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Abstract: The industrial robot machining performance is highly dependent on dynamic behavior
of the robot, especially the natural frequency. This paper aims at introducing a method to predict
the natural frequency of a 6R industrial robot at random configuration, for improving dynamic
performance during robot machining. A prediction model of natural frequency which expresses the
mathematical relation between natural frequency and configuration is constructed for a 6R robot.
Joint angles are used as input variables to represent the configurations in the model. The quantity
and range of variables are limited for efficiency and practicability. Then sample configurations are
selected by central composite design method due to its capacity of disposing nonlinear effects, and
natural frequency data is acquired through experimental modal test. The model, which is in form
of regression equation, is fitted and optimized with sample data through partial least square (PLS)
method. The proposed model is verified with random configurations and compared with the original
model and a model fitted by least square method. Prediction results indicate that the model fitted and
optimized by PLS method has the best prediction ability. The universality of the proposed method is
validated through implementation onto a similar 6R robot.
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1. Introduction

Due to the rapid development of industrial automation, the global amount of industrial robot
keeps increasing significantly in recent years [1], and new applications attract more attention [2–5].
Because of the multiple degree of freedom, large workspace, and relative low cost, industrial robot
becomes a potential alternative of traditional machine tool in hard material drilling [6], boring [7], and
milling [8,9] processes, which are not maturely and widely applied.

For machine tool, in the whole workspace, the stiffness and dynamic behavior nearly remain
steady, so machining stability and chatter suppression, which are concerned with multiple factors, are
research emphasis [10–12]. However, for industrial robot, current researches focus on the characteristic
of robot itself. Common industrial robot is of open-loop articulated serial structure with six revolute
joints (6R); therefore, the stiffness and dynamic performance are much inferior to machine tool, which
results in vibration issues and poor surface quality in machining process [13]. Static stiffness issues are
studied to avoid the robot deformation in machining, and several stiffness indexes are proposed to
evaluate the static stiffness of robot in the workspace [14–17]. On the other hand, dynamic behavior of
robot is studied to evaluate the capacity of dealing with time-variant load in machining process, which
may help to suppress vibration [18,19]. As 6R robot realizes movement through adjusting joint angles,
dynamic behavior keeps varying with configurations during motion process. For that reason, research
object is gradually expanded from one configuration to the whole workspace. Bisu et al. [20] selected
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three configurations from a linear movement path of a 6R robot with interval of 50 cm for dynamic
behavior study and vibration analysis. It was found that different natural frequencies led to dynamic
performance variation. Mousavi et al. [21] performed a similar four-point-study and analyzed the
change of stability region through modal information. Several configurations may present a linear
movement, but the usage of robot should not be such limited. Karim et al. [22] executed modal test with
63 measured points for 23 configurations, through which mode shapes were obtained and approximate
distribution of first two step natural frequencies in a plane was depicted. Natural frequency is the
vital dynamic parameter in robot machining, but massive tests are inefficient although the accuracy is
well ensured. A method was proposed by Glogowski et al. [23] to predict natural frequency in the
whole workspace efficiently, in which sample configurations were selected by design of experiment
(DoE) method and prediction model was fitted by least square (LS) method with the natural frequency
data of sample configurations, but the prediction deviation reached up to 8.9%, making the method
inadequate for practical application.

The low order natural frequencies of 6R robot are relatively small and the first order is merely
about 10 Hz, which is covered in frequency range of most machining processes, so 6R robot tends to
forced vibration during machining processes [24]. To obtain basis for vibration suppression, structure
optimization and path planning, low order natural frequencies are particularly concerned among
dynamic parameters. It is proposed that low order natural frequencies of robot are decided by the
configurations, while the high order natural frequencies are mainly related to the machining system,
which do not vary with robot configurations [25], this phenomenon is demonstrated in Figure 1.
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Thus, a method to predict natural frequency of 6R industrial robot efficiently and precisely is
proposed in this paper. As shown in Figure 2, sample configurations are selected to present the
practical workspace (variable range) for fast prediction, and a regression equation fitted and optimized
by partial least square (PLS) method is used as prediction model for higher accuracy. A 6R robot,
ABB IRB4600, is used to illustrate and validate the method. Another ABB IRB6400 is used verify the
universality of proposed method.
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2. Materials and Methods

2.1. Sample Preparation

The axes of 6R robot are noted as a1, a2, . . . , a6, corresponding joint angles are q1, q2, . . . , q6.
The mapping relation between natural frequency (f F) and configuration can be expressed as

fF= f(q1, q2, . . . , q6), (1)

With samples, a regression equation can be fitted to represent the mapping relation. However, it
is unnecessary and inefficient to include the entire workspace of the robot as the configurations near
the boundary could not be adopted in machining process. Therefore, range of variables is limited
before selecting samples through DoE method. Then natural frequency information of each sample
configuration is acquired through modal test.

2.1.1. Variable Range Determination

a1, which is the basic rotation axis of the robot structure, and a6, which is a 360◦ rotation axis
controlling the flange, are proved to be nonsignificant in changing natural frequency by preliminary
researches on 6R robots including KUKA KR60, ABB IRB6400, and IRB 4600. As low order natural
frequencies is mainly decided by robot configuration, none end-effector is fixed on the flange in above
cases for general research. Hereby, q1 and q6 are excluded from model (q1 = q6 = 0◦ in practice) for the
simplification, and q2–q5 are applied as variables. Prediction model can be adapted to

fF= f(q2, q3, q4, q5), (2)

To ensure the efficiency of model, partial workspace that may cause movement interference in
machining process is rejected by simulation software. The variable range is finally determined and
shown in Figure 3, where the solid area indicates the new efficient workspace, and the dashed area
represents the original workspace.
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2.1.2. Sample Configuration Selection

DoE method has advantages in study influence of different factors, especially for basic research
of robot machining, e.g., Simoes et al. [26] used DoE to study influence of robot milling parameters.
Different types of selection methods are compared in pilot study including three-level full factorial
design (3kD), orthogonal experimental design, Box-Behnken design, and central composite design
(CCD). The prediction performances of 3kD and CCD are nearly matched and superior to the other
two, while CCD demands a much smaller sample amount [23]. Meanwhile CCD owns conspicuous
ability in disposing the nonlinear influence that joint angles may lead to natural frequency. Therefore,
CCD method is adopted to select sample configurations in this paper, corresponding factors and levels
are shown in Table 1.

Table 1. Factors and Levels of central composite design (CCD).

Factors
Levels

q2
(Deg)

q3
(Deg)

q4
(Deg)

q5
(Deg)

−1 −55 −140 −180 −70
−0.5 −30 −95 −92.5 −30

0 −5 −50 −5 10
+0.5 20 −5 82.5 50

1 45 40 170 90

2.1.3. Sample Data Acquisition

Experimental modal test (EMT) is applied so that the natural frequency data of sample
configurations can be identified accurately. According to principle of modal test, any element
of frequency response function (FRF) can be written as

hi j(ω) =
n∑

k = 1

 ai jk

( jω− pk)
+

a∗i jk

( jω− p∗k)

, (3)

which presents the response of i point caused by the excitation at j point. ai jk and a∗i jk are related
to mode shapes, their values are depending on relevant combination of excitation and response. pk

and p∗k contain the information of natural frequency and damping, which are global characteristics
independent of excitation and response combinations. Theoretically, one combination of excitation
and response is enough to identify all the natural frequencies, provided the excitation and response
points avoid the nodes.

The sample configurations selected by CCD design vary greatly, for the convenience of
implementing all the trials in the CCD design, hammer excitation is chosen, and a three-direction
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accelerometer is fixed on the flange of robot to acquire response signal. In this way, the extra mass
brought by EMT device can be negligible as the accelerometer is small and light compared to the robot.
Excitations are generated from three directions for each trial, which are corresponding to the three
directions of the accelerometer, as shown in Figure 4. Then three FRFs will be obtained for natural
frequency identification, avoiding incomplete excitation or excitation on the nodes. Moreover, for each
direction, five groups of excitation and response signals are acquired to decrease the signal-to-noise
ratio through average algorithm. With FRFs the natural frequencies are preliminarily identified, then
complex modal indicating function is used to confirm the accurate values of natural frequencies.
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With the ABB IRB4600 industrial robot being the object, a EMT system for sample data acquisition
is set up, including a LIXIE hammer, a PCB three-direction accelerometer, an ECON device for vibration
signal processing and a PC (as shown in Figure 5). The configuration of robot is adjusted according to
the CCD design in turn. All the identified natural frequency information will be used as the sample
data to construct a prediction model.
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2.2. Prediction Model Construction and Optimization

Because of the serial structure, the relation between configuration and joint angles could not
be linear. Thus, Equation (2) is fitted to a general second order equation in this case according to
normal engineering application. PLS method is adopted to solve the issues of nonlinear influence
and multi-correlation between joint angles in regression equation fitting. Meanwhile, the fitting error
caused by the limitation of sample quantity can be remarkably reduced, due to the advantage of PLS
method in coping with small sample quantity. In addition, PLS has good interpretability for the terms
of regression equation, which can be used as optimization criterion.
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2.2.1. PLS Method Fitting Process

The principle of PLS method in multivariate regression fitting is to extract principal components t
and u respectively from independent variables X and dependent variables Y while retaining the most
correlation, which can be mathematically described as

Cov(t, u) =
√

Var(t)Var(u)r(t, u)→ max, (4)

The process of regression equation fitting by PLS method [27] is briefly introduced as follows.

1. Data standardization.
2. First principal component calculation.
3. Principal component validation.

Current principal component th is validated by following indexes:

R2
Y(cum) =

m∑
h = 1

r2(Y, th), (5)

Q2
h = 1−

SSPE,h

SSE,h
, (6)

Q2
h(cum) = 1−

h∏
k = 1

SSPE,k

SSE,k
, (7)

where SSPE,h is the square sum of prediction error of Yh−1, SSE,h is square sum of deviation of Yh−1.
R2

Y(cum) indicates the ability of principal component to explain the variability of Yh−1, and its
upper limit value is 1. Q2

h represents the contribution of th to the model. When it is more than
(1–0.95)2 = 0.0975, th has significant effect on prediction model. Meanwhile, Q2

h(cum) increases,
meaning that the comprehensive significance in explaining Y is enhanced.

4. Subsequent principal components calculation. The residual matrixes from Step c. are continued
to compute new principal components, until tQ+1 deduces Q2

h(cum). The principal components
before tQ+1 are validated ones.

5. Regression equation
Y0 = t1rT

1 + t2rT
2 + . . .+ tQrT

Q + YQ, (8)

6. Data reduction. The final regression equation for prediction can be obtained through the reverse
process of data standardization.

2.2.2. Interpretability of PLS Method for Regression Equation

Variable importance in projection (VIP), which indicates the importance of each item in regression
equation, is defined as

VIPj =

√√
p

R2
Y(cum)

m∑
h = 1

r2(Y, th)w2
hj, (9)

where wjh is the jth component of wh.
The larger VIPj is, the more important xj is in constructing Y. The effects of different items can be

compared quantitatively through VIP values, so that some redundant items can be rejected to realize
regression equation optimization.
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2.2.3. Prediction Model Construction

The sample data from Section 2.1.3 is utilized to construct prediction model, taking the first order
natural frequency of ABB IRB4600 robot as example.

As mentioned, the general regression equation concludes q2, q3, q4, q5, and their cross items and
square items. The general equation is marked as M. After the second principal component is extracted,
validation indicates are shown in Table 2. The second principal component deduces Q2

h(cum), meaning
that comprehensive ability is weakened. Though R2

Y(cum) increases, the second principal component
is still abandoned.

Table 2. Principal component validation of M.

h R2
Y(cum) Q2

h Q2
h(cum)

1 0.888 0.639 0.639
2 0.962 −0.171 0.603

2.2.4. Prediction Model Optimization

Q2
h(cum) of M is merely 0.639, which means M is inadequate to represent f F. To optimize the

model, VIP values of items in M is calculated and illustrated in Figure 6.
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All the one-degree items should be retained as basic items. All the square items are important
enough to stay in the model because of their high VIP values. As VIP values of cross items are relatively
low, different combination groups should be tested. A new model M1 is constructed by cutting off

cross items except q2q3, because q2q3 has the largest VIP value among cross items; meanwhile, q2 and
q3 are most two important variables according to VIP values. Based on M1, the other five cross items
are added respectively in descending order of their VIP values. The new five models are marked as
M2–M6. Validation results of above models are shown in Table 3. All the six models are constructed
with two principal components. R2

Y(cum) and Q2
h(cum) values of the six models are all improved

obviously compared to M. M2, formed by adding q3q5 to M1, has the best R2
Y(cum) and Q2

h(cum)

values. M3–M6, which get lower R2
Y(cum) and Q2

h(cum) values compared to M1, are abandoned.
Based on M2, four new models are introduced by adding q2q4, q3q4, q2q5, and q4q5 in turn. However,

the largest Q2
h(cum) only reaches up to 0.764. All the other combination groups of above four cross

items are add to M2 for test, but none of them can acquire better validation result. Thus, the optimized
model is finally confirmed to be M2. The coefficients of items are listed in Table 4 together with M.
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Table 3. Validation results of M1–M6.

Model h R2
Y(cum) Q2

h(cum)

M1 2 0.958 0.776

M2 2 0.960 0.778

M3 2 0.958 0.764

M4 2 0.958 0.762

M5 2 0.958 0.723

M6 2 0.958 0.717

Table 4. Coefficients of items in M and M2.

Items Coefficient/M Coefficient/M2

Constant 1.138 × 101 1.086 × 101

q2 8.746 × 10−3 1.214 × 10−2

q3 5.987 × 10−2 6.611 × 10−2

q4 −7.532 × 10−5 7.873 × 10−4

q5 1.374 × 10−4
−3.785 × 10−3

q2
2 8.821 × 10−4 1.179 × 10−3

q2
3 5.322 × 10−4 5.894 × 10−4

q2
4 −2.464 × 10−5 1.242 × 10−5

q2
5 −1.018 × 10−4 7.342 × 10−5

q2q3 1.171 × 10−4 1.253 × 10−4

q2q4 4.323 × 10−6 -
q2q5 4.224 × 10−5 -
q3q4 −7.206 × 10−6 -
q3q5 −4.939 × 10−5

−5.285 × 10−5

q4q5 1.099 × 10−5 -

3. Results

3.1. Prediction Model Verification and Analysis

3.1.1. Model Verification with Random Configurations

Sixteen groups of q2–q5 values are picked randomly from the variable range defined in Section 2.1.1,
through which 16 corresponding robot configurations are defined for model verification. The simulation
images of the 16 configurations are reranked by joint angles q2 and q3 as shown in Figure 7, and the
measured natural frequency is listed in the bottom left corner of each image. The configurations are
nearly uniformly distributed in the variable range, which ensures the comprehensiveness of verification
objects and rationality of verification result.
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The first order natural frequencies of the 16 configurations are obtained by EMT. Then, original
model M and optimized model M2 are utilized to predict the first order natural frequencies.
The deviation between prediction value and measured value is defined as prediction error, the details
are listed in Table 5; Table 6.

Table 5. Prediction error of M.

No. 1 2 3 4 5 6 7 8

Error 0.20 0.36 0.22 0.11 0.22 0.45 1.59 0.26
Relative error % 1.71 3.79 1.76 1.10 1.90 3.88 10.24 2.34

No. 9 10 11 12 13 14 15 16

Error 0.54 1.43 0.87 1.04 1.46 1.78 1.47 0.12
Relative error % 4.34 10.30 8.40 8.27 12.56 19.54 12.39 1.18

Average error 0.76 Average relative error % 6.48

Table 6. Prediction error of M2.

No. 1 2 3 4 5 6 7 8

Error 0.30 0.10 0.19 0.46 0.44 0.44 0.30 0.32
Relative error % 2.51 1.04 1.47 4.55 3.85 3.81 1.92 2.88

No. 9 10 11 12 13 14 15 16

Error 0.51 0.44 0.20 0.51 0.42 0.24 0.11 0.15
Relative error % 4.12 3.14 1.90 4.01 3.56 2.68 0.88 1.48

Average error 0.32 Average relative error % 2.74

The average error and average relative error of optimized model M2 are both much lower than
those of original model M. The average relative error of M2 is less than 5% which brings more reliability.
On the other hand, seven high relative errors (more than 5%) which are underlined show up in the
prediction process of M, and the maximum error reaches up to 1.78 Hz. While M2 has no predictions
with over 5% relative error, and the maximum error is 0.51 Hz which is acceptable. Obviously,
optimized model M2 has better prediction ability.

A model (MLS) fitted by least square (LS) method with the same sample data is taken as the
contrast. Moreover, the prediction errors are displayed in Table 7. Average error and average relative
error of MLS are both higher than those of M and M2, that is, PLS method have better performance
in construct prediction model of natural frequency than LS method. In conclusion, model fitted and
optimized by PLS method has the best prediction ability.

Table 7. Prediction error of MLS.

No. 1 2 3 4 5 6 7 8

Error 0.51 0.45 0.51 0.79 1.16 1.37 0.52 0.86
Relative error % 4.32 4.77 4.01 7.91 10.30 11.81 4.66 7.68

No. 9 10 11 12 13 14 15 16

Error 1.49 0.64 0.55 0.40 1.94 0.36 0.46 0.43
Relative error % 11.92 6.32 4.86 4.38 16.44 3.29 4.43 5.89

Average error 0.78 Average relative error % 7.07

3.1.2. Model Construction Quality Analysis

In PLS method, when model is constructed by principal components, information in the last
residual matrix is ignored, causing the error between fitted model and original data. Standardized
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distance between sample point and model can be used to evaluate the construction quality. (DModX,N)i
or (DModY,N)i is the ratio of construct quality of the ith sample point and the average construct quality.
When the ratio is less than two, the construction for the ith sample point is reasonable. Construction
quality of M2 is shown in Figure 8. (DModX,N)i and (DModY,N)i are all less than two, that means the
construction of M2 is rational.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 
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3.2. Method Universality Verification

To testify the universality of the natural frequency prediction method proposed in this paper, it
is completely applied to an ABB IRB6400 industrial robot (as shown in Figure 9). Sample data are
obtained according to Chapter 2.1 as the structure is similar to IRB4600. PLS is used to fit and optimize
the prediction model M6400. In this case, q2q4, q2q5, and q4q5 are abandoned according to VIP values.
Validation results can be seen in Table 8, values of R2

Y(cum) and Q2
h(cum) indicate that the fitting

is rational. Construction quality is eligible as shown in Figure 10. The result of model verification
through random configurations is shown in Table 9, average relative error is merely 2.982%, indicating
the good prediction performance.
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Table 8. Validation results of M6400.
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Y(cum) Q2

h Q2
h(cum)

1 0.801 0.720 0.720
2 0.952 0.546 0.874
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Table 9. Prediction error of M6400.

No. 1 2 3 4 5 6 7 8

Error 0.35 0.43 0.13 0.47 0.23 0.23 0.07 0.19
Relative error % 2.94 3.38 1.41 4.16 1.97 1.97 0.44 1.66

No. 9 10 11 12 13 14 15 16

Error 0.15 0.23 0.25 0.61 0.78 0.58 0.35 0.34
Relative error % 1.56 2.05 2.74 4.81 7.19 5.59 3.11 2.78

Average error 0.33 Average relative error % 2.98

The two models constructed for two different robots through the method proposed in this paper
both own good prediction ability. That is, the universality of the proposed method is testified.

4. Discussion

Once the prediction model of natural frequency is constructed and verified, the prediction result
can be used as optimization parameter to improve the machining performance. An application case of
the prediction model is explained as follows.

a2 and a3 control the two longest links, by which the basic configuration of robot is determined.
Through VIP values, items involving q2 and q3 are demonstrated to act dominated role in prediction
model. a4 and a5 decide the direction of robot flange, which affect the configuration less than a2 and
a3. Taking M2 for an example, the influence of q2 and q3 on natural frequency is specifically studied
and illustrated in Figure 11. When q2 = −55◦ and q3 = 40◦ (Pmax), the maximum first order natural
frequency is obtained, and the minimum appears when q2 = −2◦ and q3 = −56◦ (Pmin).
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Figure 11. Variation of natural frequency with q2 and q3.

Three configurations near Pmax, P1 (q2 = −48◦, q3 = 50◦), P2 (q2 = −38◦, q3 = 45◦), and P3 (q2 = −28◦,
q3 = 40◦) are chosen for milling test (as shown in Figure 12. The first order natural frequencies decrease
in turn from P1 to P3 according to model M2. The setup of milling test is shown in Figure 13. High speed
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milling with short and straight path are executed, so that robot configuration can be ignored in one
milling path. Milling parameters are as follows: the spindle rotation frequency is 800 Hz, f is 2.4 mm/s,
ae is 1 mm, and ap is 4 mm. Acceleration signals and milled surface are analyzed.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 14 
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Figure 13. Milling test system setup.

Milling acceleration signals are treated with short-time fourier transform (STFT), spectrograms
of the range 5–100 Hz are displayed in Figure 14. For all three configurations, several peaks are
conspicuous around 50–90 Hz during the whole milling process. In low frequency stage, a peak
about 16 Hz can be found in P2 and a 15 Hz peak for P3, which are corresponding to their predicted
natural frequencies. That no conspicuous can be found in P1, may because the certain frequency is not
significantly impacted by the milling parameters.
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As for the milled surface, an obvious tool recession appears at P3, as shown in the red frame in
Figure 15, while the situations are better in at P1 and P2. In addition, the quality of milled surfaces
at P3 is the poorest compared with P1 and P2, and the vibration phenomenon on milled surface is
getting severer from P1 to P3, indicating that configuration with higher first order frequency may lead
to better milling performance, as mentioned in [20]. Whether there exits practical relevance between
the value of natural frequency and machining performance can be a further research topic to develop
more application of natural frequency prediction.
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5. Conclusions

It is impossible to measure all the natural frequency information of the whole robot workspace,
but the information is vital in improving robot milling performance. In view of that, a method to
predict the natural frequency is proposed in this paper. The core content of the method proposed is to
construct a prediction model with sample configurations, which takes joint angles as input variables.
Two insignificant variables q1 and q6 are abandoned and workspace is limited for practicability.
Considering the nonlinear influence of joint angles on natural frequency, CCD method is used to
select sample configurations from limited variable range, and EMT is applied to acquire the sample
data of the example robot. Several models are fitted through the sample data. The model validation
procedure proves that the model fitted and optimized by PLS method has the best prediction ability.
Then the method proposed is applied completely onto another robot for universality verification, and
the prediction performance turns out to be outstanding. Thus, this method can be applied on any 6R
machining industrial robot to evaluate its natural frequency distribution, which can be used for in
machining performance improvement.
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