [130,132] [102]
Wetting/drying durability [105,112] [131] [102]

Abrasion resistance [137] [112] [105]
High-temperature resistance

Porosity [105,118] [116] [126] [102]
Workability and fresh properties [138,139] [9] [114]

Density and specific weight [9,80,105,115,116,122,126]
Shear capacity

Expansion [125,126,140] [112,117,126] [116]



Appl. Sci. 2020, 10, 8210 6 of 27

Table 2. Cont.

Property AOD Slag and Other Stainless Steel Slags Other Steel Slags or Unspecified

Increase Decrease No Change Increase Decrease No Change

Compressive strength [63,141–143] [26,144,145] [146] [78,87,147–162] [111,163–169] [170–175]
Split tensile strength [63] [78,149–151,153,156,157,160] [148,163–165] [171,174]

Flexural strength [144] [147–151,154,158,159] [111,163–165] [170,171,173,175]
Modulus of elasticity [147,150,151,156,159,162] [111] [171,173]

Dynamic modulus [63] [157,162] [165]
Stress intensity factor [150]
Total fracture energy

Free drying shrinkage [111] [168]
Water absorption [142] [144] [153,164,167,168] [147,171] [78,155,157–160]

Freeze/thaw durability [142] [164]
Wetting/drying durability [148]

Abrasion resistance [144] [78,147,150,154,157,159–161,170,171] [165]
High-temperature resistance [173]

Porosity [167]
Workability and fresh properties [175]

Density and specific weight [158–160,165] [147]
Shear capacity

Expansion [141] [142] [175]
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Table 3. Effect of SFS used as a partial to full replacement of virgin coarse and/or fine aggregate in geopolymer or alkali-activated mortars or concretes relative to the
control with virgin aggregates.

Property EAF Slag BOF and LD Slag LMF Slag

Increase Decrease No Change Increase Decrease No Change Increase Decrease No Change

Compressive strength [176–178] [179] [180] [126] [40,41,181–183]

Split tensile strength [179]

Flexural strength [179] [180]

Modulus of elasticity [176]

Shrinkage [176,178] [180]

Abrasion resistance [177]

Water Absorption

Freeze/thaw resistance [180]

Property AOD Slag and Other Stainless Steel Slags Other Steel Slags or Unspecified

Increase Decrease No Change Increase Decrease No Change

Compressive strength [45–47] [184–191] [192,193] [194]

Split tensile strength [186,188] [192]

Flexural strength [186,187,189,190] [192]

Modulus of elasticity [186] [192]

Shrinkage [190]

Abrasion resistance [193]

Water absorption [190,193] [186]

Freeze/thaw resistance [192]
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Table 4. Effect of SFS as a supplementary cementitious material or a soil stabilizer.

SFS Type Effect Effectiveness as a Supplementary
Cementitious Material

Effectiveness as
a Soil Stabilizer

EAF Slag
Increase [95,152,195] [196–201]

Decrease [95,133]

No change [202]

BOF and LD Slag
Increase [33,115,203–207] [208–213]

Decrease [38,214,215]

No change [128,216,217]

LMF Slag
Increase [134] [218–222]

Decrease [26,27,38,223–225]

No change

AOD and
Stainless Steel Slag

Increase [226]

Decrease [26]

No change

Other Steel Slags
or Unspecified

Increase [227–230] [155,231–241]

Decrease [167,242–246]

No change [243,247,248] [249,250]

4. Discussion of SFS Variability

Certainly, Tables 2–4 present a view of SFS that there can be significant variability in composite
materials’ behavior. First and foremost, this variability stems from different steelmaking processes
(e.g., EAF, BOF, LMF, AOD), different steel chemistries, different slag cooling methods, different fluxing
agents, and so forth. Therefore, each stockpile of SFS can have variable chemical composition,
mineralogical composition, free CaO content, free MgO content, particle size distribution, particle shape
and texture, porosity, and so forth.

Table 5 shows an example dataset from the literature where the same concrete mix design was
used with equivalent volumetric replacements of the coarse aggregate by EAF slag or BOF slag relative
to a control. In this example, the compressive strength increased with EAF slag but decreased with
BOF slag, while both SFS aggregates increased the fracture properties and free drying shrinkage [9].
In a subsequent study, these same aggregates were investigated by backscattered electron microscopy,
and it was found that the BOF slag aggregates exhibited a larger, more porous interfacial transition
zone (ITZ) than the EAF slag or dolomite aggregates, which exhibited similar ITZ characteristics [10].
By microscopic analysis, the BOF slag was also found to exhibit a different surface composition than
the interior, while the EAF slag did not exhibit a different surface composition, which was seen
to be one explanation why the BOF slag reduced compressive strength while EAF slag increased
strength in Table 5. Table 6 shows a related dataset for mortars with equivalent volumes of dolomite,
EAF slag, BOF slag, or LMF slag aggregates, where it can be seen again that EAF slag achieved
greater mechanical properties than the control, whereas BOF and LMF slag aggregates experienced
reductions in strength, possibly attributable to the surface composition. The different exterior and
interior compositions of SFS particles have been shown for BOF and LMF slags [10,114,123,251]
but not EAF slag [10,251]. For BOF slag, Kawamura et al. reported an exterior particle surface
composition containing calcite, calcium silicate hydrate, and calcium carboaluminate hydrate phases,
which was argued to result in a reduced paste aggregate bond [123]. Similar arguments can be made
for aged vs. unaged SFS aggregates, since the properties of SFS aggregates will change when they
are aged, weathered, or carbonated, such as reduction in aggregate porosity [114,169], decrease in
pH [121,124,252,253], decrease in chemically absorbed water [124], and alteration of the aggregate
surface texture and composition [121,169,254–257]. Conversely, increases in concrete strength when
using SFS aggregates have been argued to be attributable to the rough particle surface texture and
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possibly chemical reactions occurring in the cement paste and the SFS particle, such as for BOF
slag [113], EAF slag [9], or other or unspecified SFS [151,154] aggregates.

Table 5. Twenty-eight-day concrete properties (average ± standard deviation) for three equivalent
mixes with full replacement of coarse aggregate with dolomite (control), EAF slag, or BOF slag [9].

Mix Compressive Strength (MPa)
Critical Mode I
Stress Intensity

Factor (MPa-m1/2)

Total Fracture
Energy (N/m)

Free Drying
Shrinkage (µε)

Control 46.1 ± 1.4 1.00 ± 0.12 101.6 ± 15.9 −437 ± 21
EAF 48.3 ± 0.5 1.39 ± 0.06 124.0 ± 8.1 −517 ± 55
BOF 40.1 ± 2.0 1.21 ± 0.06 118.5 ± 6.5 −537 ± 60

Table 6. Twenty-eight-day mortar properties (average ± standard deviation) for four equivalent mixes
with full replacement of aggregate with matched gradations of dolomite (control), EAF slag, BOF slag,
or LMF slag [10].

Mix Compressive Strength (MPa) Split Tensile
Strength (MPa)

Longitudinal Dynamic
Modulus (GPa)

Control 41.1 ± 2.2 4.5 ± 0.4 32.9 ± 1.0
EAF 49.8 ± 2.2 5.1 ± 0.6 43.6 ± 0.5
BOF 38.5 ± 1.1 4.3 ± 0.7 40.4 ± 1.8
LMF 43.0 ± 4.3 5.1 ± 0.3 41.3 ± 1.1

Lastly, the variability in concrete behavior with SFS aggregates could be attributable to the
aggregate absorption capacity and absorption. Particularly for aggregates with high absorption
capacities, improperly accounting for the moisture content can drastically affect concrete properties
and microstructure development (e.g., [13,14]). The absorption capacity of SFS aggregates is typically
≤4% [258–260], with coarse and fine SFS aggregates typically ranging 1–2% and 2–4%, respectively [260].
As these values are comparable to conventional virgin aggregates, variability in concrete properties
may not be significant, provided that the moisture content is accommodated during the mix design
and batching processes.

5. Requirements for SFS Characterization

Given that a given type of SFS aggregate can have variable effects on concrete properties
(Table 2), it is evident that the aggregate should be characterized to assess its suitability for use in
bound applications. This section presents a number of characterization techniques and their relative
usefulness in qualifying a given SFS source for a given application. A number of characterization
techniques are recommended, particularly if the potential for deleterious expansion is of concern.

5.1. Chemical and Mineralogical Characterization

The chemical composition alone should not be used as a predictor of SFS behavior, since there is
often substantial elemental substitution. A combination of chemical and mineralogical classifications
will initiate a more complete analysis of the SFS chemical properties.

The chemical composition of SFS is typically assessed by X-ray fluorescence (XRF),
inductively coupled plasma optical emission spectrometry (ICP-OES), atomic absorption spectroscopy
(AAS), or a combination thereof [19,261–266]. Typically, these data are represented in the oxide form,
as shown in Table 1.

The crystalline mineral composition of SFS can be assessed by X-ray diffraction
(XRD) [263,264,266–268]. Very commonly, XRD is used to qualitatively assess the SFS composition,
as discussed in Section 1.2 with typical mineral compositions. While there is a list of minerals commonly
identified in SFS (e.g., larnite, wüstite, hematite, brownmillerite, lime, merwinite, and periclase),
the composition can vary with a wide range of minor or trace compounds; for instance, one partial
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review of the literature found 59 different mineral compounds reported for various EAF and BOF
slags [25], which demonstrates the need for mineralogical characterization for SFS.

One complication with laboratory XRD is that Cu Kα radiation is very common, which will
induce fluorescence in iron and iron-containing minerals [269], resulting in a higher background in
the diffractogram. The higher background may overwhelm smaller peaks (i.e., present for low phase
contents, poorly crystalline phases, etc.), diminishing the accuracy of qualitative or quantitative XRD
analysis. The typical phase detection limit for powder XRD is reported to be around a few percent up to
10% [270–272]. Therefore, for XRD experiments where fluorescence is a potential issue, it is important
to consider an appropriate X-ray source [273]. For SFS and iron-containing minerals, Co Kα or Cr Kα,
for instance, has shown to be more reliable [33,267–269,274]; indeed, quantitative XRD, such as by
Rietveld analysis, is possible for SFS by using Co Kα radiation [33,268]. Quantitative XRD can also be
used to estimate the relative amounts of each crystalline phase and amorphous phase(s) [275].

5.2. Free CaO Content

If the free CaO content is not high enough to be reasonably estimated by quantitative XRD,
then another useful test is complexometric titration. Originally developed to determine the free CaO
content in portland cement and clinker [276–278], this method uses hot ethylene glycol to complex
with the free CaO, making it applicable to SFS [9,29,113,279–284]. However, the hot ethylene glycol
complexes with Ca2+ from both free CaO and Ca(OH)2, so Brand and Roesler [9] proposed using
thermogravimetric analysis (TGA) to determine the Ca(OH)2 content to refine the estimate of the actual
free CaO content.

The available Ca2+ ions from the free CaO and Ca(OH)2 form a complex with the ethylene glycol,
thereby shifting the pH of the solution. Using phenolphthalein as an indicator, an acid is titrated into
the solution until the pH is adjusted. Previous SFS studies have shown that ethylene glycol at 95 ± 5 ◦C
mixed with a powdered SFS sample for 30 min is sufficient [9,279]. The equation to determine the free
CaO content is [277]:

EGN = F
[

N(V −Vb)

10 m

]
, (1)

where EGN is the ethylene glycol number that needs to be corrected based on the estimated Ca(OH)2

content, F is a correction factor, m is the initial mass of the SFS sample (g), N is the normality of the
acidic solution, V is the volume of acidic solution titrated (mL), and Vb is a correction for the volume of
acidic solution titrated in a blank ethylene glycol sample (mL). For this configuration, the correction
factor F is 28 [9,277,279,285]. Typically, Vb is 0 mL. Previous studies have shown that 0.05 N to 0.1 N
hydrochloric acid is a reasonable solution for titration [9,279,283] since the volume titrated provides
suitable resolution in the measurement (e.g., a very strong acid would not require much volume to
titrate, which means that the volume titrated may be easily overestimated).

However, one complication of the ethylene glycol method is that the free CaO is not fully
complexed by ethylene glycol if it has formed as a solid solution with 20% or more by mass with other
divalent metal oxides (e.g., MgO, FeO, MnO) [286].

5.3. Free MgO Content

There is no commonly applied MgO equivalent to the ethylene glycol test for CaO, so free MgO can
be difficult to estimate. Some selective extraction methods have been proposed, such as with potassium
dichromate [287], ammonium nitrate [288], or ethylene glycol with iodine and ethanol [289,290],
while other studies proposed solid-state 25Mg nuclear magnetic resonance spectroscopy [291]
or petrographic methods [292], but their data are limited. However, the free MgO content is very
important to estimate, because the MgO reaction with water is a longer-term reaction than CaO,
resulting in the potential for unexpected failures at later ages. If the free MgO content is high enough,
then quantitative XRD could provide a reasonable estimate [267,268]. Alternatively, a method proposed
by Brand and Roesler [9] uses TGA to estimate the Mg(OH)2 content in an SFS sample that was exposed
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to autoclave conditions to convert all free MgO to Mg(OH)2. Microwave irradiation has also been
proposed to rapidly convert all free MgO to Mg(OH)2 [293]. From the Mg(OH)2 content, the initial
free MgO content can be estimated by stoichiometric conversion. For the BOF 1, EAF 1, and LMF 1
samples in Table 7, the free MgO contents were estimated by this method to be 2.2%, 0.2%, and 0.3%,
respectively [9].

Table 7. Estimated total free CaO contents based on titration and TGA [9,222,279].

SFS Type EGN Value from
Titration (%)

Ca(OH)2 Content
from TGA (%)

Stoichiometric CaO
Content in Ca(OH)2 (%)

Estimated Free
CaO Content (%)

BOF 1 4.4 1.3 1.0 3.4
EAF 1 0.1 0.0 0.0 0.1
LMF 1 0.5 0.2 0.1 0.4
LMF 2 3.5 1.3 1.0 2.5
SFS 1 * 4.0 1.4 1.1 2.9
SFS 2 * 3.7 1.1 0.8 2.9
SFS 3 * 5.1 1.1 0.9 4.2

* Unknown SFS type but suspected to be BOF.

One complication with assessing free MgO content is that the SFS can contain a solid solution of
MgO and FeO (i.e., magnesiowüstite), making the exact quantification of free MgO difficult [294].

5.4. Expansion Potential

Given the volumetric expansion when free CaO and free MgO hydrate, SFS aggregates can exhibit
significant expansion, as has been demonstrated in a number of failure case studies (e.g., [295–300]).
While the primary expansion issues are attributed to the hydration of free CaO and free MgO,
additional expansion effects have been argued to be attributable to the conversion of β-dicalcium silicate
toγ-dicalcium silicate, oxidation of FeO to Fe3O4, carbonation of oxide or hydroxide phases, hydration of
silicate or sulfide phases, and/or rust formation from metallic inclusions [294]. Additional hydration
products have also been identified, such as calcium monocarboaluminate, calcite, hexagonal calcium
aluminate hydrates, hydrogarnet, and calcium silicate hydrate [39,114,123,251], although it is unclear
if and how much these additional hydration products contribute to expansion.

Based on the expansion potential, it is recommended that granular SFS undergo some form of
an expansion test, a number of which have been proposed in the literature, some examples of which
include the following:

• Autoclave expansion test (unbound SFS). This rapid expansion test of unbound SFS aggregates
uses the ASTM C151 autoclave procedure (steam at 300 psi (2.1 MPa) and 420 ◦F (215 ◦C)
for 3 h) [9,258,279,301]. The SFS sample is compacted in a steel mold and exposed to the autoclave
conditions with an applied surcharge. The height of the surcharge before and after autoclaving
is measured to calculate a percent expansion. While this expansion value does not necessarily
correlate well to field performance or free CaO content, it is a very rapid test method that can
be used as an index test. In addition, autoclaving conditions can be used to study the hydration
reactions in SFS [302,303].

• Autoclave expansion test (bound SFS). Inspired by the ASTM C151 autoclave test also,
some researchers have used an autoclave to study the expansion of cementitious pastes, mortars,
or concretes with SFS [56,89,126,242,304]. The concept of this test is to accelerate the expansive
reaction(s) in the SFS, so it is also useful as an index test or as a test to simulate rapid weathering.

• Expansion force test. Wang [136] developed this test for unbound SFS coarse aggregates as a method
to compute the expansion force generated by a single SFS aggregate bound in a rigid matrix such
as concrete. In this test, compacted unbound SFS aggregates are compacted in a cylindrical mold
and submerged in water at 74 ◦C (165 ◦F), and a load cell is used to monitor the force exerted by
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the expanding aggregate. From these data, the tensile stresses induced by a single expanding SFS
particle can be computed, which can be used to assess the “usability criteria” of the SFS aggregates
to be used in bound applications [5].

• Disruption ratio test. This test also uses autoclave conditions but determines the percentage of SFS
aggregates that cracked or powdered after autoclaving [136]. This test can be used as a rapid
indexing test for volumetric stability of SFS aggregates.

• ASTM D4792 “Standard Test Method for Potential Expansion of Aggregates from Hydration Reactions.”
In this test method, unbound aggregates are compacted in a cylindrical mold and then submerged
in 70 ◦C (158 ◦F) water, and the expansion is measured over time. This test has been shown to be
effective as a comparative or an index test to assess relative expansion of SFS [305–308]. For use
as a graded material in pavement bases, ASTM D2940 recommends that the expansion of SFS
aggregates should be ≤0.50% by ASTM D4792.

Because of the potential for significant expansion, some researchers have proposed
pretreating the SFS prior to its use as an aggregate in bound applications, such as by outdoor
weathering [56,79,99,309–311], carbonation [114,121,124,152], steam aging [79,129,311,312], and so
forth. The expansion tests detailed above are suitable candidates to confirm the degree of reaction or
expansion before using the SFS.

5.5. Microstructural Assessment

Microstructural analysis of polished SFS sections can be effective to better assess the phase
distribution, such as with scanning electron microscopy (SEM) with backscattered electron (BSE)
imaging and mapping with energy dispersive X-ray (EDX) spectroscopy [10,24,66,251,264,281,313–315].
This technique has also proven to be effective in evaluating that the surface of SFS particles may be
different from the particle interior [10,251], as exampled in Figure 1, which could be a contributing
factor in how concrete with SFS aggregates behaves, as discussed in Section 4. Optical microscopy of
polished sections has also been demonstrated to be effective at characterizing the phases present in SFS
samples [264,292,313]. Coupling SEM/EDX with XRD data allows for a more detailed compositional
and corroborative analysis.
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Figure 1. Compositional BSE micrographs at the edge of a (a) BOF slag and (b) EAF slag particle.
The BOF slag particle exhibited a surface composition that was compositionally different from the interior
of the particle, whereas the EAF slag particle appeared to have similar surface and interior compositions.

6. Recommendations

Because of different production processes, fluxing agents, steel chemistries, and so forth,
the properties of SFS can vary greatly. Therefore, to qualify a given SFS stock for use as aggregate in
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concrete or other bound applications, it is recommended that the following tests be performed at a
minimum, listed in order of suggested importance:

1. Free CaO. The hydration of CaO yields a volume expansion of 92% and reacts quicker than free
MgO. Initial or early-age expansion can be expected to be attributable to free CaO. Therefore,
estimating the free CaO content is a rapid method to quickly assess an expansion potential.
The common method to evaluate free CaO content is with ethylene glycol extraction and
complexometric titration, which can also be coupled with TGA to provide a more precise
quantification of free CaO and Ca(OH)2.

2. Expansion test. The most concerning effect of using SFS in bound applications is expansion
that can result in structural failure. A number of accelerated and long-term expansion tests
have been proposed in the literature, so the data are insufficient to recommend a specific test
method. The allowable expansion depends on the specific application of SFS, so no limits are
recommended. For the routine utilization of SFS, one recommendation is to select a specific
expansion test and develop a testing history to empirically determine what limit(s) is permissible
for a given application. Accelerated expansion tests can also be used to rapidly screen a given
SFS stock, such as to track weathering progress.

3. Mineral composition. Qualitative XRD can be used to quickly identify the presence of crystalline
phases that can be involved in deleterious reactions. Quantitative XRD can be used to determine
the relative amounts of crystalline and amorphous phases. Due to fluorescence issues with Cu
Kα radiation and iron-bearing phases, an appropriate anode should be considered, such as Co
Kα radiation.

4. Concrete mechanical properties. In conjunction with the above recommended tests, the mechanical
properties of concrete with SFS aggregates should be tested to confirm whether or not the design
minimum properties are met. Given that the SFS aggregates can have a varied effect on concrete
mechanical properties, as demonstrated in Table 2, testing the concrete mechanical properties can
quickly screen a given SFS stock for appropriateness as an aggregate.

5. Chemical composition. The elemental composition of the SFS should be assessed, particularly if
heavy metals are of concern. However, this composition is arguably not as useful as the other
tests since it does not provide any information on expansion potential (e.g., there is no distinction
between Ca in free CaO and bound in a mineral phase).

In addition to the above tests, further recommended testing can be conducted if needed.
These secondary tests include the following, listed in order of suggested importance:

1. Concrete durability properties. Given that the SFS aggregates can have a varied effect on concrete
durability properties, as demonstrated in Table 2, various tests can be performed to assess and
predict the performance of the concrete. The specific tests should be selected based on the expected
environmental conditions of the in-service concrete. If SFS expansion may be an issue, based on
the results of the recommended primary tests above, then both early-age and long-term durability
properties should be assessed to consider hydration of free CaO and free MgO, respectively.

2. Microstructural characterization. The facilities and equipment are more costly and perhaps not
as readily available as some of the other recommended tests, which is why it is not included
in the primary testing list. However, microstructural characterization, with either electron
or optical microscopy methods, has demonstrated that SFS is heterogeneous and that the
outer SFS particle composition can be different from the inner particle composition. Therefore,
microstructural characterization of SFS particles or of concrete with SFS aggregates can assist in
determining bonding conditions and failure mechanisms.

3. Free MgO. The hydration of MgO yields a volume expansion of 120% and reacts slower than free
CaO. Long-term or late-age expansion can be expected to be attributable to free MgO. While this
would be an important metric for assessment, there are insufficient data in the literature on which
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test(s) is most accurate or efficient. Further study and validation is needed to produce a testing
methodology with equivalent widespread use and reliability as the tests for free CaO.

7. Conclusions

Steel furnace slag (SFS) is generated from a number of different processes and can generally
be categorized as electric arc furnace (EAF) slag, basic oxygen furnace (BOF) slag, ladle metallurgy
furnace (LMF) slag, or argon oxygen decarburization (AOD) slag. When used as an aggregate or in
powdered form for various cementitious applications, such as concretes, mortars, alkali-activated
materials, or soil stabilization, the literature demonstrates that the effects on material properties can be
highly variable, which means that predicting effects on material properties is very difficult. The source
of the variable effects can be somewhat attributable to the variability in SFS composition; for instance,
the exterior and interior of a given SFS particle can have different compositions, which may affect
bonding conditions and thereby influence composite performance.

To better qualify a given SFS stock for use in cementitious applications, a suite of tests
is proposed. Specifically, a primary set of tests is recommended, including free CaO content,
expansion potential, mineralogical composition, cementitious composite mechanical properties,
and chemical composition, with a secondary set of tests, including cementitious composite durability
properties, microstructural characterization, and free MgO content. The primary set of tests is
recommended as testing that should definitely be performed during SFS assessment, while the
secondary set of tests, while also useful, may not always be applicable or be easily performed.
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108. Netinger, I.; Rukavina, M.J.; Mladenovič, A. Improvement of post-fire properties of concrete with steel slag
aggregate. Procedia Eng. 2013, 62, 745–753. [CrossRef]

109. Qasrawi, H. Fresh properties of green SCC made with recycled steel slag coarse aggregate under normal and
hot weather. J. Clean. Prod. 2018, 204, 980–991. [CrossRef]

110. Frías Rojas, M.; Sánchez De Rojas, M.I.; Uría, A. Study of the instability of black slags from electric arc furnace
steel industry. Mater. Constr. 2002, 52, 79–83. [CrossRef]
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243. Tüfekçi, M.; Demirbaş, A.; Genç, H. Evaluation of steel furnace slags as cement additives. Cem. Concr. Res.
1997, 27, 1713–1717. [CrossRef]

244. Rai, A.; Prabakar, J.; Raju, C.B.; Morchalle, R.K. Metallurgical slag as a component in blended cement.
Constr. Build. Mater. 2002, 16, 489–494. [CrossRef]

245. Qiang, W.; Mengxiao, S.; Jun, Y. Influence of classified steel slag with particle sizes smaller than 20 µm on the
properties of cement and concrete. Constr. Build. Mater. 2016, 123, 601–610. [CrossRef]

246. Zhang, T.; Yu, Q.; Wei, J.; Li, J. Investigation on mechanical properties, durability and micro-structural
development of steel slag blended cements. J. Therm. Anal. Calorim. 2012, 110, 633–639. [CrossRef]

247. Tsakiridis, P.E.; Papadimitriou, G.D.; Tsivilis, S.; Koroneos, C. Utilization of steel slag for Portland cement
clinker production. J. Hazard. Mater. 2008, 152, 805–811. [CrossRef]

248. Liu, Q.D.; Sun, J.Y.; Han, Y. Research on performance of steel slag and porous cement concrete made by steel
slag aggregate. Adv. Mater. Res. 2011, 214, 306–311. [CrossRef]

249. Yong-Feng, D.; Tong-Wei, Z.; Yu, Z.; Qian-Wen, L.; Qiong, W. Mechanical behaviour and microstructure
of steel slag-based composite and its application for soft clay stabilisation. Eur. J. Environ. Civ. Eng.
2017, 1–16. [CrossRef]

250. Sinha, A.K.; Havanagi, V.G.; Ranjan, A.; Mathur, S. Steel slag waste material for the construction of road.
Indian Highw. 2013, 41, 15–22.

http://dx.doi.org/10.1016/j.conbuildmat.2017.03.082
http://dx.doi.org/10.1016/S0008-8846(98)00244-0
http://dx.doi.org/10.1016/S0008-8846(99)00028-9
http://dx.doi.org/10.1631/jzus.A0900635
http://dx.doi.org/10.1088/1755-1315/233/2/022015
http://dx.doi.org/10.1016/j.jclepro.2018.01.172
http://dx.doi.org/10.1016/j.sandf.2019.03.009
http://dx.doi.org/10.4028/www.scientific.net/AMR.168-170.931
http://dx.doi.org/10.1016/j.jksues.2016.07.004
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001547
http://dx.doi.org/10.1155/2017/9230279
http://dx.doi.org/10.1016/j.conbuildmat.2019.03.256
http://dx.doi.org/10.20448/journal.508.2017.41.1.6
http://dx.doi.org/10.1016/j.cemconres.2007.03.008
http://dx.doi.org/10.1016/S0008-8846(97)00158-0
http://dx.doi.org/10.1016/S0950-0618(02)00046-6
http://dx.doi.org/10.1016/j.conbuildmat.2016.07.042
http://dx.doi.org/10.1007/s10973-011-1853-6
http://dx.doi.org/10.1016/j.jhazmat.2007.07.093
http://dx.doi.org/10.4028/www.scientific.net/AMR.214.306
http://dx.doi.org/10.1080/19648189.2017.1357787


Appl. Sci. 2020, 10, 8210 25 of 27

251. Coomarasamy, A.; Walzak, T.L. Effects of moisture on surface chemistry of steel slags and steel slag-asphalt
paving mixes. Transp. Res. Rec. 1995, 1492, 85–95.

252. Wang, D.; Chang, J.; Ansari, W.S. The effects of carbonation and hydration on the mineralogy and
microstructure of basic oxygen furnace slag products. J. CO2 Util. 2019, 34, 87–98. [CrossRef]

253. Ghouleh, Z.; Guthrie, R.I.L.; Shao, Y. High-strength KOBM steel slag binder activated by carbonation.
Constr. Build. Mater. 2015, 99, 175–183. [CrossRef]

254. Chen, K.-W.; Pan, S.-Y.; Chen, C.-T.; Chen, Y.-H.; Chiang, P.-C. High-gravity carbonation of basic oxygen
furnace slag for CO2 fixation and utilization in blended cement. J. Clean. Prod. 2016, 124, 350–360. [CrossRef]

255. Ghouleh, Z.; Guthrie, R.I.L.; Shao, Y. Production of carbonate aggregates using steel slag and carbon dioxide
for carbon-negative concrete. J. CO2 Util. 2017, 18, 125–138. [CrossRef]

256. Hobson, A.J.; Stewart, D.I.; Bray, A.W.; Mortimer, R.J.G.; Mayes, W.M.; Rogerson, M.; Burke, I.T. Mechanism of
vanadium leaching during surface weathering of basic oxygen furnace steel slag blocks: A microfocus X-ray
absorption spectroscopy and electron microscopy study. Environ. Sci. Technol. 2017, 51, 7823–7830. [CrossRef]

257. Yilmaz, D.; Lassabatere, L.; Deneele, D.; Angulo-Jaramillo, R.; Legret, M. Influence of carbonation on the
microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J. 2013, 12, 1–15. [CrossRef]

258. Yildirim, I.Z.; Prezzi, M. Use of Steel Slag in Subgrade Applications; Report FHWA/IN/JTRP-2009/32;
Joint Transportation Research Program, Indiana Department of Transportation and Purdue University:
West Lafayette, IN, USA, 2009. [CrossRef]

259. Teo, P.T.; Zakaria, S.K.; Salleh, S.Z.; Taib, M.A.A.; Sharif, N.M.; Seman, A.A.; Mohamed, J.J.; Yusoff, M.;
Yusoff, A.H.; Mohamad, M.; et al. Assessment of electric arc furnace (EAF) steel slag waste’s recycling
options into value added green products: A review. Metals 2020, 10, 1347. [CrossRef]

260. Stroup-Gardiner, M.; Wattenberg-Komas, T. Recycled Materials and Byproducts in Highway Applications Slag
Byproducts, Volume 5: Slag Byproducts; Transportation Research Board: Washington, DC, USA, 2013.

261. Bonvin, D. X-ray fluorescence spectrometry in the iron and steel industry. In Encyclopedia of Analytical
Chemistry; Meyers, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2000; pp. 9009–9028.

262. Lu, L.; Ward, M.; McLean, A. Chemical analysis of powdered metallurgical slags by X-ray fluorescence
spectrometry. ISIJ Int. 2003, 43, 1940–1946. [CrossRef]

263. Aimoto, M.; Kanehashi, K.; Fujioka, Y. Analytical technologies for steel slags. Nippon Steel Tech. Rep. 2015,
109, 16–22.

264. Waligora, J.; Bulteel, D.; Degrugilliers, P.; Damidot, D.; Potdevin, J.L.; Measson, M. Chemical and mineralogical
characterizations of LD converter steel slags: A multi-analytical techniques approach. Mater. Charact. 2010,
61, 39–48. [CrossRef]

265. Farrell, R.F.; Mackie, A.J.; Lessick, W.R. Analysis of Steelmaking Slags by Atomic Absorption Spectrophotometry
Using Pressure Dissolution; United States Bureau of Mines: Washington, DC, USA, 1979.

266. Yildirim, I.Z.; Prezzi, M. Chemical, mineralogical, and morphological properties of steel slag. Adv. Civ. Eng.
2011, 2011, 463638. [CrossRef]
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