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Abstract: Online formative assessments in e-learning systems are increasingly of interest in the
field of education. While substantial research into the model and item design aspects of formative
assessment has been conducted, few software systems embodied with a psychometric model have
been proposed to allow us to adaptively implement formative assessments. This study aimed to
develop an adaptive formative assessment system, called computerized formative adaptive testing
(CAFT) by using artificial intelligence methods based on computerized adaptive testing (CAT) and
Bayesian networks as learning analytics. CAFT can adaptively administer personalized formative
assessment to a learner by dynamically selecting appropriate items and tests aligned with the learner’s
ability. Forty items in an item bank were evaluated by 410 learners, moreover, 1000 learners were
recruited for a simulation study and 120 learners were enrolled to evaluate the efficiency, validity,
and reliability of CAFT in an application study. The results showed that, through CAFT, learners
can adaptively take item s and tests in order to receive personalized diagnostic feedback about their
learning progression. Consequently, this study highlights that a learning management system which
integrates CAT as an artificially intelligent component is an efficient educational evaluation tool for a
remote personalized learning service.

Keywords: computerized adaptive testing; formative assessment; learning management systems;
artificial intelligence (AI) in education; e-learning technologies; learning analytics

1. Introduction

The integration of artificial intelligence into an online formative assessment system using modern
measurement techniques directly benefits the adaptive collection of individual personalized information.
Specifically, instead of giving all students the same test in online formative assessment, tests can
be administered adaptively to each learner in terms of the learner’s characteristics. This adaptive
assessment system makes it possible to efficiently collect personalized diagnostic information as
well as to tailor a test with respect to a student’s ability, eventually offering a meaningful e-learning
system [1,2].

In recent decades, many online adaptive formative assessments have been developed [3].
For example, SIETTE is one of the web-based learning systems that can provide an adaptive testing
based on a learner model grounded on the leaner’s response to previous questions. Additionally,
COMPASS is a popular web-based learning system that can offer adaptive formative testing, tutoring,
and feedback. Even though these systems adaptively select exams in terms of a learner’s characteristics
and ability, there is little research confirming that online formative assessments function based on
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accurately estimated evidence from statistical methods. Moreover, the assessments have been more
focused on the evaluation of learning instead of “for learning”. Recently, there has been a big movement
in the evaluation to include process-, formative-, and diagnostic- based assessment. However, most
web-based formative assessment systems offer very little insight regarding the process and diagnostic
purposes for learning based on what individual students should be provided and what actually does
improve their academic ability for learning [4].

The concept of formative assessment is that a student’s learning status and progression are assessed
during instruction as well as at the end of the course [5–7]. Therefore, the focus of assessment shifts
toward evaluating students’ learning progress rather than just their final achievements. Formative
assessment systems provide information about the knowledge, skills, and abilities (KSAs) that a
student has reached and the learning trajectory of a student over time [8,9]. Recently, the use of
formative assessment has been expanded to provide diagnostic information for reducing student
weaknesses by identifying a gap between actual student levels and desired levels of performance
in school [10,11]. Additionally, it can provide evidence about the change in a student’s ability level
beyond that of other methods which only monitor the general proficiency of a student [8]. Due to
these educational benefits, formative assessment has been popularly used in educational fields to help
instructors monitor their students’ learning progression, select instructional strategies, and utilize
alternative instructional approaches.

However, due to the COVID-19 pandemic, education institutions around the world have been
closed and exams are temporarily suspended. Since teachers cannot interact with students in
the classroom, they are not able to evaluate students face to face. This global crisis makes many
conventional educational instruction and evaluation methods useless. Specifically, educators are not
able to promptly evaluate students and provide feedback about their learning status and progression [9].
Consequently, online formative assessment systems using e-mail, instant messaging platforms, and
online computer-based educational tools are increasingly of interest in the field of education. One of
the benefits of online formative assessment tools is that they provide real-time updates on a student’s
learning progression throughout a course [12]. Such information can offer quick remedial actions and
feedback to students, instructors, and curriculum developers remotely [13,14].

Online formative assessment systems, web-based adaptive learning systems such as intelligent
tutoring systems, and e-learning management systems are increasingly of interest in the field of
education since the COVID-19 outbreak. The success of an adaptive learning system is fundamentally
grounded on accurate information about what a student has learned and knows about specific
concepts [15,16]. As such, a valid and meaningful adaptive learning system necessitates accurate
assessment of a student’s ability and diagnosing what concepts a student knows and has learned.
To achieve this, the adaptive assessment system must be able to interact with the learning system.

Computerized adaptive testing (CAT) provides a customized item set by dynamically selecting
appropriate items aligned with the learner’s ability. CAT has been used for one-time testing such as in
selection assessments or certificate exams [17]. With CAT, each item of a test is exposed to a learner
depending on their response to the previous item, so the items are adaptively administered to learners
in terms of their abilities. Therefore, the items administered to different learners are unique and depend
on the learner’s ability [18,19]. Figure 1 shows the procedure of CAT. In order to implement CAT, all
items should first be calibrated by item response theory (IRT) [20]. Various IRT models can be used for
estimating item characteristics such as item difficulty and item discrimination in order to build an item
bank. Once the item characteristics including item features, difficulty, and discrimination, have been
estimated using various statistical estimation methods, the items are stored in the item bank along
with their information. When administering a test using CAT, the process starts with selecting the first
item from the item bank. There are several statistical methods proposed for selecting the first item
from an item bank such as a random or Bayesian method. In the next step, an examinee’s ability and
the standard error of measurement of the examinee’s ability are estimated based on their response to
the first item using IRT. After this, the next item is adaptively selected from the item bank based on the
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previously estimated examinee’s ability and the computed standard error of measurement. In more
detail, CAT selects the item that maximizes the discriminatory and informative values for the given
examinee’s ability. For example, if an examinee answers correctly, the next item will be slightly more
difficult than the previous one, however, if an examinee answers incorrectly, the next item will be
slightly less difficult than the previous one. This procedure is repeated until the stopping criterion has
been met. The stopping criterion of this iterative process can be (1) a certain level of standard error of
measurement for a learner’s ability, which is about measurement accuracy or precision or (2) a pre-set
maximum number of items [21].

Figure 1. The procedure of computerized adaptive testing (CAT).

Consequently, by integrating CAT technology into a formative assessment system, the formative
assessment can be adaptively implemented in terms of a learner’s characteristics. By combining the
statistical and mathematical properties of CAT with a formative assessment system, a new assessment
system is created that can adaptively measure not only what a student knows, but also what a student’s
learning progression is over multiple measurement time points. From a diagnostic perspective, it offers
information about which parts of a curriculum are difficult for a given student to learn as well as how
well the student is doing throughout a course. Furthermore, since all students do not need to answer
the same items- rather, an adaptive number of items are administered in terms of their abilities based
on the CAT algorithm-, testing can be more efficient, accurate, and informative [22–24].

Historically, most CAT applications have been used for one-time testing instead of for multiple
measurements over time such as in formative assessments. As such, CAT has not been applied
for estimating the learning progression over multiple measurement time points from a longitudinal
perspective. In order to develop an adaptive formative assessment system, a psychometric method
that can analyze learning progression over multiple time points should be employed along with the
CAT system. Many psychometric models have been proposed for measuring proficiency change over
time. Proficiency change as a continuous variable is often expressed as quantitative growth modeled
by means of latent growth curve approaches. In this case, quantitative growth can be defined in terms
of an increase or decrease in the amount of knowledge or ability. In contrast, movement between stages
or stage sequential changes are often described by qualitative growth. A typical example of qualitative
growth is Piaget’s model based on the cognitive development of children. Qualitative growth is
measured by the critical pinpoints that represent a qualitatively different way of thinking and doing.
With formative systems, the curriculum is modeled through several discrete learning stages, and a
change in the student’s ability through the stages is considered as qualitative growth. Furthermore,
the notion of formative assessment was initially based on the concept of “mastery learning,” in which
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students do not progress to the next learning objective until they have mastered the current one; hence,
learning progression based on formative assessment consists of several learning stages and measures
sequential stage change linked to the curriculum and instructions provided. Therefore, analytic models
require the estimation of qualitative level changes over time, where item design and content domain
theory provide a theoretical framework for creating and modeling observable evidence. For this
purpose, dynamic Bayesian networks (DBNs) offer a promising approach [25], as they have been used
in intelligent tutoring systems, game-based learning systems, and simulation-based learning [26,27].
A DBN is a probability based statistical modeling framework, which can make inferences about the
previous, current, and future states of a student’s learning progression over a specific period of time.
Therefore, computerized formative adaptive testing (CAFT) utilizes the adaptive system of CAT and
the probabilistic qualitative growth modeling from DBNs.

2. Research Objectives

The purpose of this study was to introduce a framework for an adaptive formative assessment
system using computerized adaptive testing (CAT) and dynamic Bayesian networks (DBNs) that can
adaptively assess a learner’s ability over multiple measurement time points. Since previously
established online formative assessment systems administer fixed, identical tests to learners,
the adaptive function has not yet been implemented. The adaptation is achieved with several
statistical algorithms from CAT. The fundamental concepts of the adaptation in CAT are (1) A learner’s
ability and the standard error of measurement about the learner’s ability are estimated based on IRT,
and (2) CAT selects the item from the item bank that maximizes the discriminatory and informative
values for the given examinee’s ability from the item bank. This procedure is repeated until a certain
level of measurement precision regarding a learner’s ability is satisfied. Since CAT chooses the next
item based on the learner’s answer to the previous item, all learners with different abilities take different
items adaptively. The length and path of the test vary in terms of a learner.

CAFT is an assessment system created by combining CAT and DBNs. The adaptive system of
CAT is applied at the item and test levels over multiple time points by adaptively selecting the next
item of a test and the next test in sequential testing, respectively. In addition, DBNs offer real-time
updates on the estimation of a learner’s ability across multiple tests. The feedback system between
CAT as an adaptive selection method and DBNs as a real-time estimation method is the core goal of
CAFT as an integration of artificial intelligence methods into an e-learning system. Therefore, this
study developed CAFT with several layers. The first layer is a test generation system, which contains
(1) an instructor that generates items and publishes tests from an item bank and (2) calibration of item
characteristics including item difficulty and discrimination. This layer provides basic storage for an
adaptive formative assessment. The second layer is a CAT engine, the parameters of which a user
can customize through a graphical interface in order to choose different item/test selection statistical
algorithms. The third layer consists of DBNs, which estimate a learner’s past, current, and future
abilities across different measurement time points. This offers probabilistic real-time updates of a
learner’s ability through interaction with the CAT engine.

Therefore, in this study, first, we developed an adaptive formative assessment system using CAT
and DBNs, called CAFT. After this, the validity, reliability, and efficiency of CAFT were evaluated by
simulation study and application studies. In the simulation study, the learners’ estimated abilities
and the simulated learner’s true abilities were compared for evaluation of the validity and reliability.
The number of items used in CAFT was also measured in order to compare how many items are
required to reach the same level of measurement precision under CAFT as when the full item set was
used. Additionally, an application study was conducted for examining the reliability and efficiency of
the system using data collected from the introduction to statistics course of an online university.
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3. Materials and Methods

3.1. Materials

Figure 2 presents a high-level abstraction of the adaptive formative assessment system using the
CAT procedure. Basically, there are five layers including (1) the item generation system: educators
generate items and build several tests in any discipline. Item banks may only contain items from the
same discipline, and educators can authorize tests for a particular discipline by assembling items from
the respective item bank. The sequential collection of such tests serves as formative assessment across
measurement time points. In addition, this layer conducts calibration of the item bank. (2) The CAT
system: this system adaptively selects an item from the item bank based on the examinee’s response
to the previous item through several different statistical algorithms. (3) The formative assessment
system: an instructor publishes a set of tests for formative assessment during their instruction of a
course. This system adaptively selects a test from the set for examinees based on their current ability
level across measurement time points aligned with the instruction or curriculum. (4) The real-time
estimation system: this system estimates an individual learner’s past, current, and future abilities
and learning paths in real-time using DBNs. (5) The delivery system: this system reports diagnostic
feedback about a student’s learning progression including the student’s current level and how their
level has changed during the course. This information can be linked to the adaptive learning system
for adaptively choosing an instructional strategy and learning materials.

Figure 2. A system of computerized formative adaptive testing (CAFT) architecture.

3.2. Calibartion and Construction of the Item Bank for a Simulation Study and an Application Study

Forty items were generated for assessing two sample t-tests in an introduction to statistics course.
The content objectives of the items were (1) knowing how to make a statistical research question related
to t-tests, (2) understanding the basic statistical properties and assumptions about t-tests, (3) knowing
the procedure of conducting a hypothesis testing of t-tests, and (4) applying and understanding
the interpretation of t-test results. The quality of the item bank was evaluated before conducting a
simulation and application study. Then, 410 samples were recruited from an introduction statistics
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course at an online university, 69% of which were females and 31% were males. The average age was
42.1 with a standard deviation of 6.9 and a range of 20–58.

The psychometric properties of all items in the item bank were assessed by (1) unidimensionality,
(2) local independence, and (3) item fit. The unidimensionality as one of the assumptions in the IRT was
evaluated by exploratory and confirmatory factor analysis. The Q3 statistic [28] was used for the test of
local independence. Lastly, the item fit was evaluated using S-X2 [29]. After assessing the quality of the
items, item parameters such as item difficulty and discrimination were used for generating simulation
data. All items and learners were estimated using the graded response model (GRM) [30] as one of the
polytomous item response theory models because all items were multiple choice items in this study.

3.3. A Simulation Study

A simulation study was conducted for evaluating the performance of CAFT using the Monte-Carlo
(MC) simulation method. The data of 1000 examinees were simulated using ability parameters
randomly drawn from the normal distribution (Mean = 0, Standard Deviations = 1), and the item
parameters were estimated by real data. The validity and efficiency, conditional measurement bias,
mean squared error, root mean squared error and test overlap rate (T) were computed under different
stopping rules [31,32].

Bias =

∑N
1

(
θ̂n − θn

)
N

(1)

MSE =

∑N
1

(
θ̂n − θn

)2

N
(2)

RMSE =
√

MSE (3)

T =
I
B

(4)

where N is number of examinees, θ is the examinee ability, θ̂ is estimated the examinee ability, I is
the number of items in the item bank B, and S2 is the variance in the exposure rates of all items in the
item bank.

3.4. An Application Study

The real application study was conducted using 120 students for implementing CAFT in the
statistics discipline. One hundred and twenty students took the adaptive formative assessment during
an introductory statistics class, and their learning progression was evaluated to determine whether
they possessed the required knowledge. Table 1 shows the descriptive statistics of the subjects.

Table 1. Descriptive statistics of the subjects.

Percent (%) Count

Educational Level

1 year 66.7 80
2 years 12.5 15
3 years 12.5% 15
4 years 8.3 10

Age

20 25.0 30
30 37.5 45
40 16.7 20
50 20.8 25

Gender
Male 40.0 48

Female 60.0 72

Job Status
Full time 36.7 44
Part time 23.3 28

No 40.0 48



Appl. Sci. 2020, 10, 8196 7 of 17

3.5. Methodology

3.5.1. Statistical Functions of the CAFT Software

We developed the CAFT engine in such a way that it can administer adaptive formative assessments.
Figure 3 shows a screenshot of the graphical user interface in the CAFT engine. CAFT consists of
seven sections containing functions including (a) test options, (b) item options, (c) IRT model selection,
(d) adaptive options: adaptive selection algorithms, (e) learner estimation method, and (f) output files
and simulation.

Figure 3. An example of CAFT using the CAT system: Engine Window. (A): options related to general
item information; (B): options related to the general test information; (C): options related to the IRT
models; (D): core part of the adaptive system; (E): the examinee’s ability estimation area; (F): area for
selecting data files or conducting a simulation.

The (A) area comprises the options related to general item information. It consists of (1) the number
of items in the item bank, (2) the maximum number of items for the administered test, (3) the minimum
number of items for the test, and (4) the stopping criterion for the adaptive test. In addition, this part
provides the output files related to the item characteristics including item difficulty, discrimination,
and information curve. The (B) area consists of the options related to the general test information,
which is more connected to implementing adaptive formative assessments. It contains (1) the number
of tests that the sequential formative assessment will have, (2) the maximum number of tests in a set of
tests, and (3) the desired outputs related to the formative assessment including a learner’s learning
progression and test usage trace. The (C) area provides the options related to the IRT models, namely,
Rasch, 1PL model, 2PL model, and GRM, which would be chosen depending on the item characteristics.
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The (D) area is the core part of the adaptive system. It contains different adaptive algorithms that
a user can choose from. Moreover, it contains the methods for the first item selection, which determines
what method is used to generate the first item from the item bank. The user can choose one of the
options for implementing adaptive item selection. The first method is maximum Fisher information
(MEI), which is used for finding items that maximize the Fisher’s information for a learner with the
interim proficiency estimate and the number of items administered [33]. The next method is likelihood
weight information criterion proposed by Veerkamp and Berger. In the likelihood weight information
method, the information function is summed through the ability and weighted by the likelihood
function after item administration has been performed. The last item selection option is the minimum
expected posterior variance (MEPV) [34]. This method uses predictive distribution, and it selects items
that yield the minimum predicted posterior variance given previous responses. The system picks the
item ik at stage k remaining in the item bank that minimizes the expected posterior variance.

The (E) area is about the examinee’s ability estimation. It contains the method options for ability
estimation and standard error calculation. This software provides two methods for estimating a
learner’s ability, including the maximum likelihood estimate and the expected a posteriori estimate.
The maximum likelihood estimate is used to estimate a learner’s ability by maximizing a likelihood
function. The likelihood function of the responses to all items administered is computed as follows:

θ̂ML
uAk
≡ argmaxθ

{
L(θ|uA, ξA) : θ ∈ (−∞,∞)

}
, (5)

where a learner’s ability = θ, a bank of items ≡ B, a set of items administered after stage k ≡ Ak,
a set of items remaining at stage k ≡ Rk = B − Ak−1, a response to item i (mi possible categories):
ui ∈ {1, 2, 3, . . . , mi}, a single item administered at stage k≡ ik, a response to item i at stage k ≡ uik ,
and ξ refers to the item characteristics, such as item difficulty and item discrimination, depending on
the IRT models.

Meanwhile, the expected a posterior estimate (EAP) combines prior information about learners
with likelihood information from the data [34]. EAP assumes that proper prior information about
learners exists. The EAP can be computed by the following equation:

θ̂EAP
uAk
≡ E[θ] =

∫
θg

(
θ
∣∣∣uAk , ξAk

)
dθ (6)

Additionally, this software computes the standard error of measurement for selecting and stopping
CAT, for which posterior variance is used.

Lastly, the (F) area is for selecting data files or conducting a simulation. The data files, including
the response data, item characteristics data, and examinees’ abilities data, can be uploaded, and a
simulated data file can be generated.

3.5.2. Dynamic Bayesian Network for Diagnostic Learning Progression under the Adaptive Formative
Assessment System

Since CAT is an adaptive system, a psychometric method should be developed in order to
estimate each student’s learning progression over multiple measurement time points. The estimation
of a learner’s learning progression over multiple time points in CAFT is produced by DBNs [35].
DBNs are a way to extend a static Bayesian network to model probability distributions over multiple
time points [36]. DBNs offer a real-time updating method to estimate a learner’s previous, current,
and future states of a system over a specific period of time [37].

The DBNs for a formative assessment system contain prior information on the hidden state, P(X1),
a transition function of the hidden states over multiple time points, P(Xt| X1:t − 1), and an observation
function given the hidden state, P(Yt| Xt). The detailed expression about three probability matrices are
as follows:
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Initial probability matrix of the hidden state at the first time point, P(X1);
Transition probability matrix, P(Xt| X1:t − 1);
Conditional probability matrix, P(Yt| Xt).

Another aspect of DBNs supports the monitoring of learning progression over a specific period
of time in a formative assessment. Once an observation has been made on a subset of the variables
in the network at a certain point in time, educators are able to make inferences about the remaining
unobserved variables in the network at any given time point. In other words, the DBNs reflect the
states at previous and future points in time, as well as the current state, because the states at the current
point in time will impact the state in the future and are impacted by the states in the past. Therefore,
there are three main inferences that can be performed using DBNs:

Smoothing: The process of monitoring states at previous time t − 1 given evidence at time t;
Filtering: The process of monitoring states at time t given evidence at time t;
Prediction: The process of monitoring states at future time t + 1 given evidence at time t.

4. Results

4.1. Item Bank Evalutioan

First, the quality of the item bank was evaluated to see if all of the items were appropriate to be
used in this study. The unidimensionality, model fit, local independence, and item fit were assessed
(Table 2). The variance explained by the first factor was 69% in the exploratory factor analysis, which
means that there was a dominant factor and unidimentionslity was assumed. In addition, the model
fit statistics of the one-factor model were computed using confirmatory factor analysis. CFI was 0.95
and RMSEA was 0.04, indicating that the one-factor model is acceptable. For the local independence
evaluation, the Q3 values of all of the items were computed, all of which were below 0.36, indicating
that all of the items are locally independent based on the criterion that Q3 values below 0.36 represents
local independence [38]. Lastly, the item fit statistics were computed using S-X2 statistics. The p-value
of the S-X2 statistics of all items was above 0.01; hence, all items were appropriate enough to be used.
Therefore, 40 items in the item bank were qualified to be used in CAT. Figure 4 shows the information
and standard error of measurement curve of the item bank.

Table 2. CBIAS, CRMSE, and test overlap rate (T) calculation.

Stopping Rule CBIAS CRMSE T

None −0.004 0.114 1
SE (theta) < 0.2 0.002 0.147 0.69
SE (theta) < 0.3 0.006 0.217 0.39
SE (theta) < 0.4 0.008 0.311 0.28

Note. CBIAS, conditional measurement bias; CRMSE, conditional root mean squared error; T, test overlap rate; SE,
standard error.
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Figure 4. Information and standard error of measurement curve of the item bank.

4.2. Simluation Study

4.2.1. Validity and Efficiency Measures

The validity of the CAFT system was evaluated by computing the measures of the conditional
measurement bias (CBIAS), conditional root mean squared error (CRMSE), and test overlap rate (T)
across all areas of ability (Table 2). The values of CBIAS, CRMSE, and T across all θ areas are compared
in terms of four different stopping rules (i.e., the adaptive testing is stopped if the criterion of the
stopping rule is met). The algorithms of the stopping rules are based on the standard error of a learner’s
ability. Since the value of the stopping rule corresponds to the value of the standard error, a smaller
stopping rule means that there is less standard error in the learner’s estimated ability, and therefore
higher measurement precision. The CBIAS and CRMSE were computed by the discrepancy between the
learner’s abilities as estimated by CAFT and the simulated learner’s true abilities. The values of CBIAS,
CMSE, and CRMSE decreased as the stopping rules became smaller. This means that the measurement
precision of CAFT was higher as the stopping rules of CAFT were made stricter. In addition, the test
overlap rate was computed to count the number of items used in CAFT. The test overlap rate increased
as the stopping rules decreased. This is because the stricter the stopping rule became; the more items
were used from the item bank. Therefore, the results found that CAFT functions that as the stopping
rules decreased, the measurement accuracy and precision increased based on the measures of the
CBIAS and CRMSE and the number of items used from the item bank also increased.

4.2.2. Reliability Measures and Number of Items Used

The mean and SD of the number of items used, reliability values, and correlation values were
computed in the simulation study (Table 3). The mean and SD of the items used increased when the
stopping rule decreased (i.e., measurement precision was made stricter). The average reliability values
by Cronbach’s alpha were computed using the used items used in the simulation study. The reliability
values increased as the stopping rules decreased.

Table 3. Reliability measures.

Stopping Rule Number of Items Used Reliability r
Mean SD

None 40 0 0.98 1
SE (theta) < 0.2 27.67 12.01 0.95 0.97 **
SE (theta) < 0.3 15.80 8.93 0.92 0.94 **
SE (theta) < 0.4 11.23 4.92 0.89 0.91 **

Note. ** is p-value < 0.01.
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That is because more items were used as the stopping rule decreased and the measurement
precision increased. These results show that the reliability was already above 0.9 by using only an
average of 15.8 items. This indicates that CAFT is efficient, which means that CAFT can estimate a
learner’s ability while using less items without loss of measurement precision. Correlations between
the estimated learner’s ability and the no stopping rule or the remaining stopping rules were computed.
The values of Pearson’s correlation ranged from 0.91 to 1, indicating that CAFT functioned well under
different stopping rules. In more detail, the correlation reached 0.97 between the estimated learner’s
abilities by CAFT using only 27.67 items from the item bank and the estimated learner’s abilities when
using all items in the item bank. Therefore, CAFT reached similar reliability while using 31% less items
than a fixed test in this case.

4.3. Real Data Study

The purpose of the application study was to evaluate the efficiency, validity, and reliability of
CAFT. CAFT was applied to real assessment system for the introduction to statistics course of an online
university. Overall, 1000 learners were simulated for the simulation study and 120 learners were used
in the real application study.

4.3.1. CAT Process in Application Study

The application study was conducted with 120 learners. All learners took the same statistical
assessment as was used in the simulation study. Table 1 displays the descriptive statistics of the subjects
in the application study. Half of them were given all of the items from the item bank, meaning there
was no stopping rule, while the rest of them took adaptively chosen items where the stopping rule
(SE) was less than 0.3. After this, the abilities estimated by CAFT, with a stopping rule of 0.3, were
compared with the abilities estimated by CAFT with a no stopping rule. The average number of items
used with the 0.3 stopping rule in CAFT was 21.3 items, while all items in the item bank (40 items)
were answered with a no stopping rule. The Pearson’s correlation between the learners’ estimated
abilities with a stopping rule of 0.3 and a rule of none was 0.97. This means that the CAFT assessment
provides efficient and accurate ability estimates while using approximately half as many items in this
case. Figure 5 shows the adaptively used items in terms of a learner’s ability change. The X-axis
indicates the estimated abilities of the different learners, and the Y-axis indicates the number of items
used. Since the items were adaptively selected, as Figure 5 shows, the number of items used was
different in terms of a learner’s ability. Moreover, the number of times a particular item was used was
not the same for all items. Figures 6 and 7 show two examples of the estimation of an examinee’s ability.
Figure 6A indicates the estimated ability change by administering different items, while Figure 6B
shows the final estimated ability of the examinee. Figure 7 contains the same information as Figure 6;
however, the examinee in Figure 7 was given more items than the examinee in Figure 6. In Figure 7,
the examinee had 25 items in order to estimate their final ability, while in Figure 6, the examinee had
10 items. This means that each examinee received adaptively chosen items from an item bank in order
to estimate their ability accurately and efficiently. Therefore, we can confirm CAFT functioned well
with this information.
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Figure 5. Items were adaptively chosen based on a leaner’s ability. (A) The number of items used in
terms of a learners’ abilities. (B) The number of items selected from an item bank.

Figure 6. An example of an examinee’s estimated ability change using CAFT. (A) The examinee took
10 items and his estimated ability changed in terms of the adaptively selected items. (B) The final
estimated ability of the examinee.

Figure 7. An example of an examinee’s estimated ability change using CAFT. (A) The examinee took
25 items and his estimated ability changed in terms of the adaptively selected items. (B) The final
estimated ability of the examinee.

4.3.2. Validity Measures Using Real Data

We evaluated the concurrent validity and predictive validity of CAFT. The correlation values were
computed between the abilities estimated by CAFT for a midterm exam and a final exam that covered
the same domain (Table 4). The final exam included more advanced statistical knowledge in addition
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to the content of the midterm exam. The correlation between the estimated abilities from CAFT and
the sum scores of the midterm exam was 0.83 under a no stopping rule and 0.81 under a 0.3 stopping
rule. Such high correlation values indicate that CAFT has high concurrent validity. In addition,
the correlation between the estimated abilities from CAFT and the sum scores of the final exam was
0.69 under the no stopping rule and 0.67 under the 0.3 stopping rule. Therefore, the predictive validity
of CAFT was confirmed.

Table 4. Correlation between the estimated ability by CAFT and the sum scores of the exams.

Stopping Rule Midterm Exam Final Exam

None 0.83 0.69

SE (theta) < 0.3 0.81 0.67

4.4. Estimation of Individual Learning Progression Using DBNs

An instructor can build a formative assessment system with several tests, and learners take the
tests in terms of their previous ability levels. Then, the DBNs estimate the probability of a learner’s
level change over multiple testing time points. Figure 8 shows a test process/testing path for each
learner through the adaptive formative assessment system. It is shown that each learner has a different
number of tests adaptively administered to them across different time points.

Figure 8. An example of a testing path from five learners in the adaptive formative assessment.

Figures 9 and 10 display examples of the representation of DBNs for two learners’ level status
changes in multiple tests over different measurement time points. DBNs estimate the probability of a
learner’s learning status changing across tests. Figure 9 shows the learning progression of the second
learner. The second learner took three tests, and the levels changed from level 2 to level 3 and from
level 3 to level 4. The probability that the learner was at level 2 in the first test was 0.68, while the
probability that the learner was at level 3 in the second test was 0.47. Lastly, the probability that the
learner was at level 4 in the third test was 0.70. After the third test, the test was stopped because the
learner had reached the targeted level 4 within three tests. Figure 10 shows the testing process of the
third learner, which is the same as that of the second learner, while the second learner took four tests
because he did not reach level 4 until test 4.

Figure 9. Level change of the second learner in CAFT.
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Figure 10. Level change of the third learner in CAFT.

5. Discussion

Current educational situations necessitate developing and implementing alternative strategies
to replace the previous functions of learning evaluation settings due to COVID-19. The integration
of artificially intelligent components into educational systems greatly helps to efficiently provide
meaningful information for evaluation and learning [39–41]. On the one hand, adaptive testing
technology offers an efficient and reliable personalized evaluation system. On the other hand,
formative assessment systems provide information about the knowledge, skills, and abilities (KSAs)
that a student may have obtained, their learning progression over time, and diagnostic feedback
relative to their instruction and curriculum. The combination of adaptive testing technology and
a formative assessment system is a promising means for effectively generating data that provide a
teacher insight into where their students are struggling collectively and where particular students
might need more help in accordance with the curriculum.

While substantive theory and task design aspects in online formative assessments have been
investigated, few analytic systems that allow for adaptively implementing formative assessments have
been proposed [42,43]. The linking of an adaptive algorithm as a psychometric method with an online
formative assessment system allows the assessment to be efficient, accurate, and personalized [44,45].

This study developed CAT for an online formative assessment system, called CAFT (computerized
adaptive formative testing). CAFT is an evaluation technology that integrates seamless artificial
intelligence elements into education for remotely delivering a customized diagnostic learning service.
CAFT takes advantage of the adaptive functions of CAT and the statistical estimation method from
DBNs. The adaptive functionality of CAT allows for adaptively selecting an item for a test and selecting
a test for a sequential test aligned with a curriculum. In addition, DBNs estimates the real-time change
of a learner’s ability across multiple tests. Therefore, a combination of CAT as an adaptive selection
method and DBNs as a real-time estimation method is the core ingenuity of CAFT as an integration
of artificial intelligence into an e-learning system. This paper addressed the detailed specification
and functions of CAFT. The performance of CAFT was examined using a simulation and application
studies. The results showed that CAFT is a reliable and efficient testing system.

However, the current system has a few limitations. First, the system does not contain detailed
functions related to item development. A valid adaptive formative assessment using CAT should
coherently consider substantive concepts, item design, and statistical analysis. The connection among
substantive theories, item design, and analytic methods provides information about how students
are progressing and where they are having difficulties solving items. This information is useful in
the adaptive selection of items, assignments, or alternative instructional approaches in terms of a
learner’s level. If the item can be generated by various item features linking the substantive theories in
a discipline, assessment can be more targeted and adaptive. Since the change of just one of the item
features can require students to use different KSAs, more diagnostic information can be obtained using
exquisite item design. Second, while there is a possibility of using CAFT for distinguishing experts
from novices in perception, procedures, acquisition, and learning progression, more research into a
valid psychometric model must be conducted. Third, a connection between adaptive learning and
adaptive evaluation provides a more comprehensive and meaningful learning management system.
A systematic connection between an adaptive learning system from CAFT and adaptive learning will
be the topic of future study.
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Despite these limitations, the CAFT system has benefits not only for creating an effective and
efficient test setting, but also for providing information that helps teachers better understand students’
learning progression. Eventually, the results of the assessment can be effectively used for the selection
of instructional strategies such as re-teaching, utilizing alternative instructional approaches, altering
the difficulty level of items or assignments, or offering more opportunities for practice.

In this study, we addressed the system development, theoretical models, and system
implementation that can support adaptive evaluation and automatic learning evaluation.
Traditional testing relies on fixed and static assessments. CAFT is a progression of testing that
utilizes modern measurement techniques to integrate artificial intelligence into the educational process.
Instead of giving all students the same test, CAFT dynamically generates tests from an item bank in a
manner that is unique to the students taking the test. In addition, CAFT, by integrating adaptivity
into the formative assessment process, can create a testing system in which the entire testing process
is tailored to the individual as opposed to only certain tests. The result is a testing experience that
is more efficient at gauging students’ progress over time and more informative for both students
and instructors. As such, CAFT is a novel system well equipped to offer an adaptive personalized
learning service.
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