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Abstract: In the scenarios of location-based social networks (LBSN), the goal of location promotion
is to find information propagators to promote a specific point-of-interest (POI). While existing
studies mainly focus on accurately recommending POIs for users, less effort is made for identifying
propagators in LBSN. In this work, we propose and tackle two novel tasks, Targeted Propagator
Discovery (TPD) and Targeted Customer Discovery (TCD), in the context of Location Promotion. Given
a target POI l to be promoted, TPD aims at finding a set of influential users, who can generate
more users to visit l in the future, and TCD is to find a set of potential users, who will visit l in
the future. To deal with TPD and TCD, we propose a novel graph embedding method, LBSN2vec.
The main idea is to jointly learn a low dimensional feature representation for each user and each
location in an LBSN. Equipped with learned embedding vectors, we propose two similarity-based
measures, Influential and Visiting scores, to find potential targeted propagators and customers.
Experiments conducted on a large-scale Instagram LBSN dataset exhibit that LBSN2vec and its
variant can significantly outperform well-known network embedding methods in both tasks.

Keywords: location-based social networks; promotion propagators; potential customer;
location promotion; embedding learning

1. Introduction

In recent years, location check-ins at Points-of-Interests (POIs) on social media has become
a living habit. People love sharing their life on Facebook or Instagram. Whether it is traveling
or tasting food, they will check-in or share photos to announce the locations. Then location-based
Social Networks (LBSN) connecting user social relationships and their check-ins at POIs can be
generated. LBSN enables location-aware recommendation applications, such as POI recommendation
[1–7] and potential customer recommendation [8,9].

Location promotion is one of the essential problems in LBSN [10,11], and the basic goal is to
find the set of seeds (i.e., information propagators) to maximize the number of users (i.e., customers)
to visit the target POI [10–14]. An effective location promotion algorithm can benefit the location
service providers (e.g., restaurants and stores) to search the most influential promoters for targeted
marketing. Another beneficial audience is users who are willing to be recruited as location promoters,
i.e., they can earn money from the location service providers. In existing studies, however, both the
selection of propagators and the estimation of customers rely on historical user-location interaction data
(e.g., check-in records). The identified seeding propagators may not be influential in the future. In real
practice, it is usually expected that the identified propagators can truly generate more users to visit
the target POI (i.e., more customers) in the future, as discussed in existing studies [10,11,15]. In other
words, existing location promotion lacks predictability when finding propagators and customers.

Appl. Sci. 2020, 10, 8003; doi:10.3390/app10228003 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7995-4787
http://www.mdpi.com/2076-3417/10/22/8003?type=check_update&version=1
http://dx.doi.org/10.3390/app10228003
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 8003 2 of 13

To consider the predictability in location promotion, this paper proposes to solve two novel
problems. The first is Targeted Propagator Discovery (TPD) while the second is Targeted Customer
Discovery (TCD). The TPD problem is that given a target location that intends to initiate a promotion
campaign, the goal is to predict which users are influential with respect to the target location during the
upcoming promotion period. Specifically, we aim to find which users in LBSN can generate more users
to visit the target location when the promotion campaign starts. To the best of our knowledge, we are
the first attempt to deal with the problem of TPD. TPD has some differences from location promotion.
TPD aims to find the set of users as propagators who will actually generate more other users visiting
the target POI in the future, but conventional location promotion is to find the set of users who have a
large influence on the target POI using historical check-in data in the past. Users who are influential
in historical check-in data might not imply they will still be influential in the future, especially on
activating other users to visit the target POI. Since POI holders usually have limited funding, accurately
finding future propagators can bring more revenue for the target POI. On the other hand, the TCD
problem is to predict which users will visit the target location during the upcoming promotion period.
With TCD, the promotion initiator of the given POI can perform targeted marketing to boost the
possibility of a user visiting. In addition, with TCD, the POI holders can first understand the common
traits of the potential customers in advance so that the marketing strategy can be well constructed.

For the problem of TPD, it concerns the scenario that the POI holders, who aim to market or to
promote sales, wonder which users are not only influential but also can attract more people to visit
the POI in advance. Then POI holders can hire more influential people to market the POI that can
increase the visited people to create more business opportunities. For example, a restaurant holder
only has limited funds to employ three bloggers to advertise the restaurant. If we can find the potential
candidates who have more attraction ability in the social network, by performing marketing based
on these candidates, the POI will bring greater benefits to the restaurant holder. In other words,
every venue would like to promote itself by recruiting some influential propagators under a limited
budget. Therefore, it is crucial to devise a prediction-based method that can accurately identify such
propagators for effective location promotion.

Moreover, for the problem of TCD, it concerns that the POI holders, who aim to advertise their
POIs, want to perceive who the potential customers are when designing the promotion plan. The POI
holders can analyze the potential customers to know the characteristics they have, and develop an
effective marketing strategy that can successfully attract such potential customers. For example, if we
can find the potential users who have a larger chance of visiting the restaurant, then the restaurant
can send some discount coupons or send some mails to advertise the POI so that their probabilities
of visiting the POI can be remarkably boosted. That said, not all users will be interested in the
targeted POI, and our goal is to develop a prediction-based method to find those potential customers.
By doing so, the POI holders can avoid putting resources on irrelevant users, and concentrate more on
potential customers.

We take advantage of social relations and user-POI interactions in LBSN to make predictions
in both TPD and TCD problems. While existing studies estimate the number of activated users via
information propagation [11,16,17], we think such simulation-based influence estimation cannot reflect
the potential of a user becoming influential, i.e., affecting other users to visit the target POI. Therefore,
we propose a network embedding method, LBSN2VEC, to depict users and their interactions with
POIs. The idea is to jointly embed users in the social network as well as their check-in records at POIs
into a low-dimensional space. The embedding space is expected to preserve user preferences as well
as user–user interactions in visiting POIs. In the embedding space, two users close to each other can
reflect that: (a) they have similar preferences of POI visiting, and (b) they have higher potential to
affect one another. That is, one of them visiting a new POI tends to give higher motivation for the
other also to visit that POI. In addition, since check-in records are also used in learning embeddings,
the embedding vectors of users and POIs are comparable. And the distance between a user and a POI
can imply user preference in visiting that POI. A closer distance between a user and a POI can reflect
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that the user has a higher desire to visit the POI. Consequently, for a given POI, we propose some
similarity measures to retrieve influential users as propagators and potential users as customers.

Here we would like to elaborate the underlying reasons that we adopt the embedding learning
approach to solve the proposed tasks. To better motivate the proposed method, we create Table 1 to
systematically compare the neural network embedding-based approach with the simple statistical
scoring heuristics in different aspects. First, both our TPD and TCD tasks aim to predict the future
behaviors of users with respect to the given targeted POI. Existing node scoring measurements, such as
the weighted neighborhood size and the number of involved geodesics, mainly rely on a variety of
statistical calculations, less regarding predictability. The proposed embedding learning methods can
better model how users interact with POIs, and thus properly work for predicting future propagators
and customers. Second, the statistical methods, such as the number of geodesics ending in targeted
POI, multiplying the neighborhood size or centrality score, cannot model the semantic behaviors of
users. That said, although two users could have totally different visited POIs, these POIs can belong
to similar types. If we do not model the semantic behaviors of users via exploiting their high-order
interactions in the check-in graph, the user influence and user’s predictability to the target POI cannot
be well learned. The proposed embedding learning method is to better depict the high-order semantic
relationships between users and items in the vector space. This is the main reason that we adopt the
embedding learning method. Third, in addition to representing users by their visited POIs, we think
the POIs can also be depicted by those users who visit there. Rather than quantitatively considering
POIs in a statistical manner, we jointly project users and locations into their common embedding
space so that we can estimate and exploit their distances to better distinguish their affinity to the
targeted POIs.

Table 1. Comparison between simple scoring heuristics and embedding learning-based approach.

Simple Scoring Heuristics Embedding Learning Approach

Example Methods
(a) Number of involved geodesics
(b) Weighted neighborhood size
(c) Centrality-enhanced measures

(a) The proposed LBSN2vec
(b) Typical node embedding (e.g., node2vec [18])
(c) Transition embedding (e.g., POI2vec [14])

Predictability No. Just simple statistics. Yes. Make prediction based on learned embeddings.

Feature Representation No. Do not characterize and distinguish
users and POIs from one another

Yes. Learning the semantic distinguishable high-order
interactions between users and POIs

Comparable No. User and POIs are different
information types.

Yes. Users and items are mapped into a common
embedding, and thus comparable

Applicable Scenarios
(a) Finding popular POIs and users.
(b) Mining frequent user-POI interactions.

(a) Targeted propagator discovery (TPD)
(b) Targeted customer discovery (TCD)
(c) POI recommendation systems

Below summarizes the contributions of this paper.

• We formulate two novel problems: Targeted Propagator Discovery (TPD) and Targeted Customer
Discovery (TCD). To the best of our knowledge, we are the first study that proposes the problem
of TPD.

• We propose a network embedding model, LBSN2VEC, to jointly learn the feature representations
of POIs and users based on the social network and user-POI check-in data in LBSN. A more
effective variant, PLBSN2VEC, is also presented to further boost the predictability of the
embedding space.

• Experiments were conducted on a large-scale Instagram dataset to examine the performance
of LBSN2vec and PLBSN2vec. The results exhibit that LBSN2vec can outperform well-known
network embedding methods in both TPD and TCD tasks.

This paper is organized as below. We first present the problem formulation in Section 2. Then we
describe the proposed LBSN2vec and PLBSN2vec in Section 3. Section 4 demonstrates the experimental
setup and presents a discussion of the results. Section 5 concludes this work.
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2. Related Work

The relevant studies can be divided into two categories, location promotion and network
representation learning in graphs. We will first describe both, and discuss their comparisons with
our work.

Location Promotion in LBSNs. Location promotion is to find a set of users as seeding promotors
such that the number of influenced users visiting the targeted POI can be maximized. There are several
typical methods in this research direction. Likhyani et al. [10] developed the model named LoCaTe
to quantify the influence of a location and a user by modeling user-location interaction patterns,
and categorical and temporal semantics between users and locations. Liao et al. [12] aim at modeling
how users interact with each other via their friendships, and accordingly devise a user proximity
score for recommending companions for an activity. Bouros et al. [13] incorporate the geographical
region information into the identification of influential users, and develop a new LBSN influence
propagation method to achieve the goal. POI2Vec [14] is designed to predict users who will visit
a given location within a future period. POI sequential transition and user preference are used to
learn the representation of POI so that potential visitors can be effectively predicted. Zhu et al. [11]
also aim to select a set of seeding users and expect them to attract most other users to visit a given
location. Its novelty is the modeling of user mobility from check-in records so that the location-aware
propagation probabilities can be better derived.

The main difference between our work and existing studies in this category is two-fold.
First, past methods on location promotion utilize historical check-in records to find the most influential
users who can attract the most other users to visit a targeted location. The influence of users is
estimated based on historical data. However, these methods cannot predict whether the identified
influential users can truly visit the location in the future. In other words, these methods are not to
predict the future influence of users for location promotion. Second, although the method proposed
by Zhu et al. [11] can effectively predict whether a user will visit the targeted location in the future,
it is not to identify the influential users who can better serve as seeding promotors, attracting more
users to visit the targeted location. In short, our work is the first work that predicts future user
influence that can bring more other users to visit the targeted location in the future. Note that the
main difference between the proposed propagators and the so-called influencers in existing studies
is that previous influencers are identified based on only the social network structure via diffusion
simulation. The identified influencers cannot be ensured to have the same influence in the future.
That said, the mining of influencers in the literature does not consider the predictability. We argue that
for real applications, the predictability of whether influencers can truly activate more users should be
taken into account. We treat the influencers with predictability as propagators to be detected in our
work.

Network Representation Learning in Graphs. Network representation learning, also known
as node embedding learning, aims to generate a low-dimensional vector for each node in a graph.
The goal is to preserve the neighborhood proximity between nodes in the embedding vectors of
nodes. Two nodes that share similar neighbors are supposed to have similar vectors in the embedding
space. There are three typical studies in network representation learning, node2vec [18], LINE [19],
and GraphGAN [20]. The node2vec proposes to sample the neighbors of a particular node via a hybrid
BFS and DFS mechanism, and apply the Skip-gram model [21] to generate the embedding vectors.
LINE aims to preserve both the local and global network structures, i.e., the first- and second-order
pairwise proximities, for nodes in the embedding space. GraphGAN applies generative adversarial
networks (GAN) for network representation learning. Given a node in a network, the generative
model is to fit its connectivity distribution over all nodes, and produces fake embeddings to make the
discriminative model wrong. The discriminative model aims to determine whether the generated node
embedding is true or artificial, i.e., generated by the generative model. In our experiments, we will
compare the proposed methods with these three models of network presentation learning.
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The differences between the proposed LBSN2vec and existing graph embedding methods consist
of three parts. First, our LBSN2vec is able to effectively exploit two graphs, i.e., the social network and
the check-in network, to generate the node embeddings by jointly considering social neighborhood
and check-in neighborhood. However, the existing method takes advantage of only the social network.
Being able to incorporate multi-model information in a united framework is the key to LBSN2vec.
Second, in LBSN2vec, we introduce a penalization mechanism to avoid the random walk traversing
the same node so that nodes with higher distinguishability can be sampled. Such a penalization
cannot be achieved by existing methods. Third, in the experiments, we have found that when having
our extensive design from existing methods, LBSN2vec and its variant PLBSN2vec can improve the
performance on both tasks of TPD and TCD.

Recent Advances in LBSN. Recent advances in mining location-based social networks focus
on recommendation point-of-interests for users. Das et al. [22] classify immediate and distant
social relationships based on check-in data for better POI recommendation. A hierarchical attention
mechanism (HAM) [23], which effectively selects the more representative LBSN data instances for
training, is devised to perform efficient personalized POI recommendation. DSPR [24] further leverages
user preferences and real-time demand, along with an attention-based recurrent neural network,
for POI recommendation. While labeled data are scarce in practice, a semi-supervised learning
framework HisRect [25] is developed to take advantage of unlabeled data to recommend the next
POIs. SACRA is a self-attentive prospective customer recommendation framework [26] that makes
comparisons between users’ check-ins by adversarial training so that POI recommendation can be
more robust. Li et al. [27] further combine metric learning and few-shot learning to fully utilize user
check-ins and better learn the semantic matching between users and POIs. GGLR [28] is a graph-based
geographical latent representation model to capture non-linear geographical influences based on the
user-POI check-in graph.

Although these are successful proposals for point-of-interest recommendation for users, none of
them discuss how to apply advanced neural network and representation learning methods for
discovering influential propagators and predicting potential customers. We believe existing methods
can accurately predict the next POIs. Since our problem is significantly different from POI
recommendation, i.e., estimating the future influence of users regarding a targeted location in our
work, a novelty of our work can be the first to adopt representation learning for predicting propagators
and customers in location-based social networks.

3. Problem Formulation

In this section, we formulate the problem of Targeted Propagator Discovery and Targeted
Customer Discovery. The Targeted Propagator Discovery aims to find the set of users who will
generate more people to visit the target POI in the future. Moreover, the aim of Targeted Customer
Discovery is to find the set of users who will visit the target POI in the future.

We first present the notations. Let G1 = (U, E1) be a social network, where U is the set of users
and E1 = {eij = (ui, uj)}, ui, uj ∈ U. Also let (u, p, t) represent a check-in record, which means user u
visits POI p at the time t. We denote a check-in network as G2 = (V, E2), where V = U ∪ P, P is the set
of POIs and E2 = {eup = (u, p)}, where u ∈ U and p ∈ P.

Problem 1 (Targeted Propagator Discovery, TPD): Given an LBSN containing social network G1

and check-in network G2, a target POI p and the current time tc, the goal of TPD is to find the k users
who will generate more people to visit POI p in the time period [tc, ∞].

Problem 2 (Targeted Customer Discovery, TCD): Given an LBSN with social network G1 and
check-in network G2, a target POI p and the current time tc, the goal of TCD aims to find a set of users
who will visit POI p in the time period [tc, ∞].
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4. The Proposed Method

The proposed method consists of two parts. The first is to learn the embedding vectors of users
and POIs in Section 3, which describe how we generate “contexts” of nodes in the social network
and the check-in network, and how we learn the embeddings, respectively. That said, we will learn a
mapping function f : V → Rd from users and POI nodes in G1 and G2 and output the d-dimensional
embedding vectors. The second is a scoring function to estimate the similarity between users and POIs
so that both TPD and TCD can be solved in Section 3.

The main properties preserved by LBSN2vec are two parts. First, the similarity between users
with regard to their check-in POIs is preserved by LBSN2vec. Two users possessing more visited
check-in POIs tend to be close to each other in the embedding space generated by LBSN2vec. Such a
property cannot be well preserved by existing graph embedding methods. Second, since LBSN2vec
jointly considers neighboring users and visited POIs to be the context of a node, the mix of two diverse
contexts can better deal with the data sparsity of either part. That said, our LBSN2vec can preserve or
alleviate the sparsity property in location-based social network data.

4.1. Random Walk Mechanism

We take advantage of the skip-gram model [21] to learn the feature representation of users and
POIs. Let NR(u) ⊂ U be the set of user u’s neighbors in graph G1. To have the contexts in the skip-gram
model, we generate NR(u) through a devised random walk mechanism. Below we first present the
probability associated with each edge, then describe the random walk mechanism.

We consider that nodes with strong social connections with each other tend to be treated as
neighbors. Thus we introduce two affinity scores to quantify the social strength between users i and j.
The first is social affinity πs(i, j), defined as:

πs(i, j) =
|NG1(i) ∩ NG1(j)|
|NG1(i) ∪ NG1(j)| ,

where G1 is the social network, NG1(i) is the neighborhood of user i in G1. The second is co-visiting
affinity πc(i, j), defined as:

πc(i, j) =
|NG2(i) ∩ NG2(j)|
|NG2(i) ∪ NG2(j)| ,

where G2 is the check-in network, NG2(i) is the neighborhood of user i in G2.
Since πc shows the affinity based on user-POI interactions, if there are more co-visited POIs

between users, πc gets higher. Two users are more likely to possess similar POI visiting preferences in
the future. On the other hand, πs shows the affinity based on the social network. If two users have
more common friends, πs gets higher, i.e., the two users are more likely to affect each other. Then we
define the edge weight (probability) wij between users i and j in the social network by combining
social affinity and co-visiting affinity, given by:

wij = πs(i, j) + πc(i, j), ∀eij ∈ E1,

where E1 is the edge set of social network G1.
Here we present examples to demonstrate the derived neighboring POIs sampled by random

walks of co-visiting affinity and social affinity, in Figure 1, in which different colors mean various
venue categories. We can find that the random walk by co-visiting affinity tends to collect neighbors
with the same category as the target POI. The random walk by social affinity has a higher potential to
bring neighbors with diverse venue categories. Hence, we would like to have both effects so that the
representation learning can generate similar embeddings that not only encode similar categories but
also distinguish from each other due to different social interests.
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Co‐visiting Affinity Social Affinity

The given targeted POI (restaurant)

Generated neighboring 
POIs (all restaurants)

The given targeted POI (restaurant)

Neighbor POIs (restaurant, 
theater, school, nightlife)

© OpenStreetMap contributors© OpenStreetMap contributors

Figure 1. The given sample targeted point-of-interest (POI) and their POI neighbors, along with
POI categories by various colors, based on random walk sampling of co-visiting affinity (left) and
social affinity (right). Note that for these two pictures, their base maps and data are generated from
OpenStreetMap and OpenStreetMap Foundation.

We also propose a penalization-based LBSN2vec (PLBSN2vec) by adding a penalty parameter
in the random walk: a return parameter ρ (0 < ρ < 1) and a parameter |Pathnr| effect. The return
parameter ρ is the penalty value to avoid traversing the same nodes. In addition, we think that near-by
nodes of a user tend to have similar preferences. Hence, we let those close to each other have a high
possibility of being traversed as the neighbors. Given the starting user u, the next user n, and the
previous user r, we devise the penalty weight pnu as:

pnu =


1

|Pathnr | · wnu if |Pathnr| ≥ 1

ρ · wnu if |Pathnr| = 0
0 otherwise

where |Pathnr| is the shortest path length between n and r. Lower values of return parameter ρ make
the walk have a lower opportunity to repeat the previous user. By contrast, a larger return parameter ρ

will increase the chance of walking back to the previously traversed users. In addition, longer paths
between nodes get a larger penalty in |Pathnr|, which will decrease the probability.

Then we present the random walk mechanism. Formally, given the current node c, we simulate a
random walk of length l. Let ri be the i-th node in the random walk. For LBSN2vec, we define the
conditional probability of the next node n given the current node c:

P(ri = n, ri−1 = c) =


wnc
Z if enc ∈ E1 (for LBSN2vec)

pnc
Z if enc ∈ E1 (for PLBSN2vec)
0 otherwise

where Z is the normalizing constant. After simulating the random walk with length l and window
size w, we can obtain the neighbors of a node, which are considered as the so-called “contexts” in the
skip-gram model.

https://www.openstreetmap.org/copyright
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4.2. Embedding Learning

This section presents the embedding learning of LBSN2vec and PLBSN2vec based on the
skip-gram model architecture. We adopt a three-layer neural network [21,29], consisting of an input
layer, a hidden layer, and an output layer. We consider the matrix f from the input layer to the hidden
layer to be the projection matrix, and there is a difference matrix (denoted as f ′) between the hidden
and output layers. Let f : v→ Rd be the mapping function from node v ∈ V to its embedding vector,
where f is the projection matrix of size |V| × d, and d is the dimensionality of embeddings (d� |V|).
The output layer (denoted by y) is the vector of size |V| × 1. We apply the softmax function to define
the conditional probability of user ui given the input user uI as:

yui ,j = p(uui ,j|uI) =
exp( f (uI) · f ′(uj))

∑v∈V2
exp( f (uI) · f ′(v))

where ui ∈ N(uI). Skip-gram is the model that predicts the context based on the given word (node).
We replace the context with the neighbors generated through the random walk mechanism in Section 3.
The training objective O is to maximize the conditional probability of neighborhood given the user,
given by:

O = max ∑
u∈U

p(N(u)|u) ≡ max ∑
u∈U

log(p(N(u)|u))

where N(u) is the neighborhood of user u. N(u) can be generated based on either social network G1

or check-in network G2. We optimize the objective function by stochastic gradient descent (SGD).

4.3. Making Prediction via Similarity

For the TPD task, we aim to find a set of users who will generate more people to visit the given
POI. We consider quantifying two factors to determine whether a user will visit the given POI. One is
user preference u f (u1, u2), given by:

u f (u1, u2) = sim( f (u1), f (u2)),

where u1, u2 ∈ U. The other is POI preference p f (u, p), given by:

p f (u, p) = sim( f (u), f (p)),

where u ∈ U, p ∈ P, f (·) is the embedding vector, and sim(·) is the cosine similarity to compute the
relation between two input vectors. Two users with similar preferences will have similar embedding
vectors. So user preference is devised to depict the tendency of being influential between users.
Moreover, if the similarity between the embedding vectors of a user and a POI is high, we consider
that the user has a higher chance of visiting the POI. Hence, POI preference is designed to estimate the
POI visiting potential/desire of a user.

To find the future targeted propagators, we develop a contagion scoring measure by combining
user preference and POI preference.

contagion(u) = ∑
ui∈NG1

(u)
u f (u, ui) · p f (ui, p).

For the TPD task, we rank all users’ contagion scores, and select the top-K users as the discovered
propagators, i.e., those that can generate the most people to visit the given POI.

For the TCD task, we devise a visiting scoring measure considering POI preference:

visiting(u) = p f (ui, p).
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Then we rank all users’ scores, and select the top-K users as the potential customers for the
given POI.

The novelty of our similarity-based measures lies in its inductive predictability on LBSN.
First, measuring the similarity to identify targeted propagators and potential customers is an
unsupervised learning approach. Since we do not have any label data about future propagators
and customers, the similarity-based unsupervised method can properly generate the results without
supervision information. This would be especially useful for location promotion because we cannot
have the labeled promotion data before campaigns.

5. Experimental Evaluation

We conduct experiments to examine whether the proposed LBSN2vec and PLBSN2vec can better
model user preferences and user-POI interactions in TPD and TCD tasks, comparing with well-known
network embedding methods. Collected Instagram data are used for the experiments (the dataset can
be crawled via Instagram API: https://www.instagram.com/developer/—due to the privacy issue
established by Instagram, we cannot provide the data for download). The dataset contains check-in
records and user–user followships collected in New York City from Jan 2012 to Nov 2015. There are
994,412 user-POI check-ins and 1,048,575 followship relations. We randomly select 200 POIs and repeat
the random selection up to 50 times for the experiments. We use the first 80% chronological check-ins
for training and the remaining 20% for testing. We compare LBSN2vec and PLBSN2vec with several
well-known network embedding methods: node2vec [18], LINE [19], and GraphGAN [20]. They all
map nodes in a network to embedding vectors. The embedding vectors derived from all these methods
are fed into the proposed scoring function for both TPD and TCD tasks. We should notice that the
difference between our LBSN2vec and PLBSN2vec lies in that the former considers only wij as the
random walk probability while the latter further imposes the penalized parameters.

We choose three common measures in the information retrieval field as the evaluation metrics [30]:
(a) Precision@N, (b) Recall@N, and (c) NDCG@N:

Precision@N =
#{Pred(N) ∩ GT(N)}

N

Recall@N =
#{Pred(N) ∩ GT(200)}

N

NDCG@N =
DCG@N
IDCG@N

(1)

where Pred(N) is the top-N predicted ranking, and GT(N) top-N ground-truth ranking. Furthermore,
DCG@N = ∑N

i=1
reli

log2(i+1) and IDCG@N = ∑N
i=1

N+1−i
log2(i+1) . Precision aims at examining whether a

method can accurately rank the ground truth at the top position while Recall is used to quantify
whether all of the ground truth can be retrieved in the ranking list. The measures of precision and
recall are trade-offs between each other. They must be seen together to understand the effectiveness of
a model. As for NDCG, it is to estimate how the predicted ranking is close to the ground-truth ranking,
which cannot be captured by Precision and Recall.

For all methods, we use the same default parameters listed below if they have the settings:
the embedding dimension d = 100, the number of walks per node = 10, the walk length l = 80, and the
neighborhood size w = 6. In our PLBSN2vec methods, we set the return parameter ρ = 0.8 and chose
the user-POI weighting parameter α = 0.1 by default.

Results of TPD. We present the results of Precision@N (N = 5, 10, . . . , 50) in Figure 2. The results
of Precision@10, Recall@10, and NDCG@10 are also shown in Table 2. It can be apparently found that
LBSN2vec and PLBSN2vec outperform the other embedding methods by varying N. In addition, as N
gets increased, PLBSN2vec is able to stably have the higher Precision values. Among the competing
methods, we find that GraphGAN has the worst performance, as it cannot capture the contagion
between users and POIs. We think our methods lead to better performance because two key factors are

https://www.instagram.com/developer/
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considered. One is the modeling of user–user contagion, and the other is user-POI visiting preference.
Such two factors can be better modeled into the embedding vectors of our proposed LBSN2vec and
PLBSN2vec.

Figure 2. Results of Precision@N for the Targeted Propagator Discovery (TPD) task.

Table 2. Results in P@10, R@10, and NDCG@10 for the TPD task.

P@10 R@10 NDCG@10

Node2vec 0.320 0.185 0.741
LINE 0.310 0.195 0.610

GraphGAN 0.240 0.169 0.675
LBSN2vec 0.350 0.197 0.760

PLBSN2vec 0.380 0.216 0.753

Results of TCD. In TCD, we believe the promotion initiator would care more about whether
all potential customers can be found. Hence, we report Recall@N in this part. Figure 3 shows the
results in Recall@N by varying N. We can see the Recall values with different embedding methods.
Our LBSN2vec and PLBSN2vec are able to significantly outperform the other network embedding
methods. We think the superiority of our methods comes from the derived embedding space that better
utilizes the information between user–user interactions and user-POI visiting records in location-based
social networks, which is crucial in modeling the potential of future POI visiting.

Limitations. Here we would like to discuss the limitations of the proposed methods for effectively
solving TPD and TCD tasks. First, the proposed embedding learning methods, LBSN2vec and
PLBSN2vec, are based on historical check-in records, i.e., existing interactions between users and POIs.
If users tend to visit some particular POIs, it would be possible that the recommended propagators
and potential customers, with respect to one of these POIs, can to some extent be similar. In other
words, the “filter bubble” effect could happen. We would leave the solution to filter bubble as future
work because there is a critical challenge in striking a balance between having accurate predictions and
fair recommendations. Second, the embedding learning-based approach via a neural network requires
a rich set of user-POI interactions to generate effective representations. While it is common to have
some popular POI types and popular POIs, it would be natural to have better performance for popular
venues and types. Third, different POIs have a variety of behaviors of users. Some are frequently
visited by similar groups of users, and some are visited by various types of users. No matter which
types of POIs are given, our proposed method can recommend proper propagators and customers.



Appl. Sci. 2020, 10, 8003 11 of 13

Due to the requirement of rich data for better prediction performance, we think our method may be
less suitable for venues visited by users with diverse behaviors.

Figure 3. Results in Recall@N for the TCD task.

6. Conclusions and Discussion

In this paper, we propose two novel problems, Targeted Propagator Discovery (TPD) and
Targeted Customer Discovery (TCD), in the context of location promotion. To the best of knowledge,
we are the first to find future potential propagators in location-based social networks. We propose
two network embedding methods, LBSN2vec and PLBSN2vec, along with a modified random
walk mechanism based on the Skip-gram model. We also devise two scoring functions with the
estimation of user preference and POI preference for TPD and TCD tasks. Experiments conducted on a
large-scale Instagram dataset exhibit superior performance, compared to several well-known network
embedding methods.

While effectively solving both TPD and TCD tasks by the proposed LBSN2vec and PLBSN2vec,
two implications should be discussed. First, one may concern that the spatio-temporal footprints of
users can be obtained and revealed by the POI holders who are performing the algorithms, leading to
the issue of privacy leakage. We should highlight that the POI holders can only access the discovered
propagators and potential customers. The original data and the footprints of general users are still
maintained by the service providers who have an obligation to keep the prediction results confidential.
Therefore, every POI holder cannot trace users. Second, one may also think that the POI holder can
directly contact the recommended targeted propagators. Such an action could happen indeed. Here our
algorithms leave the mechanism design on how to contact propagators and potential customers to the
service providers. Whether and how the users react to being propagators or receiving the discount
coupons should also be properly devised.
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