iriried applied
L sciences

Article

Revisiting Two Simulation-Based Reliability
Approaches for Coastal and Structural
Engineering Applications

Adrian-David Garcia-Soto 1'*(, Felicitas Calder6n-Vega 1-2, César Mésso 230,
Jestus-Gerardo Valdés-Vazquez 10 and Alejandro Hernandez-Martinez !

1 Department of Civil and Environmental Engineering, Universidad de Guanajuato, Juarez 77, Zona Centro,

36000 Guanajuato, Gto., Mexico; felicitas.calderon@upc.edu (F.C.-V.); valdes@ugto.mx (J.-G.V.-V.);
alejandro.hernandez@ugto.mx (A.H.-M.)

Laboratori d’Enginyeria Maritima, Universitat Politécnica de Catalunya, Jordi Girona 1-3, Modul D1,
Campus Nord, 08034 Barcelona, Spain; cesar.mosso@upc.edu

Centre Internacional d'Investigaci6 dels Recursos Costaners, Jordi Girona 1-3, Modul D1, Campus Nord,
08034 Barcelona, Spain

*  Correspondence: adgarcia@ugto.mx; Tel.: +52-473-1020-100 (ext. 2235)

Received: 17 October 2020; Accepted: 17 November 2020; Published: 18 November 2020 ﬁr;e(f;tfgsr

Featured Application: Normality polynomials can be used to compute reliabilities for coastal
and structural engineering applications, including the assessment of uncertainty in the estimated
reliability index. Additionally, multi-linear regression can be applied to the simulated results to
determine design points and sensitivity factors. These applications can be potentially extended
to different engineering (or other) fields and to system reliability (e.g., for reinforced concrete
frame buildings).

Abstract: The normality polynomial and multi-linear regression approaches are revisited for
estimating the reliability index, its precision, and other reliability-related values for coastal and
structural engineering applications. In previous studies, neither the error in the reliability estimation
is mathematically defined nor the adequacy of varying the tolerance is investigated. This is addressed
in the present study. First, sets of given numbers of Monte Carlo simulations are obtained for three
limit state functions and probabilities of failure are computed. Then, the normality polynomial
approach is applied to each set and mean errors in estimating the reliability index are obtained,
together with its associated uncertainty; this is defined mathematically. The data is also used to derive
design points and sensitivity factors by multi-linear regression analysis for given tolerances. Results
indicate that power laws define the mean error of the reliability index and its standard deviation
as a function of the number of simulations for the normality polynomial approach. Results also
indicate that the multi-linear regression approach accurately predicts reliability-related values if
enough simulations are performed for a given tolerance. It is concluded that the revisited approaches
are a valuable option to compute reliability-associated values with reduced simulations, by accepting
a quantitative precision level.

Keywords: reliability index error; power law; normality polynomial; multi-linear regression;
sensitivity factors; coastal engineering; structural engineering

1. Introduction

Simulations are often used to estimate the probability of failure of structural elements and systems
because they are a very versatile option which is not restricted by complex and implicit limit state
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functions (LSF), the use of sophisticated methods (e.g., finite element method), and/or highly non-linear
structural behavior. However, millions of crude Monte Carlo simulations (MCS) could be required
to adequately estimate structural probabilities of failure, which may not be feasible; also, the results
could differ from a set of simulations to another. To cope with this issue, modified versions of the crude
simulation approach, surrogate modeling, subset simulation, and other techniques have emerged and
been used in the last decades not only for structural engineering but also in other fields. To mention
only a few studies which employ some of these techniques, optimization using surrogate modeling,
reliability analysis of deteriorating structural systems and the reliability assessment of a structure
affected by chloride attack are reported in the studies by [1-3], respectively. Importance sampling has
also been used to estimate the system reliability of deteriorating pipelines [4]. Other kind of approaches
are also reported in the literature to compute reliabilities [5]. The different reliability methods can be
applied not only to different fields in structural and geotechnical engineering, as for the case of sudden
column removal in reinforced concrete buildings and rockfall protection structures [6-8], but also to
many other research and engineering fields, for instance to artic oil and gas facilities [9] and to coastal
engineering applications [10]. This last case is used in the present study to show the applicability of
two revisited methods to obtain the reliability of coastal structures.

Other simulation-based reliability methods have not been given so much attention. In this study a
couple of these alternatives are revisited to inspect their feasibility and adequacy to estimate reliability
indices. One of them employs polynomial transformations of a nonnormal variable to a normal one
by fitting simulated data with fractile constraints and can be referred to as normality polynomial
approach [11]. The second approach was developed to derive the design point and sensitivity factors
(in the FORM, first order reliability method, perspective) from simulated data [12] and it is referred to
as the multi-linear regression approach in this study. A similar approach to the normality polynomial
method was previously developed by Hong and Lind [13] and named normal polynomial approach
(note that the names are slightly different); unlike the normality polynomial approach, the normal
polynomial approach has been paid much more attention (judging by number of citations), even very
recently (e.g., [14]). Both methods are based on the fact [15,16] that a fractile of a random variable can
be expressed as polynomial of a fractile of a standard normal variable (normal polynomial), and that
a fractile of a standard normal variable can be expressed as a polynomial of a fractile of a random
variable (normality polynomial). Although the normal polynomial approach [13] is not considered
in the present study (we prefer to focus in the less explored alternative), the findings here could be
extended to do so.

To inspect the adequacy of the normality polynomial approach and the multi-linear regression
approach (the methods revisited in the present study), three LSFs are considered. One is based on a very
simple classical case; other one is based on a structural application from a previous study and the last
one is related to the reliability of a coastal structure. Extensive simulations are performed to estimate the
error level by using the normality polynomial approach and its associated uncertainty; neither of these
was thoroughly carried out in previous studies, nor the application to coastal engineering. The design
point and sensitivity factors (also the reliability index) obtained from simulated data are compared
with those obtained from FORM,; they are derived from a multi-linear regression of the simulated data.
It is worth to mention that these methods, and others developed in the 1990s, used to state that a large
number of simulations were not feasible; nevertheless, the computer power has increased substantially
in the last decades, and the limitations of those days may not be as restrictive as before and thus the
applicability could be currently extended. Furthermore, the commercial software available nowadays
for engineering applications normally includes amenable built-in functions for linear and multi-linear
regression analysis which simplifies the programming.

The main objective of this study is to define the error statistics in the reliability index by using
normality polynomials and to reassess the feasibility and adequacy of this method and the multi-linear
regression approach for estimating the reliability of structural and coastal engineering systems including
the determination of sensitivity factors.
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This study is of significance to the coastal and structural engineering fields because the number of
simulations required to compute reliabilities can be reduced by accepting defined error levels when
using normality polynomials, which was not established in previous studies. This is possible because
the error in the estimation of the reliability index is mathematically defined as a function of the number
of simulations for the cases investigated. Additionally, other contribution is the use of multi-linear
regression applied to simulated results as a mean to determine sensitivity factors, design points and
the probability of failure; not only a slightly modified (improved) version of the multi-linear regression
approach but also the number of simulations and tolerances required to achieve adequate results are
provided for guidance.

2. Methods Revisited

2.1. Normality Polynomial

In this section the normality polynomial proposed in [11] is described. The mathematical form is
given by

r

=Y av) 1)

j=0

where z;, denotes p-fractile of a standard normal variable Z with probability density function (PDF),
®(z), and cumulative distribution function (CDF), ®(z); y, denotes p-fractile of a random variable Y with
PDF, fy(y), and CDE, Fy(y); aj, j=1,2,...,r, are the coefficients of a rth-order polynomial determined
by fractile fitting. The fractile fitting is based on considering the following fractile constraints from a
set of independent random observations of Y (i.e., ¥1, Y2, --. i, - .. Yu) arranged in ascending order

i ,
o F) = (o =) i=12m @
These fractile constraints can be mapped into a normal space by using
zi=® YF(y)), i=1,2 ..., n ®3)

where ®~1(e) denotes the inverse of the standardized normal distribution function. The rth-order
polynomial (Equation (1)) with  + 1 < n is used to model the distribution of the transformed random
variable Y. By considering the constraints in Equation (2), the coefficients 4; in Equation (1) can be
determined using the least square method by minimizing the error &4 given by

£fit = Zm:[Zf - Z “z‘(%’)ir @)

=1 i=0

where m is the number of constraints. The probability P (Y < y) is given by the CDE i.e., F(yg), and can
be computed with

F(yo) = q’(zp) ®)

where z, is obtained by substituting yq instead of y;, in Equation (1). If Y is the resulting random
variable of the LSF, the probability of failure, py, is

pf=F(0) = ®(ao) (6)

and the reliability index is [17]
p=-2"(py) @)

From Equation (7), it can be inferred that the reliability index can be readily obtained once the
coefficients a; are determined (i.e., f = —ap). This is so, because ag has a similar meaning to the so-called
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generalized reliability index [11]. It is noted that the roots of the polynomial are not required [11]
(unlike in the method in [13]). In the applications shown later, a third-order normality polynomial
is used [11].

It is pointed out that although the mathematical background of the normality polynomials is not
thoroughly described here, it is based on sound grounds [11], like the advance theory of statistics [15,16]
and the fact that fractile constraints hold by a combinatorial argument [18,19].

Before going to the applications, the second revisited approach in this study is described in the
following section.

2.2. Design Point and Sensitivity Factors from Simulations

The obtaining of the design point and sensitivity factors (from the FORM standpoint) based on a
previous study [12] is described herein. The basic idea is that simulated data close to the limit state
surface (within a prescribed tolerance, ¢) can be retrieved, as well as their associated sampled values for
each or the random variables given by the LSF (input values combinations considered as a point in the
hyperspace), and a multi-linear regression is performed to approximate the linearized limit state surface
at the design point. Before the multi-linear regression is performed to fit the hyperplane, the considered
points are mapped into a standard normal space. Such hyperplane is an approximation of the LSE,
g, and is used to assess the design point and sensitivity factors. The mathematical formulation is
given below.

A set of n independent random variables is denoted by X = (x1, Xy, ... , x;). X defines the j-th
randomly generated value of X. For a given number of crude Monte Carlo simulations, s, Xjs which
satisfy the criterion below (slightly changed from the original formulation in [12]) are selected

0-g(x*) <@ ®)

where X* in the LSF is included to emphasize that it is a function of a set of random variables. Hong and
Nessim [12] used e = 0.05 (i.e., 5%) in their study (instead of ¢; in Equation (8) and defined below).
However, it was noticed that this value could be inadequate depending on the units and magnitude of
the considered random variables. Therefore, the distance between zero and the smallest simulated
value of g in absolute terms (/};,) is used to set the tolerance as the fraction given by Ij,,, multiplied by
e (i.e., ey = e X I}y is used instead of e in Equation (8)). The selected values of X* based on the described
criterion are then mapped into a standard normal space [17] using

Z= 1,22, 2] = [0 (Fi(x1)), @7 (Fa(x2)), .., @7 (Fu(xn)) ©

where Z is the image of X in standard normal space, ® is the normal standard CDFand F;, =1, 2, ...,
n, are the CDFs of the random variables x;. In the standard normal space, a linear function is fitted to
the set of selected points using multi-linear regression. Such linear function is given by

n
Z bizi+c=0 (10)
i=1

where b; and ¢ are constants to be determined in the multi-linear regression analysis. The resulting
linear regression equation is to be used in the same sense as the FORM [17] to estimate the design point
and sensitivity factors. The latter are denoted by «j,i =1, 2, ... , n, and given by the gradient vector of

Equation (10) as indicated below
@ = —bi/,/ b2 (11)

Note that the reliability index can also be estimated as the smallest distance between the linear

surface and the origin as
B =d\z.p? (12)
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As regards the design point (in the normal space) it is given by

Zjg = aiff (13)

The design point in the original space can now be determined with the inverse transformation of
Zid, as
xig = F ' (®(zia)) (14)

The subscript i in Equations (11)—(14) is associated to the random variable x;. The inverse
transformation in Equation (14) is dependent on the PDF of x;; and, in the case of the Longuet-Higgins
distribution [20] used for the coastal engineering example, the inverse transformations of z;; requires
of a numerical approach to be determined.

The formulation in this section, and the one in the previous section, are to be applied to three
case studies in the following section to evaluate their adequacy for structural and coastal engineering,
and to assess their deviation with respect to the exact reliability index.

3. Applications and Results

3.1. A Classical Limit State Funtion

The two approaches described in the previous section are applied here to the simplest classical LSF
g=R-L (15)

where R and L can be considered, in a broad sense, as random variables for the capacity and demand
of a system element. For the sake of simplicity and illustration purposes, units are skipped and
both random variables are assumed independent and characterized with lognormal distributions,
with mean values and standard deviations mg = 10, my = 5.6, or = 1, and o, = 0.75 for the capacity and
demand, respectively. These values are arbitrary, except by the fact that they lead to a reliability index
equal to practically 3.5, which is a common reference for code calibration and that can be computed
with the following expression [21,22]

(ln mg — $1In(1+ v%{)) - (ln mp—Ln(1+ v%)) _Inmg—Inmy

\/ln(l%—v%{) +In(1+v?) N

where vg and vy, are the coefficients of variation of R and L, respectively. This reliability index is shown
in Figure 1a (dashed line), as a reference to inspect how close are the fis obtained by crude Monte Carlo
simulations as a function of the number of simulations (shown in logarithmic scale in the horizontal
axis from 2 x 10! to 2 x 107) to the exact value. The reliability index for Equation (15) using Monte
Carlo simulations (dashed-dotted line in Figure 1a) is obtained by plugging into Equation (7) the
following probability of failure

BRE = (16)

pf = nf“il/nsim (17)

which is simply the ratio of number of failures, ng;, to the total number of simulations. The latter
(i.e., ngy,) is also the number of fractile constraints when the reliability index is computed with the
normality polynomial approach, also depicted in Figure 1a (solid line).
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Figure 1. Reliability index as a function of the number of simulations. (a), (b), (c) and (d) are different
runs for the MCS.

Additional runs are shown in Figure 1b—d, which indicate that the results are different and
dependent on the generated random numbers of each run, but they stabilize if enough simulations are
performed or enough fractile constraints are used. Other observations from Figure 1 include that
cannot always be computed with the Monte Carlo simulations (MCS) (not a single failure is obtained),
while the opposite occurs when using normality polynomials, although significant deviations are
observed for a limited number of simulations, that the fitted normality polynomials tends to deviate
less from the exact reliability index for fewer g;,,, and that such error in the precision may not be large
for a relative small ng;y,,, (e.g., 1 X 10%).

To quantitatively inspect these deviations, frr is to be used as benchmark to assess the exactness
of the used methods (i.e., normality polynomials and MCS) in terms of the relative percentual error
given by

6= .Bhench - ﬁoth
bench

x 100 (18)

where B, denotes the reliability index considered as benchmark and Sy, is the reliability index
computed with any other method. A total of 1000 runs are performed for each #g;,,, and ¢ is computed
for each of the runs. Then, the mean values of the error and their uncertainties (the unbiased standard
deviation) are computed and plotted for the whole range of ng;, in Figure 2 (solid lines and dashed
lines for normality polynomial and MCS mean errors, respectively), where the mean errors + one
standard deviation are also depicted in grey lines.
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Figure 2. Deviations from the exact reliability index as percentage error.

Figure 2 shows that is not always possible to compute the statistics for the MCS; this happens
when not a single failure is reported in one or more of the 1000 runs for a given g, (at least 5 x 10 are
necessary). This is not a problem when using the fitted polynomials. Additionally, the MCS approach
always tend to larger mean errors and standard deviations for a decreasing number of simulations.
This makes the normality polynomial approach more adequate for estimating the reliability indices;
however, for few simulations the errors are too large. Nevertheless, the designer could decide which
precision level (quantitatively) is willing to accept using information like the one in Figure 2 as an aid
(and reduce the number of required simulations as a function of such an accepted error).

If desired, the curves in Figure 2 could be casted as a mathematical expression. For instance,
the following power equations fit very well the mean (i) and standard deviation (o) of the error in
Figure 2 (by fitting from 2.5 x 10? simulations and over)

pe = 257.2 X n; 0224 (19)
oe = 157.3xn; 02008 (20)

If the power in Equations (19) and (20) is assumed as —0.5 in both expressions, the coefficient of
variation of the error is v, = 150/250 = 0.6, i.e., it is constant and roughly independent of the number of
simulations; the actual v, obtained from the 1000 runs does exhibit such a roughly constant behavior
for this case, except that it is 0.7 (difference related to the actual different powers in Equations (19)
and (20)). Power equations like Equations (19) and (20) can be linearized by taking logarithms on both
sides. Therefore, if the involved variables are transformed into the logarithmic space, a linear fitting
can be performed. In this study, we simply used a built-in function in the commercial software for
the fitting.

Coefficients for the fitted normality polynomial in Figure 1a are shown in Table 1 (upper set of
values) for selected values of ng,,. The computing of these coefficients is based on minimizing the
error in Equation (4) and was implemented in the coded program by using a built-in function of the
programming language employed (MATLAB). As mentioned before, the coefficients ay can be linked to
the generalized reliability index. Coefficients for results in Figure 1b—d (or those associated to Figure 2)
were computed but not shown for brevity.
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Table 1. Coefficients of the fitted normality polynomials.

Classic LSE Equation (15)

Nsim ap al as as as
1x 103 -3.1193 3.9078 3.6571 -1.9371 —
1x 104 -3.3195 4.9672 1.8106 —0.9905 —
1% 10° —-3.4813 5.8709 0.2415 —0.1324 —

Structural LSE, Equation (21) ryp = 0.4

Nsim ap al as as as
1x 103 —3.0950 63170 x 10797 3.8257 x 1074  —3.2619 x 102! —
1x 104 —-3.2923 73372 %1079 21457 x 107 —2.3097 x 102! —
1% 10° —-3.3341 78972 x 1079 52658 x 10715  —1.0534 x 1072 —

Structural LSE, Equation (21) ry/p = 0.4 4th-order

Nsim ap al as as as
1x 103 —2.8726 1.7464 x 10077 27997 x 10713 —5.0461x 10720  3.1134 x 1072/
1x 104 —-3.2802 6.7401 x 10797  6.0193x 10714  -1.0616 x 10720  5.7321 x 1028
1% 10° —-3.2799 71276 x 10797 3.6215x 10714 —57785x 10721 2.4322 x 10728

As regards the reliability index, design point and sensitivity factors derived from the simulations
(i.e., those obtained with Equations (11), (12), and (14)), they are compared with those obtained by
applying the FORM to Equation (15). They are summarized in Table 2 for selected values of #gj,.

Table 2. Design point, f and a; by using multi-linear regression and first order reliability method (FORM).

Design Point Sensitivity Factors
Nsim p XR XL aR ar
1x 104 — — e — —
5 x 10% — — — — —
1 x 10° 3.5055 8.0699 8.0699 —0.5990 0.8007
2 x 10° 3.5055 8.0699 8.0699 —0.5990 0.8007
1% 108 3.5055 8.0699 8.0699 —0.5990 0.8007
FORM 3.5055 8.0670 8.0670 —0.5990 0.8007

Results listed in Table 2 indicate that when the points obtained by applying the criterion in
Equation (8) were enough to successfully perform a multi-linear regression (also with a built-in
function, as in the case of the normality polynomial fitting), § did not deviate from the exact value,
but marginally, just like the reliability index obtained with FORM. However, a relatively large ng;,, was
required, usually at least 1 x 10° simulations (by inspecting all the 1000 X 7;,, cases used to derived
Figure 2); this depends on each run (implicitly the generated random numbers in each simulation),
and sometimes less than 1 x 10° simulations are required. For the considered runs, 2 X 10° simulations
seem to guarantee the obtaining of the values reported in Table 2. In any case, when the muti-linear
regression is successfully performed, the results are quite adequate and invariant for increasing number
of simulations; this is also the case for the coefficients of the regression (i.e., they remain independent
of ng;,,,), which are ¢ = 0.5837, b; = 0.0998, and b, = —0.1333.

If the tolerance ¢; in Equation (8) is increased, the minimum number of required simulations
can be decreased. For instance, if e = 0.25 were used (instead of the actual used e = 0.05), 5 x 10*
simulations would be enough for a successful multi-linear regression. Moreover, the design point,
sensitivity factors and reliability index would be the same as those reported in Table 2. The opposite
would occur if e = 0.005 were used (instead of the actual used e = 0.05), i.e., a much larger number of
simulations would be required to determine the reliability parameters from the regression.
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Therefore, this approach based on multi-linear regression can be quite an adequate alternative by
itself to compute 3, conditioned on the feasibility of performing enough simulations, the number of
which can be decreased by using a large ¢; with the additional advantage that the design point and
sensitivity factors can also be determined.

In the following section a more realistic LSF for a structural application is used to further investigate
the revisited methods.

3.2. Reliability of Reinforced Concrete Beam under Flexure Moment

In this section the approaches described before are applied to a reinforced concrete beam (RCB)
subjected to flexure moment. The example is the same investigated in a previous study [23] but focused
only in one design code [24] and three ratios of the mean live to the mean dead load effect for the
beam. The rectangular beam section information, LSF, and statistics are succinctly reproduced below.
The LSF is

Asty

fibd
where B is the modeling error, f'; is the concrete compressive strength, A is the reinforcement steel
area, fy is the yielding stress of the reinforcement steel, b is the section width, & is the effective depth,
and D and V are the dead load and live load effect, respectively (flexure moment). The information of
all the independent variables in Equation (21) is summarized in Table 3. A is assumed deterministic
and equal to 3000 mm?. The PDFs of the random variables in Table 3 are based on previous literature,
which in turn reflects results from experimental projects, field information, observed phenomena,
and even the engineers experience to characterized these variables properly, since such PDFs have a
direct impact in the computed reliabilities, code calibration tasks, and ultimately in the safety of real
structures. More details can be found in [23] and the references therein.

gacr = BA; fyd(l ~0.59 ) -D-V 1)

Table 3. Random variables for the limit state functions (LSF) of the reinforced concrete beam

(RCB) considered.
Random Variable Mean coeff. of var. PDF
B 1.01 0.06 Normal
f’c (MPa) 31.6 0.145 Normal
fy (MPa) 474 0.05 Lognormal
b (mm) 303 0.04 Normal
d (mm) 990 0.04 Normal
D (kKN-m) * 0.05 Normal
V (kN-m) * 0.18 Gumbel

* denotes that these values are not determined until a ryp value is selected and used together with Equation (22).

Mean values of D and V are not defined in Table 3, but they are derived by considering given
mean live load effect (my) to mean dead load effect (mp) ratios (ryp = 0.4, 1.0 and 2.0 are used in
this study) and the assumption that the RCB just meets the code requirement; thus, the following
expression is used to determine the mean values.

As
e ) (22)

1.2mp + 1.6my = quSmfy(md B 0'59mfcfmb

where m denotes the mean values of the variables in the corresponding subscripts, and ® = 0.9.
Using the previous information, the normality polynomial approach is applied to Equation (21)
and the results are shown in Figures 3 and 4. These figures are analogous to Figures 1 and 2, except
that the reference reliability indices (dashed lines) correspond to the values computed using FORM,
that three cases of the ratio ryp = myymp are depicted (the largest s correspond to ryp = 0.4 and the
smallest to ryp = 2.0, as shown in Figure 3a) and that the error in Figure 4 is shown for ryp = 0.4
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(Figure 4a) and for ryp = 2.0 (Figure 4b), which is computed by considering in Equation (18) By as
the average of the 1000 runs for ngj,, = 2 X 107 (assumed as the exact value). MCS results are depicted
with dashed-doted lines. To perform the MCS, mp and my are defined using Equation (22) and ryp
as mentioned before. Once they are determined, MCS can then be performed to obtain samples of
D and V (and all other random variables in Table 3) and the probability of failure as per Equation
(17) can be computed. As an example of the simulated bending moments, histograms of D and V are
shown in Appendix A (Figure A1) for 1 x 10° MCS and ryp = 1.0; it can be observed that the values
are comparable in average (because ryp = 1.0 is considered), and that histograms for D and V clearly
resemble normal and Gumbel distributions, respectively, which is expected given that these variables
were sampled from such PDFs.

45 45 T
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©
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Figure 3. Reliability index as a function of the number of simulations for RCB. (a), (b), (c) and (d) are
different runs for the MCS.
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Figure 4. Deviations from the exact reliability index as percentage error for RCB; (a) yp = 0.4 and
(b) ryp = 2.0.
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From Figures 3 and 4 similar conclusions to those drawn from Figures 1 and 2 can be extracted.
Some additional observations worth to mention are that ng;,, = 1 X 10* seems a reasonable number of
simulations for the normality polynomial approach, if a compromise between ng;,, and error (in terms
of mean and standard deviation) is envisaged, that the fitted polynomials lead to better results than
the FORM for increasing n,;,, and that larger errors are obtained for smaller ryp; this latter aspect
could be attributed to a better approximation of the failure surface for larger ryp, since the first
order approximation to the failure surface by the other method shown in Figure 3 (i.e., the FORM),
also deviates more from the exact value for decreasing ryp.

By observing Figure 4, it is pointed out once more that error and its uncertainty is less for normality
polynomial when decreasing s, than for MCS for this case too and, as previously mentioned, is not
always possible to estimate the error for MCS for decreasing number of simulations. The error
for § obtained with the normality polynomial approach exhibits an asymptotic behavior towards
approximately pe = 1% for large n;,,. As before, power laws fit adequately the error and its uncertainty
and are defined as

pe =0xn_ +1 (23)
Oe = KXng, (24)

where 6 = 656, 1103, and 1349, y = 0.7401, 0.8493, and 0.9062, x = 129.8, 201, and 179.1, T = 0.4937,
0.5609, and 0.5703 for ryp = 0.4, 1.0, and 2.0, respectively. In Equation (23) the constant unity is
included to shift the curve upwards to reproduce the asymptotic behavior mentioned; nonetheless,
it could be skipped, and the equations will still fairly adequately describe the mean error. The fitting
for u, was performed for the whole range of n;,,, while for o, ng;,, from 250 and over was employed.
Note that although the range for the fitting could be established based on practical grounds and fitting
improvement, in any case the errors and their uncertainties follow a power law; this is the case for the
three case studies carried out in this study.

It is noteworthy that the normality polynomial approach leads to comparable y. and o, for
Figures 2 and 4, considering that the LSF for the RCB is a more complex (non-linear) function, and that
it has much more random variables and several PDFs.

The fitted coefficients of the polynomials for Figure 3 (corresponding to ryp = 0.4) and selected
Ngiy, are listed in Table 1 (middle set of values). If normality polynomials of order higher than 3 are
used, no further accuracy is gained (or even higher inaccuracies could be obtained; [11]). This is
confirmed by carrying out a single case for ryp = 0.4 using a 4th-order polynomial, since the results are
comparable to those of the 3rd-order polynomial case (Table 1, lower set of values). Note that the order
of the coefficients of the normality polynomials for the RCB problem can be very small (compared to
the classical LSF problem and to a coastal engineering application shown later); this could be due to the
units employed, and should not be understood as if the order of the polynomial could be decreased,
whereas obtaining comparable precision, because the use of at least third-order normality polynomials
was illustrated and found adequate in [11].

To end this section, the results of using the multi-linear regression approach for the LSF defined
in Equation (21) are listed in Table 4 for ryp = 1.0. The subscripts in Table 4 (and the units of the
design point) are associated to the random variables in Table 3. The reported values correspond to
the last of the 1000 runs used to develop Figure 4. As an example of the coefficients obtained by
multi-linear regression, the ones from the last of the 1000 runs (for deriving Figure 4) corresponding
to ryp = 1.0 and 1 x 10° simulations resulted in ¢ = 3.3635 x 10°, b; = 4.0861 X 10°, by = 2.7767 x 10°,
by =1.1215 x 10°, by = —1.1888 x 10°, bs = —9.1330 x 10°, b = 3.1471 x 104, and by = 2.8878 x 10°.
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Table 4. Design point,  and a; by using multi-linear regression and FORM for the RCB.

Design Point/(Sensitivity Factors)

Nsim B xp/lap)  xpllap)  xpllapd)  xpflap)  xvl/(ay)  xp/(ay) xa/(ag)

1 x 10% — — — — S — — —
5 x 104 —

1 x 10° 3.0798

09429 455528  29.802  420.037 534156  301.950  959.454
(-0.3521)  (-0.245)  (-0.1248)  (0.1170)  (0.8520)  (—0.0276) (—0.2453)
09354 453722 30099 420169  539.456  302.109  956.271
(-03732)  (-0.2575) (-0.0992)  (0.1134)  (0.8395)  (—0.0223) (~0.2580)
09350 453914  30.042 419.88 539275  301.844 955342
(-0.3747)  (-0.2546) (-0.1028)  (0.1090)  (0.8375)  (—0.0289) (—0.2648)
09424 455332 30393 419.026  702.302 302151  958.785
(-0.3562) (~0.2489) (-0.0841)  (0.1019)  (0.8543)  (—0.0224) (—0.2518)

2 x 10° 3.0747
1 x 100 3.0842

FORM 3.130

The previous information indicates that a similar conclusion to that of the previous example
(i-e., for the case of Equation (15)) can be drawn, i.e., at least a sufficiently large number of simulations is
required for a successful multi-linear regression. However, unlike in the previous example, the design
point and sensitivity factors are not invariant by varying ng;,,. The differences are not so significant
though; therefore, once a minimum number of simulations is ensured (around 8 X 10* simulations) a
very precise f8 is obtained; it is also observed that the required number of simulations for adequately
carrying out the multi-linear regressions decreases with increasing ryp (this could be attributed to
the same reason argued before about the larger errors obtained for smaller ryp). If the tolerance e is
increased, the number of simulations can be reduced, but not as significantly as for the classical LSF
case (i.e., Equation (15)). For instance, an increment to e = 0.35 reduces g, to around 5x10%; this also
changes the values of the design point and sensitivity factors, but not substantially. From Table 4, it is
also observed that the values are in very good agreement with the FORM results, with even higher
precision from the regression approach for the reliability index. Therefore, it is concluded that the
multi-linear regression by itself can be a very attractive alternative to compute f§, if a minimum ng;,,,
(similar to those mentioned above) is feasible; it is emphasized once more that an additional advantage
is that the design point and sensitivity factors are also determined.

One final application of the revisited described methods is performed for a coastal structure in the
following section.

3.3. Overtopping Reliability of a Breakwater

In this section, we consider for the coastal engineering application the example reported in [10],
where certain conditions are assumed and where the reader is referred to for further details and
used references. It is a breakwater with deterministic slope, tan T = 1/1.5, and freeboard, F, = 10
m. When the water runs up the breakwater, overtopping could occur (i.e., the water surpasses the
freeboard), which is considered as a failure. This is defined by the LSF given by

Svkw = F. —AMH(l —e VH (25)

B, 1.25T T)
where A, and B,, are coefficients characterized as independent normally distributed random variables,
with mean values equal to 1.05 and —0.67, respectively, and coefficients of variation both equal to
0.2 [10]; H denotes de wave height and T represents wave period. H and T are random variables
probabilistically characterized by the joint Longuet-Higgins distribution [20] with parameter v = 0.25.
The joint PDF of the Longuet-Higgins distribution is given by

2 (Hi\ _p 1V, 5
fty, T, (Hn, Tn) = L(V)m(,[—%)e ”[1 + (1 - T_n) /v ] (26)
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where H,, = H/H; and T, = T/I'; are normalized wave heights and periods by considering H; = 5 m and

> = 10 s, which are the significant wave height and the zero up-crossing mean period, respectively,
which define the sea state [10]; L(v) is a normalization factor implying only positive values of T, and
defined by

L(v) = (%[1 +( +v2)—1/2]) 27)

First, the FORM is applied to Equation (25). Salient points of performing the FORM to this
overtopping LSF are briefly described in the following. First, it is noted that since H, and T}, are
not independent, the Rosenblatt transformation is performed for the joint distribution to map the
equivalent distribution parameters into the normal space by using [17]

21 = @7 (Fy, (Hi) o8
22 = O (Fr,, (TulHy))

where @1 () denotes the inverse of the CDF of a standard normal variable, Fyy, (H,) and Fr, g, (TulHy)
are the marginal distribution of H, and the conditional distribution of T,, given H, for Equation(26),
respectively, and defined by

Fu, (Hy) = HyL(v)e ™1 + erf(Ry /)] (29)

Fr,m, (TalHy) = 2(m®v[1 + erf(Hn/vm‘l(%)e‘Hﬁ“‘VWZ/ i (30)

n

where the error function is given by

H,/v

erf(Hy/v) = % fe‘tzdt (31)
0

In Equation (29) the equivalent version reported in [25], rather than the original version in [10],
is considered. This is so, simply because the error function used in [25] is more readily available in
current software. Then, to derive the conditional probability distribution, we divided Equation (26)
by Equation (29) yielding Equation (30) given above. Since the CDFs of Equation (29) and Equation
(30) are also required to obtain the equivalent parameters mapped in the standardized normal space,
other point to highlight is that they were obtained numerically at the design point, unlike for the
normal distributed random variables, where simple analytical expressions can be used (which is also
possible for other common PDFs).

Additionally, it is noted that as part of the procedure to obtain the reliability index in each iteration
of the FORM, usually a vector obtained by multiplying each partial derivative of the LSF (i.e., Equation
(25)), evaluated at the design point, by the equivalent second moment in the normal space (for the
corresponding random variable) is enough. However, this approach is not possible for the joint random
variables in this example. Therefore, the Jacobian (and its inverse) is required [17]; once the inverse of
the Jacobian is computed, it is multiplied by the vector of partial derivatives evaluated at the design
point mentioned above, and the reliability index can then be obtained in each iteration in the regular
way for the FORM (i.e., as when the variables are independent). This approach is followed in the
present study. Note that for a set of jointly distributed random variables x; (z; in the normalized space),
the inverse of the Jacobian is a lower-triangular matrix determined (often numerically) as [17]

0, i<j
- 0z filxilxy,..., xio1) o
It = a—xz =1 en) , i=j (32)

Tyf (xilxqeeer Xi1)

é(z) ’
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where ® (z;) is the PDF of a standard normal random variable, with the argument z; obtained in an
analogous way to Equation (28); f; and F; refers to the PDF and CDF for the variable with subscript
i, respectively. It was noticed that for the present example, disregarding the elements outside the
Jacobian diagonal does not impact very significantly the computed reliability indices.

A few final important aspects regarding the FORM worth to mention, include that the order of
the variables in defining Equation (28) does matter, although similar results may be expected [17].
For instance, in [10] the marginal distribution of T), and the conditional distribution of H, given T,
are used to define Equation (28) (i.e., the order of the variables is inverted as compared with this
study), which results in a reliability index, , equal to 2.01 for the problem in question, whereas
B =2.10 is obtained in this study with the FORM formulation described earlier, and adopted in the
following; g = 2.10 is also closer to the exact value to be discussed later. Another slight difference
between [10] and this study when applying the FORM, is that in the present work, when assuming
initial design points, one is determined by setting gk, = 0, to ensure that the design point is on the
failure boundary (e.g., [26]).

To inspect the variation of p for different F. values, the FORM is performed by varying the
freeboard between 9 m and 12 m and the resulting reliability index is shown in Figure 5a with a black
dashed line. As expected, it can be observed that f increases for increasing freeboard; if the slope of the
breakwater is increased to fan 7 = 1/2 and the FORM is carried out for the same range of F,, it further
increases reliability levels, as shown by the dashed grey line in Figure 5a. These results are used as
reference and for comparison purposes, with respect to the results from the normality polynomial and
multi-linear regression approaches revisited in this study.

3.5
5 3.0 » 3.0 b) ——Norm. Poly.
o] [ EX —MCS
£ 25 e Multi. Re
— £56 . Reg.
>
£ 20 224
] =002 A e
® 15 ——Norm. Poly. slope=1/1.5 - - -FORM slope=1/1.5 'g M\’\-——
?) 1.0 weeeees MICS slope=1/1.5 Norm. Poly. Slope=1/2 % 20
e b FORM slope=1/2 MCS slope=1/2 o 18
0.5 1.6
8.5 9 9.5 10 105 11 115 12 12 1x10? 1x10? 1x103 1x10% 1x10° 1x108
Freeboard (m) Number of simulations
0 p d)
45 ll C) —MTan Norm. Mean (computed)
Poly 40
. ‘3‘(5) 'I I Mean MCS 35 Std. dev. (computed)
X 30 3 ——Mean (fitted)
P 2 - = std. dev. (fitted)
[]
=20 2
w15
10
5
0
1x10! 1x10? 1x103 1x10% 1x10! 1x102 1x103 1x104

Number of simulations Number of simulations

Figure 5. Reliability of breakwater and error estimation in the reliability index. (a) Reliability index as
a function of F¢; (b) Reliability index as a function of ng;,,; (¢) Computed error for the reliability index;
(d) Fitted mean and standard deviation for the error in the reliability index estimation.

The simulations for this coastal engineering application, used as the basis of the revisited methods,
are much more computationally intensive than for the classical and structural examples, because of the
dependency between the wave height and period and inclusion of the Longuet-Higgins distribution,
which imposes numerical computing for the probability levels (e.g., values from CDFs) and a different
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method for the sampling. This latter aspect, i.e., the generation of jointly distributed random numbers
when a set of x; variables are dependent, is based on expressing the joint PDF as [22]

fx(x) = fxi(x1) fxa(xalor) .. fxn (xnlxr, ..o, X021) (33)

with the corresponding CDF given by

Fx(x) = Fx1(x1)Fxa(x2lx1) - .. Fxn (Xnlx1, ..., X4-1) (34)

Using the previous concepts, and considering a set of values U generated from n independent
standard uniformly distributed random variables, the set of dependent random variables can be
determined as
x1 = Fyl(uy)

Xy = F)} (ualxy)

(35)

Xy = F;nl(unlxl, e Xp1)

where F~1(e) denotes the inverse of the CDF. The obtaining of this inverse of the CDF can be relatively
straightforward for some common probability distributions, where an analytical expression can
be used for Equation (35). This is not the case for the Longuet-Higgins distribution. In this case,
the jointly distributed random wave height and period must be determined numerically. Figure 6 shows
samples of jointly generated random values of wave height and period in the normalized space (for
Nsim =1 % 10%, 5 x 10%; 1 x 10* and 5 x 10%). A few contours of the theoretical Longuet-Higgins
distribution (i.e., Equation (26)) are also shown in Figure 6; it can be observed that they are in good
agreement. The values in the non-normalized space can be obtained simply by recognizing that
H,, = HHs and T,, = T/T,.

Figure 6. Randomly generated joint values of H, and T}, for (a) 1 x 103, (b) 5 x 103, (c) 1 x 10%, and (d)
5 x 10* simulations.

As mentioned before, the sampling procedure is significantly more time-consuming than for
the LSFs in previous sections. Therefore, MCS are sampled only up to 1 x 10° simulations for all
the variables of the LSF represented by Equation (25), and the reliability index is determined by
employing Equation (17) and Equation (7), only for the case reported in [10] (i.e., F. = 10 m and
tan T =1/1.5). Nonetheless, results depicted in Figure 5b indicate that the reliability index stabilizes,
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from approximately 7, = 1 x 10° and over, to a reliability index practically equal to 2.2 (gray solid
line). Therefore, § = 2.2 is adopted as the exact value of the reliability index for the breakwater under
overtopping. This value is to be used to assess the error by estimating the reliability index with the
normality polynomial approach, and to compare versus the results obtained with the multi-linear
regression approach. In fact, the results from these two approaches are also shown in Figure 5b (black
solid line for the normality polynomial; grey dashed line for the multi-linear regression approach),
where it is observed that the normality polynomial approach converges to a stable value (approximately
B = 2.12) from about 2 x 10° simulations on, leading in average to a slightly smaller reliability index
(i.e., in the conservative side) but closer to the exact value than by using the FORM. The multi-linear
regression approach (like the MCS and unlike the normality polynomial) requires a minimum number of
simulations to be carried out, being this number 1 x 10 for Figure 5b, but sometimes more simulations
are required; nevertheless, when a sufficient large number of simulations is performed (e.g., about
3 x 10* or more in Figure 5b), the results of the multi-linear regression leads to practically the exact f,
and the design point and sensitivity factors can also be determined.

For brevity, the coefficients of the polynomials and multi-linear regression, design points and
sensitivity factors are not extensively listed in this section, but as an example values are given for a
single case of 2 x 10* simulations, which led to coefficients for the normality polynomial of ag = —2.164,
a1 = 0.3175, a; = —0.0110 and a3= 0.0028, and for the multi-linear regression of ¢ = 1.4760, b; = —0.3382,
by = 0.1235, b3 = —0.5550 and by = —0.0633, as well as sensitivity factors equal to a4, = 0.5089,
ap, = —0.1859, ay = 0.8351, and at = 0.0953 and design points equal to x4, = 1.2874, xp, = —0.7263,
xp = 9.3045 m, and x7 = 10.2051 s, which compares very well with the corresponding sensitivity factors
computed with the FORM, that are equal to 0.4959, —0.1712, 0.8466, and 0.0900, respectively, and also
very well to the design points from FORM equal to 1.2689, —0.7182, 9.0796 m, and 10.1933 s, respectively.
These values of sensitivity factors and design points are also very similar with those reported in [10].

It is noted that Figure 5b corresponds to only one set of simulations for every n;,,, which may
vary for different sets of generated random numbers (as shown in Figures 1 and 3), implying an
uncertainty in the deviation from the exact value for different number of simulations. This uncertainty
is assessed as for the classical and structural LFSs in previous sections, i.e., by computing the errors
in the reliability index as per Equation (18) and fitting them to power laws with the mathematical
functional form represented in Equations (19) and (20) (or Equations (23) and (24)), but with different
values of the parameters. To do so, and unlike the case of the classical LSF and the reinforced concrete
beam under flexure moment, not 1000 but only 100 sets of simulations are computed for each ng;y,,
due to the more extensive required time and computational resources referred to earlier (A comparison
in terms of computing time (CPU time), a description and a discussion are given in Appendix B and
Figure A2 of the appendix). This leads to the mean errors shown in Figure 5c with a black solid line for
the normality polynomial case (including mean values + one standard deviation indicated in black
dashed lines), and with a grey dashed line for the MCS case (including mean values + one standard
deviation indicated in grey dotted lines).

Even though errors reported in Figure 5c exhibit not as a smooth behavior as those observed
in Figures 2 and 4 (obtained in an analogous way but for 1000 sets of n;,,), the qualitative trend is
fairly similar, especially for mean values and not so small 7,,. Indeed, power laws can be adequately
fitted to p, and o, as shown in Figure 5d by fitting the computed errors from 1 x 10? simulations and
over; the mathematical functional form is analogous to that of Equations (23) and (24), except that
the constant 1 in Equation (23) is omitted. The obtained fitted parameters are 6 = 23.62, y = 0.2342,
K =47.94 and T = 0.4254. As observed in Figure 5d the fitting is very adequate for 0. and adequate for
e, albeit only 100 sets of 1, were employed for the statistics.

From Figure 5c,d similar conclusions to those found before can be drawn, namely, that for
decreasing 7, the MCS tends to deviate more from the exact value than the normality polynomials
(in terms of ¢), that for decreasing number of simulations the error for the MCS can be unknown
and that power laws are adequate to mathematically defined y. and o, for the normality polynomial
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approach. Therefore, a designer could for instance use the normality polynomial method to compute
the reliability index for a reduced number of simulations, whereas accepting an error in the estimation.
However, such an error could be estimated if expressions of . and o, (like the power laws determined
in this study) are known.

As an example, in Figure 5a ngy,, =7 X 102 is used for the normality polynomial approach (black
solid line) and, as it is shown, this leads to reasonably adequate results (using a fairly small number
of simulations) when compared with the FORM and the MCS (also included in Figure 5a with a
black dotted line). Moreover, the fitted equations shown in Figure 5d can be used to quantitatively
compute the associated error and its standard deviation with respect to the exact reliability index, that is
fe = 5.09% and o, = 2.95%. This is strictly applicable only to F. = 10 m; however, comparable errors
may be expected for a range of freeboard values by inspecting Figure 5a. Naturally, the contents of this
paper could be extended to investigate how the error changes by varying one or more parameters of
the LFSs. In such a case, one would expect that functional forms like those reported in this study can be
used to assess ¢, but possibly with higher mean errors (and/or standard deviations) for higher reliability
levels, because usually more simulations are required for lower probabilities of failure. This could be
inferred from Figure 5a, where a last set of calculations is shown by increasing the breakwater slope to
1/2 (dashed and dotted grey lines for the normality polynomial and MCS techniques, respectively),
where higher variations of the normality polynomial in relation to the FORM are observed; this higher
reliability levels also have the effect of decreasing the ability of the MCS to capture the probability
of failure, as also observed in Figure 5a for a wide range of F.. Additionally, although not shown in
Figure 5a, it was observed that the minimum number of simulations required to adequately performed
the multi-linear regression increases for higher reliability levels (e.g., larger breakwater slopes).

Overall, results in this section indicate that the revisited simulation-based methods can be also
effective for coastal engineering applications.

4. Discussion

Results in the previous section suggest that the two revisited approaches based on simulations,
namely, the normality polynomial and the multi-linear regression approaches, are effective in reducing
the number of required simulations while adequately computing the reliability index, design point and
sensitivity factors. It could be argued that still a relatively large number of simulations are required.
However, the computing power is becoming higher every year, and these methods proposed at the end
of the 1990s could become a feasible alternative for some complex models two or three decades later.

The power law (Equations (19), (20), (23), and (24)), which describes the precision in computing
p for the normality polynomial approach, was found very adequate for the three LSFs considered.
Albeit it cannot be concluded that the underlaying error is based on the power law for every possible
LSF, since one of LSFs studied here was a simple classical case using only one type of PDF, and the
other LSFs were more complex (non-linear functions), with much more random variables and included
several PDFs, as well as dependency between variables and the joint Longuet-Higgins distribution, it is
reasonable to believe that the error for other LSFs for a wide range of coastal and structural engineering
applications could follow the power law. A designer could opt to reduce the number of simulations
while accepting an error level (including its uncertainty) by using the power laws as an aid.

The multi-linear regression approach was originally developed to derive the design point and
sensitivity factors not obtained when performing MCS; however, it is considered that it can be an
alternative by itself to compute 8 in an accurate way, conditioned on performing enough simulations
for a successful regression; the number of simulations can be reduced by increasing the tolerance
e. Values reported in this study can be used as a guide.

It is acknowledged that some differences with respect to the present study could be found
when other LSFs and applications are used. However, the values reported in this study could be
used for guidance, and it is believed that the power law may hold in many coastal and structural
engineering applications, since the normality polynomials are based in strong mathematical foundations,
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as referenced before; nevertheless, future research to further inspect the findings in this study is
recommended by using mathematical LSFs considered as benchmark in the literature, but also more
ultimate and serviceability LSFs for other coastal and structural engineering applications. It is also
believed that the revisited methods and the findings in this study can be exported to other engineering
fields if practical applications can be posed as a capacity-demand problem and when extensive
simulations are required, including system reliability (for instance for reinforced concrete frame
buildings, among many other possibilities). Future research could also include a systematic study
for the multi-linear regression approach by varying the tolerance, for given number of simulations,
so that the number of MCS can be limited to a minimum while guaranteeing the obtaining of adequate
reliability-related values.

If more LSFs are investigated in future studies, perhaps it could be possible to infer general bounds
for a wider applicability of the findings in the present study.

5. Conclusions

Two reliability methods based on simulations are revisited. One method fits normality polynomials
to the simulated data with fractile constraints, and the other approximates the linearized limit state
surface at the design point using multi-linear regression; for the latter, a slight modification is proposed.
Three limit state functions, a very simple one, other for a structural engineering application and another
for a coastal engineering application, are employed.

The most relevant findings of this study are that for the normality polynomial approach, a power
law was found to adequately represent the mean and standard deviation of the error in the estimated
reliability index as a function of the number of simulations. It could be used as an aid for decision
makers to select a precision level (quantitatively) associated to a selected reliability index, thus reducing
the number of required simulations by expressively accepting an error level. Additionally, it is found
that the multi-linear regression approach is an excellent option to obtained accurate reliability levels,
although a sufficiently large number of simulations is required (not prohibitive though). It also has the
advantage that the design point and sensitivity factors are determined.

Other findings in this study are:

1. When the normality polynomial approach is used, the reliability index is dependent on the
generated random numbers of each run, but it becomes stable for a large number of simulations.

2. The reliability index cannot always be determined with the Monte Carlo simulations, while the
opposite occurs when normality polynomials are used, although significant deviations from
the exact value are observed for small numbers of simulations. In general, for an intermediate
number of simulations (e.g., 1 x 10°), the fitted normality polynomials lead to a better estimate of
the reliability index than the Monte Carlo simulations.

3.  When the mean relative error and its standard deviation are computed for the reliability
index (compared to the exact value), for decreasing number of simulations the Monte Carlo
simulation approach tend to larger mean errors and standard deviations than the normality
polynomial approach.

4. 3rd-order normality polynomials were mostly used; when 4th order ones are used, the fitting
leads to comparable results.

5. When the multi-linear regression approach is considered, a minimum number of simulations
is required for successfully performing the regression (in the order of 10* to 10°simulations),
but once this is ensured, a very precise reliability index is obtained (more precise than by using
the first order reliability method (FORM)), and the design point and sensitivity factors are also
determined and in good agreement with those determined with the FORM.

6.  If the tolerance for the multi-linear regression approach is increased (i.e., if a wider range in the
nearest of the failure surface is stipulated to gather the vectors of simulated data), the number of
simulations can be reduced.
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Appendix A

Density

340 360 380 400 420 440 460 480 500
D (kNem)

%OO 300 400 500 600 700 800
V (kNem)
Figure A1. Histograms for 1 X 10° Monte Carlo simulations (MCS) of bending moment due to (a) dead
load (D) and (b) live load (V).

Appendix B

Figure A2 shows the computing (CPU) time required for the classical and structural engineering
LSFs (Figure A2a) and for the coastal engineering LSF (Figure A2b). The CPU times include computing
of MCS and probabilities of failure, fitting of the normality polynomials and obtaining of the reliability
parameters by multi-linear regression. The employed processor is an Intel(R) Core(TM) i7-9750H CPU
@ 2.60 GHz with RAM of 16.0 GB and operating system of 64 bits.

It is highlighted that CPU times are for 1000 sets of #g;,, and for 100 sets of ng;, (as indicated in
the horizontal axes of the figure) for the classical and RCB LFSs and overtopping LSF, respectively.
It can be observed in Figure A2 that the CPU times are significantly larger for the coastal engineering
application, as shown by the different ranges used in the vertical and horizontal axes and by the fact
that only 100 sets of ng,, are used for this case (compared to 1000 sets for the others, as mentioned
before). This significant larger computing time is imposed by the joint distribution of wave heights
and periods and the Longuet-Higgins distribution used to represent them, which must be solved
numerically and for which a different sampling technique is required, as indicated in the main body of
this article.
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Figure A2 could assist the readers to establish feasible simulation schemes. It was noticed that
efficient computing time is obtained if 10,000 simulations at a time are considered for the overtopping
LSF. See for instance that for ng;,, = 100 in Figure A2b (which translates into 100 x 100 = 10,000 MCS),
a reasonable CPU time is required; in fact, it is shown in Figure A2b that over this threshold the CPU
time starts to increase to a much faster rate. Therefore, once the random numbers are simulated (this
is not a problem in terms of CPU times for millions of random numbers), a programming scheme
dividing the computing in 10,000 MCS can be used to improve the efficiency (e.g., subdividing the tasks
within the same program, running several windows simultaneously and/or using several computers).

800 8000

a) b)

700 Classical LSF 7000

= (Coastal Eng. LSF
e Struct. Eng. LSF

600 6000

5000

V]
o
o

4000

CPU time (s)
FY
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Figure A2. Computing (CPU) time for the different LSFs; (a) classical and RCB LSFs and
(b) overtopping LSF.
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