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Abstract: The damage investigation and inspection methods for infrastructures performed in
small-scale (type III) facilities usually involve a visual examination by an inspector using surveying
tools (e.g., cracking, crack microscope, etc.) in the field. These methods can interfere with the
subjectivity of the inspector, which may reduce the objectivity and reliability of the record. Therefore,
a new image analysis technique is needed to automatically detect cracks and analyze the characteristics
of the cracks objectively. In this study, an image analysis technique using deep learning is developed
to detect cracks and analyze characteristics (e.g., length, and width) in images for small-scale facilities.
Three stages of image processing pipeline are proposed to obtain crack detection and its characteristics.
In the first and second stages, two-dimensional convolutional neural networks are used for crack
image detection (e.g., classification and segmentation). Based on convolution neural network for
the detection, hierarchical feature learning architecture is applied into our deep learning network.
After deep learning-based detection, in the third stage, thinning and tracking algorithms are applied
to analyze length and width of crack in the image. The performance of the proposed method was
tested using various crack images with label and the results showed good performance of crack
detection and its measurement.
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1. Introduction

Cracks in concrete structures is some of the most important indications (or predictors) for
significant structural distress or damage caused by various causes such as aging. If the crack is reliably
inspected, severe damage (or possible failure) to concrete facilities can be effectively forestalled, and the
life of the facilities can be lengthened through appropriate maintenance. Conventional crack inspections
are performed by trained inspectors who visually detect cracks and then measure their length and
width using suitable measuring tools (crack rulers, crack microscopes, etc.). Although human-based
inspection may be effective, the objectivity and reliability of the records for the cracks may easily be
reduced because inspection relies on the subjectivity of the inspector. In addition, it is difficult to
determine the progress of damage if the inspector changes. Thus, these drawbacks have led to extensive
research on crack inspection that secures objectivity and accuracy while enabling the convenience of
recording and storing data.

Over the past few decades, image processing (IP)-based crack inspection techniques have been
widely studied. This processing refers to the entire computational process of the photograph of a
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concrete structure; image input/output, digitization, segmentation, defect management, and defect
detection. Thus, it not only detects cracks but also measures the width and orientation of the recognized
cracks. IP-based methods generally determine whether or not an image pixel is part of a crack region
by using predefined gradient filters and a binary classifier. Oliveira and Correia showed that it is
possible to detect crack by distinguishing darker areas [1,2]. Many researchers proposed effective
crack detection that enhances cracks using noise filtering on the images [3,4]. Moreover, various
image processing techniques for crack inspection have also been studied based on morphology [5–7],
fuzzy [8,9], and percolation [10,11] techniques. However, the accuracy of these rule-based image
processing is variant to the focal length of the image, the influence of the shooting environment
(illuminance, intensity, etc.), shooting quality, and the resolution. This weakness requires new filter
modeling every time depending on the input image for accurate detection.

To improve the rule-based crack inspection methods, machine learning (ML) has attracted attention
from researchers. Machine learning refers to computer algorithms learning important patterns or
rules by itself based on given data without being explicitly programmed. ML-based crack inspection
methods are categorized into two main groups as artificial neural networks (ANN) use or without
ANN use. Conventional ML-based crack inspection methods [12–16] first extract crack features using
image processing, then evaluate whether or not the extracted features indicate cracks without ANN
use. Many researchers have used various ML algorithms for crack detection, including Support Vector
Machine [12,13], Bayesian [14], genetic algorithm [15], and decision trees [16]. However, conventional
ML-based methods have limitations as their accuracy inevitably relies on the extracted crack features
by image processing.

Recently, as another category, ANN-based crack detection techniques are actively being researched.
As one of the machine learning techniques, ANN learns given data inspired by biological neural
networks. Particularly, deep ANN (i.e., deep learning) [17] is acclaimed with outstanding performance.
Previous studies have shown that the ANN-based method can contribute to overcoming the difficult or
infeasible problems of the IP-based methods. For example, Xu et al. [18] showed that the ANN using a
restricted Boltzmann machine can successfully detect a crack in spite of the limited training samples.
Zhang et al. [19] demonstrated that the crack in a road image can be determined with an accuracy
of 87% using the convolutional neural network (CNN) consisting of only four layers. More recently,
Chen et al. [20] and Li et al. [21] proposed improved CNNs that extract crack patches in an image
with 99% accuracy. Based on these successes, studies have been performed on methods to inspect and
analyze the appearance of aging large-scale infrastructure based on artificial neural networks using
Unmanned Aerial Vehicles (UAV) such as drones equipped with imaging equipment [22,23]. It is
obvious that the aforementioned ANN-based studies showed sufficient potential for crack detection.
However, they are still in the early stage of development and require further in-depth studies. Moreover,
to the best of our knowledge, only a few studies [24,25] have pertained to measuring methods for the
collection essential information (length and width) for crack inspection from the ANN detection results.

This study aims to propose a framework that can inspect crack for concrete ground structures
with high accuracy, speed, and convenience. For this purpose, this paper proposes not only:

(1) ANN-based crack classification and segmentation methods, but also
(2) an IP-based crack analysis method, and investigates
(3) the feasibility of the proposed methods through verification.

The remainder of this paper is organized as follows: Section 2 introduces the crack detection and
measurement method. Section 3 interprets the verification method and identification result. Section 4
is the discussion of the results.

2. Materials and Methods

The overall framework proposed in this article includes four processing phases:

(1) cropping the input image to patches
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(2) classification of concrete crack patches
(3) segmentation of concrete crack
(4) measurement of crack characteristics.

Figure 1 summarizes the workflow of this four-phase framework.
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2.1. Cropping Input Image

This step aims to the input high-resolution image into multiple patches. For this purpose, the image
cropping technique is used. Regardless of the resolution of the input image, this task divides the image
into patches of 227 × 227 pixels size. The patches are used as the input image for the second and third
phases. This task is essential to efficient and quick crack inspection by reducing computation cost.

2.2. Classification of Concrete Crack Patches Based on Neural Network

The goal of this step is to classify only the patches that contain cracks among the patches
constituting the input image. For the purpose, this study proposed a convolution-based crack
classification neural network (i.e., CNN) based on the previous study [26]. As shown in Figure 2,
the network architecture is designed to reduce the dimensions of the images using stride and pooling
then finally to determine whether cracks are included using dense networks. Therefore, the number
of output classes is two. The input size of the network set to 227 × 227 for efficient classification and
network training. Although the input size is can be enlarged, an increment of the size will make
network learning difficult and include more background in the output.

The proposed network consists of 12 layers of convolutions. The number of convolution filters
at layers is designed to 16, 32, 64, and 128, where the filter size is the same as 5 × 5. Note that the
more convolutional filters the network contains, the higher possibility that image features and unseen
patterns get captured. The convolution filters generate the integral of the pixel-wise multiplication of
input patch and convolutional kernel, as follow:

yi j =
∑

(m,n)∈k

wm,n·xi·s+m, j·s+m + bi j (1)

where yij and xij are the pixel values at (i, j) of output and input. k is the convolutional kernel, which is
always square. w and b are the elements of weights and biases, which are determined by training. s is
the stride size corresponding to the convolutional kernel shift at each step (in this study, 1 or 2).
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Figure 2. Classification network for determination of crack presence.

In order to prevent information loss due to pooling, stride convolution is performed only once
after convolution filter group operation, instead of pooling for every convolution filter. Zero-padding
is always applied to input images. Note that pooling extracts useful values from the filtered image,
but does not consider the remaining values that may be useful in other filters. This study also applied
a residual network to prevent the gradient vanishing problem during backpropagation. Rectified
linear unit (ReLU) is used as an activation function determining the output of a neural network to
simplify the computation and facilitate the training process. Finally, this study configured the network
to improve performance by adjusting the order of convolution, batch normalization, and activation to
maximize batch normalization and performance as shown in Figure 2.

2.3. Segmentation of Concrete Crack Based on Neural Network

This study developed a crack segmentation neural network based on the presented method
(i.e., HiRes3DNet) in the previous study [27] which is mainly used for medical image segmentation.
As shown in Figure 3, the develop network consists of 10 layers of convolutions and a dense layer.
The number of convolution filters at layers is designed to 16, 32, and 64 where the filter size is the
same as 5 × 5. Stride size for convolution was set to 1. The input size of this network set to 227 × 227
which is the same as the classification network. The proposed network assigns a value of 1 or 0 as the
output whether each pixel in the input patch corresponds to a crack. As mentioned above, the network
also includes batch normalization, residual neural network, zero-padding. ReLU is also used as an
activation function.
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2.4. Measurement of Crack Characteristics Based on Image Processing

This study used the image processing methods to measure the crack characteristics of the
cracks in the images partitioned through the neural networks. This process comprises three steps:
thinning, tracking, measurement. Thinning and tracking algorithms are used as preprocessing prior to
measurement of crack length and width.

First, a thresholding step for the segmented crack image is conducted by using Otsu’s method [28].
This task helps to control the noise and enhance the crack area in the image. Then the processed image
is thinned by using a Voronoi thinning algorithm. This algorithm plays a role in gradually peeling
off the lateral surface of the crack area by dividing the plane into minimum distances to a specific
point. As shown in Figure 4, the segmented crack image is resultingly converted into 1-pixel wide
lines image that is a binary image composing of 1 or 0 value. Note that there is no information in the
thinned image about sorted pixels that connect the start and endpoints yet.
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Figure 4. Example of application of thinning algorithm on a crack image: (a) segmented crack image,
(b) 1-pixel wide lines image.

Secondly, a tracking algorithm called also a region-growing is implemented to sort the thinned
lines. For that, a pixel of which value is 1 is arbitrarily selected in the thinned image as a starting point
for tracking. Then tracking algorithm identifies adjacent pixels that are homogeneous pixels or not
and expanding the area by collecting pixels with the same data value. Note that the identification
is performed in 8 directions in this study; up, down, left, right, upper left upper right, lower left,
and lower right (Figure 5). The final output of the tracking algorithm is a sequenced crack pixel
coordinate dataset.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13 
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Lastly, the crack characteristics, length and width, are calculated. The result of the tracking
algorithm is the form of a 1 pixel-wide free-form spline. For measuring the length of the crack,
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the lengths of the pixels in the spline are summed. Note that the length changes depending on the
distribution pattern of pixels. For example, if two pixels are located side by side in the horizontal or
vertical direction, the length is easily calculated by gathering the horizontal or vertical size of the pixel.
On the other hand, if two pixels are distributed in the diagonal direction, the length is calculated by the
Pythagorean theorem. Thus, the length of the crack length is measured by sequentially considering the
distribution direction every two pair-pixels. Eventually, the crack length of the input image obtained
through the summation of lengths calculated in every crack patch.

Crack width is obtained by profiling algorithm (Figure 6). This algorithm is based on the that the
length (or longitudinal) direction and width (or transverse) direction are perpendiculars. For using the
fact, the algorithm firstly converts the spline line of the previous tracking to a number of points then
determines the length direction of each point by using its back and forth points. Note that the spline
data has longitudinal directionality because it has the sorted pixel sequence. Subsequently, the profiling
algorithm determines the width directions of the points by verticalizing the length directions. At each
point, the width is calculated toward its width direction until there is no crack pixel in the thresholded
image thereafter. Finally, the profiling algorithm determines crack width by averaging the calculated
width at every point in input patches.
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3. Verification and Results

3.1. Image Data Set

In order to detect cracks through deep learning, various training data are required for the training
process to teach the neural network the different characteristics of crack and non-crack data. In this
study, the dataset shared by Özgenel [29] was used for training the proposed network. The dataset
contains 458 high-resolution images (4032 × 3024 pixels) with RGB channels which are pictures of
the Middle East Technical University campus building in Turkey. For the patchwise-training and
test, the dataset was divided into two groups, 20,000 non-crack images (Figure 7a) and 20,000 crack
images (Figure 7b). Thus, a total of 40,000 images of 227 × 227 pixels size were used in this study.
In addition, this study prepared crack segmentation data of 2000 separately by manually segmenting
crack images (Figure 7c). Note that the shared dataset contains information on the status of cracks,
but since the cracks are not segmented. The proposed neural networks were built and verified on the
Keras Application Programming Interface of TensorFlow (Google Brain, Mountain View, CA, USA).
They were trained on an NVIDIA GTX 1080 Ti GPU, which has 3584 CUDA cores and 11 GB GDDR5X
memory. The GPU memory bandwidth is 484 GB/s.
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3.2. Results of Crack Classification Network

As mentioned above, this study used 40,000 concrete images for the training and evaluation
process of the artificial neural network, of which 36,000 images were used as training data and 4000
as test data. For the training, batch size was set to 50. Initial learning rate and decay were 10–3 and
10–2, respectively. The learning rate was set to be decayed continuously. Loss function was set to the
softmax cross entropy. The Adam optimizer [30], which is a gradient-based optimization algorithm,
was used to minimize total loss and update the network. Training was stopped at 12,140,400 iterations
(337 epochs).

As shown in Figure 8, training loss and evaluation accuracy were gradually decreased and
increased without overfitting. And they almost converged around the epoch of 100. It was found
that the speed of convergence is slow due to the reduced learning rate. As a result of evaluating the
accuracy, we obtained a final verification accuracy of 99.98% as shown in Figure 8.
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3.3. Results of Crack Segmentation Network

The segmentation network performs segmentation on the concrete cracks in the images classified
as crack images. In terms of the data prepared to train this neural network, this study used 2000
segmentation images from the concrete crack database, of which 1751 images were used for training
and 249 for evaluation. For training, the batch size was set to 6. The learning rate was set equal to that
of the previous classification network training. Loss and evaluation functions were set to the sigmoid
cross-entropy and Intersection over Union (IoU), respectively. The proposed network was trained by
Adam optimizer and terminated when the evaluation accuracy reached the maximum value.

Figure 9 shows the history of training loss and evaluation accuracy. Training loss and evaluation
accuracy were continuously decreased and increased to converge. They converged at 919,270 iterations
(525 epochs). IoU value of the evaluation data was 0.87 which close to 1 corresponding to 100% accuracy.
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3.4. Results of Crack Measurement

The images that go through the concrete crack classification and segmentation neural networks
are returned as segmentation information on the crack points. Therefore, we can obtain the total length
and average thickness of cracks, which are information about the concrete crack images, using thinning
and tracking techniques. Figure 10b shows the results of segmentation using the deep learning method
on an actual concrete crack image, and the results of deriving the length and average width of the
crack (Figure 10c,d) based on segmented crack. The length, minimum width, and maximum width
of the crack actually measured were 396.7, 1.3 and 5.2 mm, respectively. The crack length obtained
by segmentation using deep learning and applying thinning and tracking methods in this study was
401.3 mm, showing an error of about 1%. In addition, the average crack width measured through
profiling was 2.2 mm, which is similar to the crack width range actually measured.

4. Discussion

Crack inspection is implemented by two consecutive processes: crack detection and measurement.
This technique is very important in civil engineering because it is directly related to the safety, durability,
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and the applicability of concrete structures. Based on this fact, various automatic crack inspection
methods have been proposed based on image processing (IP), machine learning (ML) algorithms,
and artificial neural networks (ANN). In an objective and efficient manner, these crack inspections
showed better performance than the conventional human-based method that relies on the subjectivity
of inspectors. Particularly, ANN-based methods were outstanding in crack detection [18–25]. However,
these approaches have rarely been considered in crack measurement [18–23]. This paper proposed a
new framework that can inspect cracks objectively and efficiently in concrete ground structures through
crack detection and measurement. The framework detects crack using artificial neural networks that
classify crack patches in the input image and segment cracks in the classified patches. Subsequently,
it analyzes crack characteristics (i.e., length and width) using image processing techniques. Verification
using test data demonstrated that this proposed framework can reliably provide crack characteristics
through the consecutive processes.

Convolutional neural network (CNN)-based crack classification is proposed in this study.
Each layer has a number of convolution filters of different sizes. The convolution filter in the
neural networks allows the conversion of an input image into an image that highlights the sought-after
characteristics. Specifically, a learned convolution filter can play a role as a Sobel filter [31] that detects
edges then creates an image emphasizing the edges. The study consisted of a number of convolution
filters of 5 × 5 size in each layer from 16 to 128 to build efficient crack classification. In the verification,
the framework showed high classification accuracy of about 99%. Moreover, this high accuracy is in
very good agreement with state-of-art techniques that use the same training data [20,21,25]. These facts
demonstrated that the filters in the proposed method were appropriate designed and used for properly
classifying crack patches in the input image.

This study proposed a patchwise-crack detection method that divides an input image into patch
units, then determines the presence of cracks in each patch by the classifier, and segments crack from
the classified patches thereafter. It should be noted that this approach can overcome the lack of training
data by obtaining multiple image patches from a single image, prevent the decline of architecture
performance for high-resolution images, and overcome the imbalanced dataset problems by using
only image patches with cracks. For example, the learning process for a segmentation neural network
requires at least 1000 training data points that are not only crack images but also crack-labeled images.
However, it is exceedingly difficult to manually label cracks in the obtained images from cameras
(typically, 2960 × 1440 QHD resolution). Since the pixels of crack images may account for less than 1%
of the pixels of the entire images, the learning performance can decline significantly due to imbalanced
datasets. Based on these facts, this study implemented a patchwise-segmentation neural network
and showed that the network has a reasonably high intersection over union (IOU) of 0.87 despite the
limited number of 1751 learning data points. This result demonstrates the considerable potential of the
proposed method.

The proposed method also has another advantage in that it can be applied not only to
fixed-sized but also varied-sized images obtained in various environments. As mentioned above,
the patchwise-approach allows analysis of a varied-sized image by dividing it into patch units.
Moreover, the separated two neural networks for the classification and segmentation provide the same
advantage. It should be noted that this advantage has been emphasized in the different engineering
fields [32–34]. However, due to the lack of objective records of crack images and their characteristics,
this study only performed verification on one-sized images.

For analyzing crack characteristics, this study proposed IP-based methods. Thinning and tracking
algorithms was used for the crack length from the partitioned cracks by the CNN-based method,
and the profiling algorithm is implemented for the crack width. Through the verification, this study
showed a very small measure error rate of about 1%. This result indicates the benefit of the image
processing techniques in identifying the significant characteristics from a detected object. That is,
ANN-based methods may be more suitable to detect the desired object, to determine the presence of
the desired object, and to segment the desired object, as illustrated in many previous studies [18–25].
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However, this study has some limitations. First, as our initial attempt to inspect cracks on the
concrete structure, the proposed method was trained and verified with limited data. Although this
proof-of-concept study demonstrated the potential of the proposed method, these limited data points
cannot fully represent the variety of concrete cracks. Therefore, the proposed method should be
further verified with a larger data set in order to be utilized in the practical field. Related work is
currently underway. Second, the accuracy of the proposed method was investigated in one-sized
images, although varied-sized images can obviously be applied to the method. If the size of the input
image is increased, it can require more computational cost. This might lead to reducing the efficiency
of crack inspection. For rigorous validation, it would be necessary to investigate the robustness of
the image size. This will be performed in our future work. Third, the proposed crack measurement
method is able to calculate the physical length and width of the crack when the physical length of
a pixel is given. Although the proposed measurement method was successfully verified using ideal
data including the physical length of a pixel, images that are taken in the practical field do not contain
physical length data. One possible solution is to shoot a crack together with a certain reference mark
that has a predetermined shape and length. The reference mark can help estimate the physical length of
a pixel. Lastly, although this study aims to propose a novel concrete crack inspection method, the effects
of hyper-parameter changes in the proposed neural network should be further analyzed with a larger
training data set prior to practical use to suggest appropriate parameter values more rigorously.

The present study proposed a novel crack inspection technique for concrete structures using
artificial neural networks and image processing. As described in the preceding sections, the proposed
method can detect crack objectively and reliably against test data. Moreover, the proposed method
enables accurate measurement of crack characteristics. If the proposed method was verified and
validated with a large data set in further research, the proposed method would apply to various
types of ground concrete structures such as tunnels, water and sewer pipelines, underground roads,
and utility tunnels. The method will also contribute to evaluating the stability and integrity of concrete
structures in the long term by efficiently inspecting and managing records of cracks in various types of
structures with relatively low-cost portable equipment.
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