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Abstract: Feature selection has devoted a consistently great amount of effort to dimension reduction
for various machine learning tasks. Existing feature selection models focus on selecting the most
discriminative features for learning targets. However, this strategy is weak in handling two kinds
of features, that is, the irrelevant and redundant ones, which are collectively referred to as noisy
features. These features may hamper the construction of optimal low-dimensional subspaces and
compromise the learning performance of downstream tasks. In this study, we propose a novel
multi-label feature selection approach by embedding label correlations (dubbed ELC) to address
these issues. Particularly, we extract label correlations for reliable label space structures and employ
them to steer feature selection. In this way, label and feature spaces can be expected to be consistent
and noisy features can be effectively eliminated. An extensive experimental evaluation on public
benchmarks validated the superiority of ELC.

Keywords: feature selection; noise elimination; space consistency; label correlations

1. Introduction

For pattern recognition, feature selection is important for its effectiveness in reducing
dimensionality. Feature selection methods are divided into supervised, semi-supervised,
and unsupervised ones, according to whether the instances are labeled, partially labeled, or not [1–4].
For supervised cases, class labels are employed for measuring features’ discriminative abilities.
Many popular and efficient feature selection methods belong to this group [5–10]. Supervised methods
are further categorized into three well-known models: filter, wrapper, and embedded [11]. In recent
years, some hybrid methods have emerged that combine filter and wrapper processes for enhancing
performance and reducing computational cost [12,13].

In another categorization view, existing feature selection approaches can also be grouped to
single-label and multi-label ones, whose difference lies in the size of labels that each instance is
related with [14]. In single-label FS, instances and labels hold many-to-one connections and the target
separability is emphasized in this learning task. With the great potential and success of multi-label
learning in many machine learning fields, such as text categorization [15], content annotation [16],
and protein location prediction [17], multi-label feature selection has received considerable attention
in recent years. We approach the supervised multi-label feature selection in this study.
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In multi-label learning, label correlations are the key to combining the complicated relationships
among instances, which are typically annotated with multiple labels [18,19]. The mainstream
multi-label feature selection strategy is to extract label correlations (via statistical or information-based
measurements) and employ them to help find the most remarkable features. A critical issue is, however,
this strategy would be trapped by two kinds of features, that is, irrelevant and redundant ones.
Irrelevant features represent those lowly discriminative ones. Features of this kind are loosely correlated
with learning targets and even may provide misleading information. Compared with irrelevant
features, redundant features seem more deceptive. They may exhibit excellent (or comparably superior)
performances and mix with remarkable features. Nevertheless, redundant features also lowly contribute
to enhancing the discriminative ability of the constructed low-dimensional subspace, because the
learning information they provide is redundant with the already distilled information. In general,
we regard both irrelevant and redundant features as noisy ones, which may confuse selection processes
and compromise the learning performance of downstream tasks.

In this paper, we present an effective multi-label feature selection model by embedding label
correlations to eliminate noisy features, named ELC. Our major strategy is to keep feature-label space
consistent and explore reliable label structures to drive feature selection. Concretely, we qualitatively
assess label correlations in the label space and embed them in feature selection. In this way,
the label structure information can be maximally preserved in the constructed low-dimensional
subspace, and eventually the consistency between feature and label spaces can be achieved.
Furthermore, we devise an efficient framework base on the sparse multi-task learning to optimize ELC,
which can help ELC find globally optimal solutions and efficiently converge.

The major contributions of this paper are as follows:

• We present a novel multi-label feature selection model to address the issue of noisy features.
This model qualitatively measures label correlations and employs feature-label space consistency
to steer feature selection.

• We devised a compact framework to optimize the proposed model. This framework resorts to the
multi-task learning strategy and promises globally optimal solutions and efficient convergence.

• Comprehensive experiments on openly available benchmarks were conducted to validate the
performance of the proposed model in feature selection and noise elimination.

The remaining parts of this paper are arranged as follows: related works are reviewed in Section 2;
the proposed model ELC and its optimization framework are respectively introduced in Section 3 and
Section 4; the experimental comparisons of ELC with several popular feature selection approaches are
presented in Section 5; finally, conclusions are drawn in Section 6.

2. Related Work

Feature selection approaches are commonly specified to a certain recognition scenario,
i.e., single-label learning or multi-label learning, because of the different concerns of the two recognition
tasks. The issue of noisy feature elimination is firstly raised in single-label feature selection, focusing
on removing irrelevant features and picking out discriminative ones. For example, the popular
single-label feature selection family by preserving instance similarity [20] directly highly scores the
most discriminative features under various statistical metrics, such as the Laplacian score [7,21],
the Fisher score [6], the Hilbert–Schmidt independence criterion [22], and the trace ratio [23],
just to name a few. In addition to the above similarity preservation approaches, some traditional
distance or instance difference based ones can also be deemed as simply pursuing “target-specific
features,” such as ReliefF [10], SPEC [24,25], and SPFS [20]. This denotation arises from the fact that
target-specific features are picked based only on whether they are strongly correlated with the learning
targets. In other words, those features that have excellent discriminative abilities for targets will
prevail. The aforementioned approaches have generally achieved excellent performance in eliminating
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irrelevant features, while may experience difficulties in improving learning performance due to their
scarce attention on removing redundant features.

Recently, some remarkable neural networks-based and fuzzy logic-based feature selection works
have been presented, which have received extensive attention due to their excellent feature selection
performances [26–28]. For example, Verikas and Bacauskiene [26] proposed a feedforward neural
network-based approach to find the salient features and remove those yielding the least accurate
classifications. Arefnezhad et al. [27] highly scored the features most related to the drowsiness
level via an adaptive neuro-fuzzy inference system, which was devised by combining filter and
wrapper feature selection approaches. Cateni et al. [28] selected the mostly relevant features for
better binary classification by combining several filter approaches through a fuzzy inference system.
Generally speaking, the above studies serve as excellent examples of picking out target-specific features,
while still leaving aside the underlying negative effects of noisy features.

A salient but redundant feature provides little valuable learning information if selected.
Although this issue is ignored by a majority of feature selection approaches, it gains attention from
some information-based ones. Among them, the family based on mutual information is regarded
as the mainstream redundancy removing approach. The classical mutual information [9] and its
variants (e.g., conditional mutual information) [5,29] can effectively position the redundant features
and remove them via a greedy search. Nevertheless, an inevitable problem is that the performances
of these approaches heavily depend on their probability estimation accuracy. This problem is more
complicated in high-dimensional space.

In terms of multi-label feature selection approaches, they can be roughly categorized into two
families. The first family directly divides the multi-label learning into multiple subproblems and
utilizes single-label feature evaluation metrics to tackle them [4]. For instance, ReliefF is tailed for
multi-label learning by dividing its estimations of nearest misses and hits to eight subproblems [30].
In addition, some single-label feature evaluation strategies are also reformulated to the multi-label
ones by enforcing on each subgroup, such as class separability and linear discriminant analysis [31,32].
A major drawback of the above subproblem division strategy is that it ignores label correlations, which
encode the underlying label structures for recognition and play critical roles in multi-label learning.

On the other hand, the second family of multi-label feature selection can better fix this issue
since it incorporates label correlations into model construction. A common strategy of this family
is to evaluate instance-label pairs via specific label ranking metrics and select the features by
minimizing loss functions [33–36]. While real-world label relations could be beyond pairwise situations,
some high-order correlation approaches have been proposed to model complicated label structures.
A feasible solution is to build a common space shared among various labels [16,33,37], which typically
suffers from high costs and complex computation. It is noteworthy that in contrast to single-label
feature selection approaches, the multi-label ones rarely have the issue of noisy feature elimination.
A few approaches specific to ruling out irrelevant features are based on sparse regularization [38].
These approaches neglect the negative effects of redundant features and are not competent in
completely removing noisy features.

To comprehensively address the above issues, we will introduce a novel multi-label
feature selection model in Section 3, which can effectively filter both kinds of noisy features
(including irrelevant and redundant ones) and select the remarkable ones. The proposed model
adopts a statistical metric to measure target-related feature redundancy and dispense with any
probability estimation. Furthermore, this model extracts label correlations and keeps feature-label space
consistency to guide feature selection, which facilitates irrelevant feature exclusion and remarkable
feature domination.
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3. The Methodology: ELC

3.1. Model Description

In this paper, we use {xi, yi}n
i=1 to denote the data set, where X = [x1; ...; xn] ∈ Rn×d represents

the instance matrix and instances are characterized by d features in the feature set F = {f1, ..., fd}.
Y = [y1, ..., yl ] ∈ {0, 1}n×l denotes the target label matrix, where yij = 1 represents a positive label and
yij = 0 corresponds to a negative one.

Then, we formulate the multi-label feature selection by embedding label correlation (ELC)
as follows:

min
W

1
2

∥∥∥ŶTŶ− S
∥∥∥2

F
, s.t. Ŷ =

1
n
(XW)TY, W ∈ {0, 1}d×l , ‖W‖2,0 = k, (1)

where S ∈ Rl×l represents the label correlation matrix calculated over the initial label matrix, and k
is the number of selected features. W ∈ Rd×l is the feature selection matrix, where wij indicates the
importance (also known as weight) of the i-th feature to the j-th label.

Equation (1) is actually the feature evaluation function of ELC, which is essentially a
Frobenius-norm quadratic model. The matrix S represents the label correlations extracted from
the label space, and its each element describes a relation between two target labels. These correlations
can be easily obtained by some quantitative measurements, including RBF kernel function, Pearson
correlation coefficient, etc. ŶTŶ represents the label correlations extracted from the reduced feature
space. ŶTŶ is differentiated from S on account of the disturbance of noisy features. As described in
Section 1, noisy features may distort the structure of the feature space and provide negative learning
information. Considering this, ELC evaluates features based on their abilities of preserving label
correlations in the feature space, that is, keeping feature-label space consistency. The features that can
minimize the discrepancy between ŶTŶ and S will be highly scored by ELC. In this way, ELC can be
expected to construct an optimal feature subspace with eliminating different kinds of noisy features.

Under the constraint of the `2,0-norm in Equation (1), only k row in W is nonzero. This corresponds
to the k selected features for l target labels, where 1 represents selected and 0 represents none. Note that
k is most likely to be unequal to l. That is, more than one feature may be selected responsible for
discriminating the same label, or only one feature is discriminative for more than one label. In the
former case, multiple features are unified to recognize one target, while one feature deals with multiple
recognition sub-tasks in the latter case.

3.2. Property Analysis

The feature subset F̂ =
{

f̂1, f̂2, . . . , f̂k

}
that is selected by ELC can be considered as maximally

maintaining feature-label space consistency. F̂ is expected to be constituted by the remarkable features
and exclude the noisy ones. In this subsection, we will further analyze the properties of ELC and
reveal its underlying characteristics.

Suppose that each feature in F has been standardized to have mean zero and unit length.
Then, the following things hold for Equation (1):

∥∥∥ŶTŶ− S
∥∥∥2

F
=

∥∥∥∥ 1
n2

(
YT(XW)(XW)TY

)
− S

∥∥∥∥2

F
.

This is the objective of ELC. For more clearly illustrating its properties, let Ŝ = n2S and
H = YT(XW)(XW)TY. Then,∥∥∥ŶTŶ− S

∥∥∥2

F
=

1
n2

(
tr(HTH) + tr(ŜTŜ)− 2tr(ŜTH)

)
.

Three terms are involved in this equation. Clearly, tr(ŜTŜ) represents the label correlation
information extracted from the label space and is constant in the selection process. Thus, it is easy to
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conclude that min
W

∥∥ŶTŶ− S
∥∥2

F is equivalent to min
W

tr(HTH) and max
W

tr(ŜTH). Then, two properties

of ELC are given as follows:

Property 1. Label correlation information can be maximally embedded in feature selection by ELC.

Proof. tr(ŜTH) = tr
(
(XW)TYŜYT(XW)

)
= ∑k

i=1 f̂T
i (YŜYT)f̂i = ∑k

i=1 f̂T
i

(
l

∑
c1=1

l
∑

c2=1
yc1sc1,c2yT

c2

)
f̂i,

where sc1,c2 is the correlation degree of the labels yc1 and yc2, and XW indicates the selected features.

Then, the following things holds: min
W

∥∥ŶTŶ− S
∥∥2

F ∝ max
W

∑k
i=1 f̂T

i

(
∑l

c1=1 ∑l
c2=1 yc1sc1,c2yT

c2

)
f̂i.

∑l
c1=1 ∑l

c2=1 yc1sc1,c2yT
c2 can be regarded as the correlation information of pairwise labels. Therefore,

ELC can maximally embed label correlations in its feature selection process.

Label correlation information is important for multi-label learning. For example, the images about
seas may share some common labels for recognition, such as ship, fish, and seagull, and their close
correlations may help us distinguish the image category and find their shared features. The existing
multi-label learning methods are categorized on the basis of the label correlation orders they
consider [39]. Their correlation modeling capabilities directly affect their discriminative performance.
As demonstrated in Property 1, ELC can measure the pairwise label correlations. Furthermore, it can
also preserve this correlation information in its constructed feature subspace, which is crucial for ELC
to eliminate noisy features. In other words, the features that can maximally preserve label correlation
information are preferred by ELC. This strategy facilitates ELC building a low-dimensional feature
space that is consistent with the label space and also suitable for multi-label learning.

In addition to the above property with respect to maximally embedding label correlations, another
important property of ELC is illustrated as follows:

Property 2. Feature redundancy can be minimized by ELC.

Proof. tr(HTH) = ∑k
i,j=1

(
(f̂T

i Y)(f̂T
j Y)T

)2
= ∑k

i,j=1 ∑l
c=1

(
〈f̂i, yc〉〈f̂j, yc〉

)2

= ∑k
i,j=1 ∑l

c=1 n4σ4
yc ρ2

f̂i ,yc
ρ2

f̂j ,yc
,

where σyc is the standard deviation of the label yc, and ρf̂i ,yc
and ρf̂j ,yc

are the Pearson correlation

coefficients of yc with the features f̂i and f̂j, respectively. Then, we have min
W

∥∥ŶTŶ− S
∥∥2

F ∝

min
W

∑k
i,j=1 ∑l

c=1 n4σ4
yc ρ2

f̂i ,yc
ρ2

f̂j ,yc
.

Clearly, n and σyc are constant in the feature selection process. ∑l
c=1 ρf̂i ,yc

ρf̂j ,yc
can be regarded as

the shared label dependency of the features f̂i and f̂j, that is, the feature redundancy for recognizing
the target yc. Therefore, ELC can minimize feature redundancy in its feature selection process.

Note that the term ∑l
c=1 ρf̂i ,yc

ρf̂j ,yc
in Property 2 is obtained by introducing the label correlation

information. This is a completely novel estimation for the label-specific feature redundancy. The most
majority of existing feature selection approaches (including the single-label and multi-label ones)
adopt a univariate measurement criterion and merely the top-k features have opportunities to
prevail. This strategy largely increases the redundant recognition information shared between features.
For example, if we select the genes that are all discriminative for the diabetes type 1, we probably cannot
give an accurate diagnosis since these features may be less aware of other types of diabetes. This is why
we have to reduce recognition redundancy and enrich recognition information. Some approaches are
able to reduce feature redundancy, while their focus is not the label-specific redundancy. For example,
∑k

i,j=1 ρf̂i ,f̂j
is actually reduced in SPFS [20]. This term includes an additional information irrelevant to

recognition, and correspondingly, it is inappropriate. In contrast, ELC removes label-specific feature
redundancy and is more suitable for multi-label learning with eliminating noisy features.
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As discussed above, ELC processes two properties, i.e., maximally preserving label correlation
information and minimizing label-specific feature redundancy. These characteristics account for the
superior ability of ELC in eliminating noisy features and picking out remarkable ones.

4. Multi-Task Optimization for ELC

Equation (1) describes an integer programming problem, which is NP-hard and complicated
to solve. Moreover, the `2,0-norm constraint in Equation (1) is non-smooth, which leads to a slow
convergence rate. In this section, we devise an efficient framework to address this problem by using
the sparse multi-task learning technology in the proximal alternating direction method (PADM)
framework [40].

Suppose the spectral decomposition of the correlation matrix S can be denoted as

S = ΦΣΦT = Φdiag(σ1, . . . , σl)Φ
T , σ1 ≥ . . . ≥ σl ,

where Φ and Σ are respectively the eigenvector and eigenvalue matrices of S. Then, Equation (1) can
be reformulated as

min
W,p

1
2

∥∥∥YTXdiag(p)W− Γ∗
∥∥∥2

F
, s.t. W ∈ Rd×l , ‖W‖2,1 ≤ t, p ∈ {0, 1}d, pT1 = k, (2)

where Γ∗ = nΦΣ1/2, t is a hyperparameter to constrain ‖W‖2,1 to a convex solution, p is a feature
indicator vector that reflects whether the corresponding features are selected or not (1 for selected and
0 for otherwise), and 1 is the vector with all ones.

On the basis of Equation (2), ELC is actually reformulated as a multivariate regression problem,
which enables the multi-task learning technology [41]. This technology aims to learn a common set of
features to tackle multiple relevant tasks and excels at various sparse learning formulations, including
the optimization problem in Equation (1). Based on the multi-task learning technology, we then obtain
the equivalent form of ELC as follows:

min
W,p

1
2

∥∥Âdiag(p)W− Γ∗
∥∥2

F + λ ‖W‖2,1 , s.t. p ∈ {0, 1}d, pT1 = k, (3)

where Â = YTX, and λ > 0 is the regularization parameter. Clearly, we can apply the augmented
Lagrangian method to solve this problem. Then, Equation (3) is further reformulated as

min
U,W,p

1
2

∥∥Âdiag(p)W− Γ∗
∥∥2

F + λ ‖U‖2,1 , s.t. U = W, p ∈ {0, 1}d, pT1 = k. (4)

The Lagrangian function can be defined as

L(U, W, p, V) =
1
2

∥∥Âdiag(p)W− Γ∗
∥∥2

F +
β

2
‖W−U‖2 + λ ‖U‖2,1 − tr

(
VT(W−U)

)
, (5)

where V =
(
vT

1 , . . . , vT
d
)T ∈ Rd×l is the Lagrangian multiplier, and β > 0 is the penalty parameter.

Equation (5) involves four variables, that is, the auxiliary variable U, the feature weight matrix W,
the feature indicator vector p, and the Lagrangian multiplier V. Clearly, simultaneously optimizing
four variables is impractical. Accordingly, V is temporarily fixed for simplification in the following
analysis. Then, minimizing L(U, W, p, V) is equivalent to the following two subproblems; i.e.,

• min
U
L1(U) = min

U

β
2 ‖W−U‖2 + λ ‖U‖2,1 + tr(VTU);

• min
W,p
L2(W, p) = min

W,p
1
β

∥∥Âdiag(p)W− Γ∗
∥∥2

F + ‖W−U‖2 − 2
β tr(VTW).
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As to L1(U), the following holds:

L1(U) = ∑d
i=1

(
β

2

∥∥∥wi − ui
∥∥∥2

+ λ
∥∥∥ui
∥∥∥+ tr(vT

i ui)

)
, (6)

where wi and ui are the i-th row vectors of W and U, respectively. Then, we reformulate min
U
L1(U) to

its close form [41] as

min
ui

∑d
i=1

(
β

2

∥∥∥∥wi − ui +
1
β

vi

∥∥∥∥2
+ λ

∥∥∥ui
∥∥∥) . (7)

Conducting gradient descent on Equation (7) yields the following optimal solution as

ui = max
{∥∥∥∥wi +

1
β

vi

∥∥∥∥− λ

β
, 0
} wi + 1

β vi∥∥∥wi + 1
β vi

∥∥∥ . (8)

Then, the optimal U in iteration [t + 1] can be denoted as

U[t+1] = max
{∥∥∥∥W[t] +

1
β

V[t]
∥∥∥∥− λ

β
, 0
} W[t] + 1

β V[t]∥∥∥W[t] + 1
β V[t]

∥∥∥ . (9)

In terms of min
W,p
L2(W, p), we let P = {p|p ∈ {0, 1}d, pT1 = k}. The dual problem of

min
W,p
L2(W, p) is

min
p∈P

max
W
L2(W, p). (10)

Since simultaneously solving the both variables p and W is still tough, we first fix p to optimize W.
Then, the solution of W can be obtained as(

diag(p)ÂTÂdiag(p)− βI
)

W = diag(p)ÂTΓ∗ + βU + V, (11)

where I is the identity matrix. The structure of ÂTÂ is commonly not circulant, and therefore the
computation of Equation (11) is involved [42]. Considering this, an approximate term is added to
L2(W, p) as follows:

L̃2(W, p) =
1

βτ

∥∥∥W−W[t] + τΩ[t]
∥∥∥− 2

β
tr(VTW) + ‖W−U‖2 ,

Ω[t] = diag(p[t])ÂT
(

Âdiag(p[t])W[t] − Γ∗
)

,
(12)

where τ > 0, and W[t] is the optimal value of W in iteration [t]. Then, the solution of W[t+1] is

W[t+1] =

(
τ

βτ + 1

)(
βU[t+1] + V[t] +

1
τ
(W[t] − τΩ[t])

)
. (13)

The detailed inference can be found in the Appendix A.
Similarly, we can easily obtain the optimal p by fixing W. Equation (10) is then equivalent to the

following minimization problem in this case as follows:

min
p∈P

∥∥Âdiag(p)W− Γ∗
∥∥2

F = min
p∈P

∥∥∥YT ∑d
i=1 pifiwi − Γ∗

∥∥∥2

F
. (14)

Apparently, the top-k features that minimize
∥∥YTfiwi − Γ∗

∥∥2
F can be regarded as the remarkable

ones. Their corresponding values in p are assigned as 1.
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Note that the Lagrangian multiplier V is fixed through the above analysis, mainly for simplifying
the solution process. We further tackle this problem in the popular PADM framework as illustrated in
Algorithm 1. In this framework, V can be updated as

V[t+1] = V[t] − β
(

W[t+1] −U[t+1]
)

. (15)

Algorithm 1 ELC.

input: F = {f1, . . . , fd} , Y, S, k, β, τ, λ

output: p[t]

1: begin
2: t = 0, W[0] = 0d×l , U[0] = 0d×l , V[0] = 1

d 1d×l ;

3: find top-k features f̂[0]1 , . . . , f̂[0]k that minimize Equation (1), and set p[0]i =

 1, fi ∈
{

f̂[0]1 , . . . , f̂[0]k

}
0, otherwise

;

4: while “not converged” do
5: optimize U[t+1] according to Equation (9);

6: optimize W[t+1] according to Equation (13);

7: find top-k features f̂[t+1]
1 , . . . , f̂[t+1]

k which minimize Equation (14), and set p[t+1]
i = 1, fi ∈

{
f̂[t+1]

1 , . . . , f̂[t+1]
k

}
0, otherwise

;

8: update V[t+1] according to Equation (15);

9: t = t + 1;

10: end while;

11: return p[t];

12: end;

ELC in Algorithm 1 is implemented in the regression framework PADM, which is a fast alternating
approach for the well-known alternating direction method (ADM) framework. PADM is effective and
efficient in solving the minimization problem of the augmented Lagrangian function, and is able to
converge to a certain solution {W∗, U∗} from any starting point

{
W[0], U[0]

}
for any β > 0 [40].

In terms of the complexity of ELC, it only takes O(k log d) time to find k remarkable features from
the d candidates. Thus, the time consumption for line 3 is O(ndl2 + k log d). The cost of the while loop
in Algorithm 1 mainly lies in lines 6 and 7, which is O(d2l2 + ndl2 + k log d). As this iteration process
is repeated for t times, its total cost is O(t(d2l2 + ndl2 + k log d)). Suppose t � 1. Then, the total
complexity of ELC is approximately equal to O(t(d2l2 + ndl2 + k log d)), where d, n, l, k, t are the
numbers of features, instances, labels, selected features, and iterations for convergence, respectively.

5. Experimental Evaluation

Fourteen groups of multi-label data sets fetched from the Mulan library (http://mulan.
sourceforge.net/datasets-mlc.html) are taken as the benchmarks in this section, which are shown in
Table 1. We compare ELC (the source code is available at https://github.com/wangjuncs/ELC) with
the following state-of-the-art multi-label feature selection methods:

• MIFS (multi-label informed feature selection) [33]: a label correlation-based multi-label feature
selection approach, which maps label information into a low-dimensional subspace and captures
the correlations among multiple labels;

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
https://github.com/wangjuncs/ELC


Appl. Sci. 2020, 10, 8093 9 of 18

• CMFS (correlated and multi-label feature selection) [35]: a feature selection approach based on
non-negative matrix factorization, which exploits the label correlation information in features,
labels, and instances to select the relevant features and remove the noisy ones;

• LLSF (learning label-specific features) [36]: a unified multi-label learning framework for
both feature selection and classification, which models high-order label correlations to select
label-specific features.

Table 1. Benchmarks for multi-label feature selection.

Data Set ]Features ]Instances ]Labels Domain

emotions 72 539 6 music
yeast 103 2417 14 biology
birds 260 645 19 audio
enron 1001 1702 53 text

genbase 1186 662 27 biology
business 21,924 11,214 30 text

arts 23146 7484 26 text
education 27,534 12,030 33 text
reaction 30,324 12,828 22 text
health 30,605 9205 32 text

computers 34,096 12,444 33 text
science 37,187 6428 40 text

reference 39,679 8027 33 text
society 49,060 14,512 22 text

More detailed experimental configurations can be found in the Appendix B.

5.1. Example 1: Classification Performance

The average classification performance of each feature selection approach is recorded in Table 2
and the pairwise t-tests at 5% significance level were conducted to validate the statistical significance.
In addition to the traditional precision and AUC metrics, hamming loss penalizes incorrect the
recognitions of instances to each target label, ranking loss penalizes the misordered labels in pairs,
and one-error penalizes the instances whose top-ranked predicted labels are not in the ground-truth
label set. Five metrics evaluated the multi-label classification performance from different aspects.

A single metric is insufficient to illustrate the general classification performance on a dataset.
For example, the overall performance of ML-KNN classifier [43] on birds is worse than that on enron
under the precision metric, while it shows a better performance on birds than on enron under the AUC
metric. Therefore, we extensively used five metrics to compare the performances of the compared
approaches. As shown in Table 2, ELC outperforms MIFS, CMFS, and LLSF under various metrics.
This superiority is attributed to two reasons. That is, ELC can effectively eliminate noisy features from
the candidate feature subsets and maximally embed label correlation information into its selection
process. The first term rules out the selection disturbance in the feature space, and the second term
promises the proper guiding information extracted from the label space. By seamlessly fusing these
two terms, ELC is able to find discriminative features for the downstream learning tasks. This point
will be further validated in Sections 5.2 and 5.3.
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Table 2. Average multi-label classification performance (mean ± std.): the best results and those not significantly worse than it are highlighted in bold (pairwise t-test
at 5% significance level).

(a) Precision (the higher the better).

Approaches
Data Sets

AVG.
Emotions Yeast Birds Enron Genbase Business Arts

MIFS 0.6667 ± 0.04 0.7520 ± 0.02 0.3938 ± 0.02 0.6139 ± 0.03 0.7361 ± 0.15 0.8812 ± 0.00 0.5108 ± 0.01 0.6506
CMFS 0.7221 ± 0.02 0.7464 ± 0.01 0.4116 ± 0.03 0.6206 ± 0.01 0.7342 ± 0.15 0.892 ± 0.00 0.5611 ± 0.00 0.6697
LLSF 0.7016 ± 0.02 0.7532 ± 0.01 0.4231 ± 0.07 0.6197 ± 0.04 0.7352 ± 0.15 0.8924 ± 0.00 0.5615 ± 0.01 0.6695
ELC 0.7306 ± 0.02 0.7564 ± 0.01 0.4671 ± 0.08 0.6347 ± 0.01 0.9868 ± 0.00 0.8931 ± 0.00 0.5646 ± 0.00 0.7190

Education Reaction Health Computers Science Reference Society

MIFS 0.5129 ± 0.01 0.5836 ± 0.01 0.7391 ± 0.02 0.6629 ± 0.01 0.4592 ± 0.02 0.6267 ± 0.01 0.5899 ± 0.01 0.5963
CMFS 0.6164 ± 0.01 0.5883 ± 0.01 0.7437 ± 0.01 0.6931 ± 0.00 0.5477 ± 0.01 0.6718 ± 0.01 0.6463 ± 0.01 0.6439
LLSF 0.6163 ± 0.01 0.5880 ± 0.01 0.7435 ± 0.01 0.6932 ± 0.00 0.5478 ± 0.01 0.6720 ± 0.00 0.6460 ± 0.01 0.6438
ELC 0.6213 ± 0.00 0.5952 ± 0.00 0.7469 ± 0.01 0.6962 ± 0.00 0.5565 ± 0.00 0.6742 ± 0.00 0.6500 ± 0.00 0.6486

(b) AUC (the higher the better).

Approaches
Data Sets

AVG.
Emotions Yeast Birds Enron Genbase Business Arts

MIFS 0.6601 ± 0.53 0.6554 ± 0.03 0.6497 ± 0.02 0.5968 ± 0.03 0.7886 ± 0.10 0.6371 ± 0.01 0.6100 ± 0.01 0.6568
CMFS 0.7307 ± 0.03 0.6473±0.03 0.6403 ± 0.04 0.6194 ± 0.01 0.7883 ± 0.10 0.6821 ± 0.01 0.6606 ± 0.01 0.6812
LLSF 0.7069 ± 0.02 0.6601 ± 0.02 0.6793 ± 0.05 0.6092 ± 0.03 0.7887 ± 0.10 0.6824 ± 0.01 0.6608 ± 0.01 0.6839
ELC 0.7513 ± 0.02 0.6706 ± 0.02 0.7018 ± 0.06 0.6385 ± 0.01 0.9663 ± 0.00 0.6834 ± 0.00 0.6659 ± 0.00 0.7254

Education Reaction Health Computers Science Reference Society

MIFS 0.5830 ± 0.02 0.7065 ± 0.01 0.6994 ± 0.01 0.6364 ± 0.01 0.6109 ± 0.02 0.6246 ± 0.01 0.5964 ± 0.01 0.6423
CMFS 0.6753 ± 0.00 0.7111 ± 0.01 0.7014 ± 0.01 0.6864 ± 0.01 0.6732 ± 0.01 0.6674 ± 0.01 0.6430 ± 0.01 0.6867
LLSF 0.6761 ± 0.01 0.7114 ± 0.01 0.7032 ± 0.01 0.6859 ± 0.01 0.6723 ± 0.01 0.6672 ± 0.01 0.6427 ± 0.01 0.6867
ELC 0.6779 ± 0.00 0.7188 ± 0.01 0.7053 ± 0.01 0.6905 ± 0.00 0.6789 ± 0.00 0.6681 ± 0.01 0.6465 ± 0.00 0.6911
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Table 2. Cont.

(c) Hamming loss (the lower the better).

Approaches
Data Sets

AVG.
Emotions Yeast Birds Enron Genbase Business Arts

MIFS 0.2865 ± 0.02 0.2006 ± 0.01 0.0538 ± 0.00 0.0544 ± 0.00 0.0303 ± 0.02 0.0270 ± 0.00 0.0610 ± 0.00 0.1019
CMFS 0.2600 ± 0.01 0.2031 ± 0.01 0.0535 ± 0.00 0.0527 ± 0.00 0.0303 ± 0.02 0.0253 ± 0.00 0.0568 ± 0.00 0.0974
LLSF 0.2697 ± 0.01 0.1999 ± 0.01 0.0532 ± 0.00 0.0539 ± 0.00 0.0303 ± 0.02 0.0253 ± 0.00 0.0568 ± 0.00 0.0984
ELC 0.2517 ± 0.02 0.1982 ± 0.01 0.0518 ± 0.00 0.0523 ± 0.00 0.0049 ± 0.00 0.0251 ± 0.00 0.0567 ± 0.00 0.0915

Education Reaction Health Computers Science Reference Society

MIFS 0.0430 ± 0.00 0.0539 ± 0.00 0.0373 ± 0.00 0.0379 ± 0.00 0.0353 ± 0.00 0.0317 ± 0.00 0.0557 ± 0.00 0.0399
CMFS 0.0371 ± 0.00 0.0536 ± 0.00 0.0368 ± 0.00 0.0350 ± 0.00 0.0322 ± 0.00 0.0280 ± 0.00 0.0511 ± 0.00 0.0394
LLSF 0.0371 ± 0.00 0.0536 ± 0.00 0.0369 ± 0.00 0.0349 ± 0.00 0.0322 ± 0.00 0.0280 ± 0.00 0.0512 ± 0.00 0.0394
ELC 0.0368 ± 0.00 0.0531 ± 0.00 0.0366 ± 0.00 0.0348 ± 0.00 0.0319 ± 0.00 0.0278 ± 0.00 0.0508 ± 0.00 0.0391

(d) Ranking loss (the lower the better).

Approaches
Data Sets

AVG.
Emotions Yeast Birds Enron Genbase Business Arts

MIFS 0.3154 ± 0.05 0.1767 ± 0.01 0.2988 ± 0.01 0.0986 ± 0.01 0.0586 ± 0.03 0.0377 ± 0.00 0.1510 ± 0.05 0.1624
CMFS 0.2404 ± 0.02 0.1810 ± 0.01 0.2887 ± 0.02 0.0959 ± 0.00 0.0594 ± 0.03 0.0336 ± 0.00 0.1341 ± 0.00 0.1476
LLSF 0.2711 ± 0.02 0.1756 ± 0.01 0.2777 ± 0.05 0.0962 ± 0.01 0.0591 ± 0.03 0.0335 ± 0.00 0.1341 ± 0.00 0.1496
ELC 0.2379 ± 0.02 0.1733 ± 0.01 0.2568 ± 0.05 0.0924 ± 0.00 0.0065 ± 0.00 0.0334 ± 0.00 0.1332 ± 0.00 0.1334

Education Reaction Health Computers Science Reference Society

MIFS 0.0988 ± 0.00 0.1459 ± 0.01 0.0498 ± 0.00 0.0820 ± 0.00 0.1351 ± 0.01 0.0849 ± 0.00 0.1372 ± 0.00 0.0994
CMFS 0.0768 ± 0.00 0.1438 ± 0.01 0.0492 ± 0.00 0.0735 ± 0.00 0.1112 ± 0.00 0.0734 ± 0.00 0.1175 ± 0.00 0.0897
LLSF 0.0768 ± 0.00 0.1438 ± 0.01 0.0492 ± 0.00 0.0736 ± 0.00 0.1111 ± 0.00 0.0736 ± 0.00 0.1176 ± 0.00 0.0898
ELC 0.0759 ± 0.00 0.1405 ± 0.00 0.0486 ± 0.00 0.0728 ± 0.00 0.1085 ± 0.00 0.0731 ± 0.00 0.1161 ± 0.00 0.0883
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Table 2. Cont.

(e) One error (the lower the better).

Approaches
Data Sets

AVG.
Emotions Yeast Birds Enron Genbase Business Arts

MIFS 0.4451 ± 0.05 0.2403 ± 0.01 0.7226 ± 0.03 0.3230 ± 0.03 0.3698 ± 0.21 0.1187 ± 0.00 0.6215 ± 0.01 0.4059
CMFS 0.3871 ± 0.02 0.2445 ± 0.01 0.6968 ± 0.04 0.3093 ± 0.02 0.3719 ± 0.21 0.1061 ± 0.00 0.5518 ± 0.01 0.3811
LLSF 0.3986 ± 0.03 0.2387 ± 0.01 0.6879 ± 0.08 0.3158 ± 0.05 0.3707 ± 0.21 0.1058 ± 0.00 0.5509 ± 0.01 0.3812
ELC 0.3664 ± 0.03 0.2361 ± 0.01 0.6192 ± 0.11 0.2988 ± 0.01 0.0123 ± 0.00 0.1050 ± 0.00 0.5464 ± 0.00 0.3120

Education Reaction Health Computers Science Reference Society

MIFS 0.6452 ± 0.02 0.5292 ± 0.02 0.3335 ± 0.03 0.4041 ± 0.01 0.6761 ± 0.02 0.4743 ± 0.01 0.4684 ± 0.01 0.5104
CMFS 0.4989 ± 0.01 0.5234 ± 0.02 0.3266 ± 0.02 0.3738 ± 0.01 0.5605 ± 0.02 0.4208 ± 0.01 0.3933 ± 0.01 0.4537
LLSF 0.4993 ± 0.01 0.5237 ± 0.02 0.3267 ± 0.02 0.3735 ± 0.00 0.5605 ± 0.02 0.4202 ± 0.01 0.3937 ± 0.01 0.4536
ELC 0.4923 ± 0.00 0.5147 ± 0.01 0.3223 ± 0.02 0.3699 ± 0.00 0.5490 ± 0.01 0.4172 ± 0.00 0.3885 ± 0.00 0.4771
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5.2. Example 2: Eliminating Noisy Features

In this section, we evaluate the performances of the compared approaches in eliminating noisy
features. We take emotions, birds, and enron as the benchmarks, and measure the residual feature
redundancy in the selected feature subset F̂ as follows:

R(F̂) =
1

k′(k′ − 1)l ∑
f̂i ,f̂j∈F̂

l

∑
c=1

ρ2
f̂i ,yc

ρ2
f̂j ,yc

, (16)

where ρf̂i ,yc
and ρf̂j ,yc

are the Pearson correlation coefficients of the features f̂i and f̂j with the target

label yl , and k′ and l are the numbers of the selected features and labels, respectively. When R(F̂)
reaches its maximum value, the maximal redundant information exists in F̂, which interprets as the
inferior ability of the selection approach in removing noisy features.

The feature redundancy of k′ selected features for each approach is demonstrated in Figure 1,
where k′ ∈ {d/10, 2d/10, . . . , 9d/10} and d is the total number of original features. It illustrates
that ELC is superior in reducing feature redundancy. In other words, ELC can effectively remove
redundant features in its multi-label feature selection process. This is one of the crucial factors leading
to the excellent discriminative ability of ELC. It should be pointed out that in contrast to the case of
single-label feature selection, eliminating noisy features has not received sufficient attention from
existing multi-label feature selection approaches. While the issue of noisy features is an obstacle of
yielding high selection performance not only for the single-label learning but also for the multi-label
cases, we devised ELC to comprehensively tackle this problem. Moreover, the reduced feature
redundancy in the majority of redundancy elimination-based approaches is not directly relevant to the
target labels. In contrast, ELC quantitatively reduces target-relevant redundancy without any prior
probability knowledge, which is conducive to its superiority in multi-label feature selection.
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Figure 1. Classification redundancy: (a–c) are the classification redundancies produced by the feature
selection approaches on the emotions, birds, and enron datasets, and the lower of the redundancy is
the better.

5.3. Example 3: Embedding Label Correlations

Label correlation information is important for multi-label learning. In the following experiments,
we estimate the preserved label correlation information of the selected feature subset F̂ as follows:

C(F̂) =
1

k′(k′ − 1)

∥∥∥∥ 1
n2 YTXF̂XT

F̂ Y− S
∥∥∥∥2

F
, (17)

where XF̂ denotes the instances characterized by F̂ and S is the label correlation matrix of the original
data. Intuitively, Equation (17) measures the residue scale of label correlation information in the original
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and reduced feature spaces. A lower value indicates more information preserved. In other words,
more label correlation information can be embedded in the feature selection process in this situation.

Similarly to the configuration in Section 5.2, we take emotions, birds, and enron as the benchmarks
and record C(F̂) of the k′ features selected by each approach, where k′ ∈ {d/10, 2d/10, . . . , 9d/10}.
As shown in Figure 2, ELC is better at preserving the class correlation information than the
other multi-label feature selection approaches. Actually, the majority of the existing multi-label
feature selection approaches take the label correlation information into consideration to some extent.
In contrast to these approaches, ELC quantitatively measures this correlation information and
maximally embeds it into the feature selection process. This characteristic, which has already been
proved in Property 2, can be further revealed by the experimental results in this section.
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Figure 2. Residual label correlation information: (a–c) are the residual scales of the label correlation
information that are not embedded by the feature selection approaches on the emotions, birds,
and enron datasets, and the lower of the residual scale is the better.

5.4. Example 4: Time Consumption

In this section, we compare the approaches in terms of their feature selection efficiency. The time
consumption here merely records the feature selection time, excluding the classification cost. All of
the tests were implemented in Matlab on an Intel Core i7-4790 CPU (@3.6GHz) with 32GB memory
(Intel Corp., Santa Clara, CA, USA). We respectively selected k′ (k′ ∈ {100, 300, 500, 700, 900}) features
on the enron dataset and recorded the time consumption of each compared approach. As illustrated in
Figure 3, ELC and CMFS are comparably efficient to converge, while MIFS is most time-consuming,
which may be mainly attributed to its involved label clustering process.
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Figure 3. Time consumption of each multi-label feature selection approach on the enron dataset.
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6. Conclusions

A novel multi-label feature selection method called ELC is proposed in this paper. ELC embeds
label correlation information in reduced feature subspace to eliminate noisy features. In this way,
irrelevant and redundant features can be expected to be removed and a discriminative feature subset
is constructed for the downstream learning tasks. These advantages help ELC yield good feature
selection performance on a wide broad of multi-label data sets under various evaluation metrics.

In terms of optimizing ELC, we can feed it to some gradient descent frameworks to efficiently
yield its optimal values, such as Adam with a self-adaptive learning rate [44]. Another interesting and
possible exploration would be the consideration of noisy labels, which would induce negative effects
on estimating label correlations. According to our pilot study, noisy labels may distort the label space
and provide inaccurate guide information for feature selection. How to eliminate noisy labels may
inspire our future work.
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Appendix A

After adding an approximate term to L2(W, p) and reformulating it to L̃2(W, p), we take the
derivative of L̃2(W, p) with respect to W as follows:

∂L̃2

∂W
= β(W−U)−V +

1
τ
(W−W[t] + τΩ[t]), Ω[t] = diag(p[t])ÂT

(
Âdiag(p[t])W[t] − Γ∗

)
.

To induce the optimal solution of W, we make ∂L̃2
∂W equal to 0 and obtain:

(β +
1
τ
)W = βU + V +

1
τ
(W[t] − τΩ[t]).

Then, the optimal solution of W in the iteration [t + 1] can be represented as

W[t+1] =

(
τ

βτ + 1

)(
βU[t+1] + V[t] +

1
τ
(W[t] − τΩ[t])

)
.

Appendix B. Experimental Configuration

The correlation (or similarity) matrices involved in experiments are all calculated based
on the RBF kernel function. Specifically, the label correlation matrix S in ELP is defined as

Sij =

 exp
(
−‖yi−yj‖2

2δ′2

)
, 〈yi, yj〉 6= 0

0, otherwise
, where δ′2 = mean(

∥∥yi − yj
∥∥2
), i, j = 1, . . . , l. The instance

similarity matrix in SPFS and CMFS is calculated as Kij =

 exp
(
−‖xi−xj‖2

2δ2

)
, yi = yj

0, otherwise
,

where δ2 = mean(
∥∥xi − xj

∥∥2
). The affinity graph in MIFS is constructed as Kij =
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 exp
(
−‖xi−xj‖2

2δ2

)
, xi ∈ Np(xj) or xj ∈ Np(xi)

0; otherwise
, where Np(xi) is the p-nearest neighbor of

instance xi.
SPFS is implemented via the sequential forward selection (SFS) strategy. For a fair comparison,

we tune the regularization parameter for all approaches via a grid search from {10−3, 10−2, 10−1, 1, 10}.
For ELC, the parameter β is fixed to β = 108, and τ is set to the spectral radius of ÂTÂ in the initial
state and updated as τ[t] = 1

max(‖ψi‖) in the t-th iteration, where ψi is the i-th row vector of Ψ and

Ψ = ÂTÂV[t]. The convergence state is reached when any of the following two conditions is satisfied:
(1) tmax = 103; and (2)

∥∥∥W[t+1] −W[t]
∥∥∥ ≤ 10−4.

Multi-label k-nearest neighbor (ML-kNN) classifier [43] is built on the k′ features selected by each
compared approach, when k′ ∈ {d/10, 2d/10, . . . , 9d/10} and d is the total number of features. All of
the numerical features are normalized to zero mean and unit variance, and we employ the excellent
features selected by the compared approaches to construct the ML-kNN classifiers and compare their
classification performances. The 5-fold cross-validation is conducted, and we report the average
performance of the ML-kNN classification under five metrics, i.e., precision, AUC, Hamming loss,
ranking loss, and one error [39].
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