
applied
sciences

Article

Call Graph and Model Checking for Fine-Grained
Android Malicious Behaviour Detection

Giacomo Iadarola 1,*,† , Fabio Martinelli 1,†, Francesco Mercaldo 1,2,*,† and
Antonella Santone 2,†

1 Institute for Informatics and Telematics, National Research Council of Italy, 56124 Pisa, Italy;
fabio.martinelli@iit.cnr.it

2 Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise,
86100 Campobasso, Italy; antonella.santone@unimol.it

* Correspondence: giacomo.iadarola@iit.cnr.it (G.I.); francesco.mercaldo@unimol.it (F.M.)
† All authors contributed equally to this work.

Received: 30 September 2020; Accepted: 5 November 2020; Published: 10 November 2020 ����������
�������

Abstract: The increasing diffusion of mobile devices, widely used for critical tasks such as the
transmission of sensitive and private information, corresponds to an increasing need for methods
to detect malicious actions that can undermine our data. As demonstrated in the literature,
the signature-based approach provided by antimalware is not able to defend users from new threats.
In this paper, we propose an approach based on the adoption of model checking to detect malicious
families in the Android environment. We consider two different automata representing Android
applications, based respectively on Control Flow Graphs and Call Graphs. The adopted graph
data structure allows to detect potentially malicious behaviour and also localize the code where
the malicious action happens. We experiment the effectiveness of the proposed method evaluating
more than 3000 real-world Android samples (with 2552 malware belonging to 21 malicious family),
by reaching an accuracy ranging from 0.97 to 1 in malicious family detection.

Keywords: malware; model checking; formal methods; security; Android; mobile

1. Introduction

Mobile devices, such as smartphones but also smart TVs, wearables and voice assistants, play a
fundamental role in our increasingly connected world. As a matter of fact, nowadays we use mobile
devices for the most disparate tasks, such as turning on the heating in the house while we are coming
back from the office or sharing the path taken by running with people who share the same passion.

Clearly, the amount of information we daily share, even unknowingly, is really impressive. Indeed,
500 million tweets are posted every day and 294 billion emails are sent [1]. Four petabytes of data
are created alone by Facebook users. Moreover, 65 billion messages are estimated on WhatsApp [2].
Following this data prediction, in 2025 we could estimate a trend of 463 exabytes of daily information:
the equivalent of 212,765,957 DVDs per day [3]. Obviously, this great amount of private and sensitive
information is of interest for attackers and, generally speaking, malicious users that are developing
every day more and more aggressive techniques to exfiltrate data from our mobile devices. Even critical
infrastructure are afflicted by malicious attacks, such as military [4], government [5] and healthcare [6]:
these contexts are really crucial because attacks can have direct consequences also on human lives.

Typically, malicious code developers focus on the platform that allows them to have the greatest
attack surface. Indeed, the Android operating system, since 2017 the most widespread operating
system in the world [7,8] has largely attracted the interest of malicious developers. According to the

Appl. Sci. 2020, 10, 7975; doi:10.3390/app10227975 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7060-6233
https://orcid.org/0000-0002-9425-1657
http://dx.doi.org/10.3390/app10227975
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/22/7975?type=check_update&version=3

Appl. Sci. 2020, 10, 7975 2 of 20

security experts of AV-Test, the cumulative number of Android malware was around 480 thousand
samples in March 2020, with “trojans” as the most common type of malware [9].

The current techniques employed in commercial use to detect malicious mobile application are the
same techniques adopted for malicious computer software (i.e., signature-based approach). In practice,
the security analyst receives an application to analyse, and through a typically manual inspection
process, detects the payload or the malicious code of the application. Subsequently, a signature will
be generated from this code, which will be used to detect the same malicious code on user’s devices.
The main problem with this paradigm is that the malicious applications arrive in the labs of security
experts, typically, when they are already widespread on the user’s devices. Moreover, the attackers
can generate obfuscated versions of the original malware and then bypass the antimalware checks.
Trivial obfuscation and perturbation techniques, such as code reordering or junk code insertion,
can effectively change the signature of malware, which will be no longer detected by antimalware.

Based on these considerations, there is a need for novel methods for the detection of malware,
especially in the Android environment due to its diffusion.

In this paper, we propose an approach exploiting model checking for the detection of malicious
families in Android malware. Basically, we represent an Android application as an automaton and,
by exploiting a set of Temporal Logic formulae, we consider a formal verification environment to detect
whether the behaviour codified in the formulae is exhibited from the automaton. Moreover, we improve
the efficiency and precision of the detection by adopting two graphs data structure; we apply static
analysis for reducing the search space and also detect the malicious code to a lower level.

In detail, two different representations of the same application are considered. The first automaton
is built starting from the Control Flow Graph (CFG) containing all the bytecode instructions; the second
one is built starting from the Call Graph (CG), representing the call relationships between methods
(and classes) of the application under analysis. For this reason, two different sets of formulas are
considered: the first set, related to the automaton built from the CFG, aims to verify whether a certain,
possible, malicious action is present into the application, while the second set aims to check if this
behaviour is invoked in a certain path of the application.

We demonstrate the effectiveness of the proposed model checking approach in the experimental
analysis, obtaining an accuracy ranging from 0.97 to 1 in the evaluation of 2552 malware samples
belonging to 21 different Android malware families and 500 more samples of legitimate applications.
The malware families exhibit different behaviour, from payload able to extort private information to
most recent locker and cypher ransomware.

In the last years, researchers developed several methods aimed to detect malware in the mobile
environment [10,11], mainly based on machine learning techniques [12]. The main criticism of these
techniques is the lack of explainability and interpretability. Indeed, machine learning models usually
output a prediction (i.e., a label) without explaining the reason why some decisions were made [13].
Contrarily, formal methods can offer the opportunity to better understand the rationale behind a
Temporal Logic formula, also through the adoption of the counterexample that can help the analyst
to understand the reason why a formula is resulting false on a certain automaton [8]. Moreover,
with the proposed method, we are able to localise the class, the method and also the instruction into the
bytecode symptomatic of the malicious behaviour, reaching a very fine grain in the malware analysis.
We summarize the main distinctive points of this work as follows:

• we adopt two different graph data structures (CFGs and CGs) to describe the malware
functionalities, using intra- and inter-procedural analysis;

• we exploit the strengths of the two graph data structures and the formal methods to reduce the
search space and then mitigate one of the biggest weakness of the static analysis approaches;

• we propose a method able to precisely distinguish between malware and trusted application,
and then also classify the malware into families;

• we propose a method able to precisely localize the malicious code in the malware under analysis;

Appl. Sci. 2020, 10, 7975 3 of 20

• we support the formal methods approaches as an interpretable approach to address malware
classification tasks. Indeed, the Temporal Logic formulae are able to classify malware and also
provide precise and soundness explanation of the outcome by using the counter-example;

• the experimental results reach an accuracy of 0.988, on a dataset of more than 3000 real-world
Android samples, constituting 2552 malware belonging to 21 malicious families and 500 trusted
applications.

The paper proceeds as follows: the next section presents a short background about model checking,
in order to introduce relevant notions for the readers who are not familiar with model checking.
Section 3 describes the proposed method for malicious family detection in Android environment,
while the experimental analysis results performed on a real-world Android dataset are discussed
in Section 4. Section 5 reports a comparison with the current state-of-the-art literature and, finally,
conclusion and future research works are discussed in Section 6.

2. Background

2.1. Model Checking

Below, background information focused on the model checking largely apply by the proposed
approach are provided. In order to resort to model checking, there is the need of a Formal Model
(used to abstract the Android application under analysis), a Temporal Logic (aimed to represent a
malicious behaviour in mobile environment) and a Formal Verification Environment (aimed to verify
whether the behaviour is implemented in the Formal Model representing the Android application
under analysis).

In order to obtain a Formal Model, i.e., a formal description of the application under analysis,
specification is exploited. The specification exploits a language with a well defined syntax and
semantics. The application behaviour is represented as a Labelled Transition System (LTS) formed
by nodes and labelled edges aimed to connect the nodes. Basically, the Android application state is
shown as a node, differently the transition of the application from a specific state to the consecutive
one is shown as a labelled edge.

If the Android application represented in terms of LTS shows an s a−→ s′ edge, the application
under analysis is able to move from the first state (i.e., s) into the consecutive one (i.e., s′) by exploiting
the a action, ranging in the sets ofA actions. The LST initial state is the so-called root state. To represent
LTS as processes, the Milner’s Calculus of Communication Systems [14–16] (CCS) is exploited.

A process in CSS (for instance, p) is defined by exploiting several conditional rules aimed to
describe the transition of the automaton (i.e., the Android application under analysis) related to the
behaviour expression defining the p process.

CCS considers several operators for the representation of finite processes, describing composition
of parallel and the choice between different actions.

The automaton we considered is the standard transition system for the p process and is represented
as S(p). More information are available in [14].

The proposed approach exploits the following CCS operators:

• “+”: p + q represents a process that exhibit a non-deterministic behaviour either as p or as q;
• “;”: this CCS operator is considered to formalise the sequentialization related to two different

processes. The p; q process is symptomatic that the p process must mandatory terminate before
the second process (i.e., q) can perform its execution;

• “‖”: the p‖q process is aimed to represent the execution of the parallel of the p and q process.
This parallel terminates only if the p and the q processes terminate;

• “DONE”: is related to a process whose task is terminated.

Once a Formal Model is obtained, there is the need of Temporal Logic, to express properties
(i.e., the behaviour) in a well defined notation. Temporal Logics [17–20] show several constructs with

Appl. Sci. 2020, 10, 7975 4 of 20

the aim to allow to state in a formal way. In the proposed approach, we exploit µ-calculus logic [17].
Below, we describe its syntax. Below, we consider that Z can range on a set of variables, i.e., K and R
are able to range over sets of A actions.

φ ::= tt | ff | Z | φ ∨ φ | φ ∧ φ | [K] φ | 〈K〉 φ | νZ.φ | µZ.φ

The satisfaction of a formula (for instance, φ) by a state (for instance, s) of a transition system,
denoted by s |= φ, is expressed in the following way:

• all states satisfy tt and there is no state satisfying ff, as shown in the first two rows of Table 1;
• a state is able to satisfy φ1 ∨ φ2 (φ1 ∧ φ2) whether it is able to satisfy φ1 or/ and φ2, as shown in

the third and fourth rows of Table 1;
• in Table 1 are shown [K] φ and 〈K〉 φ ,representing the modal operators in particular:

[K] φ is satisfied by a state that, for each performance of an action in K, is able to evolve in a
state obeying φ.
〈K〉 φ is satisfied by a state that is able to evolve to a state obeying φ by executing an action
in K.

In Table 1 we show the definition of the satisfaction of a closed formula ϕ by an s state (indicated
as s |= ϕ).

Table 1. Satisfaction of a closed formula by a state.

p 6|= ff
p |= tt
p |= ϕ ∧ ψ iff p |= ϕ and p |= ψ

p |= ϕ ∨ ψ iff p |= ϕ or p |= ψ

p |= [K] ϕ iff ∀p′.∀α ∈ K.p α−→ p′ implies p′ |= ϕ

p |= 〈K〉 ϕ iff ∃p′.∃α ∈ K.p α−→ p′ and p′ |= ϕ

p |= νZ.ϕ iff p |= νZn.ϕ for all n
p |= µZ.ϕ iff p |= µZn.ϕ for some n

where:

• for each n, νZn.ϕ and µZn.ϕ are defined as:

νZ0.ϕ = tt µZ0.ϕ = ff

νZn+1.ϕ = ϕ[νZn.ϕ/Z] µZn+1.ϕ = ϕ[µZn.ϕ/Z]

where the notation ϕ[ψ/Z] indicates the substitution of ψ for every free occurrence of the variable
Z in ϕ.

µZ.φ and νZ.φ are related to the fixed point of the formulae, where µZ (νZ) binds free occurrences
of Z in φ. An occurrence of Z is free if it is not within the scope of a binder µZ (νZ). A formula is
considered as closed whether the formula contains no free variables. µZ.φ represents the least fix-point
of the recursive equation Z = φ, while νZ.φ is the greatest one. A transition system T is satisfying a
φ formula, indicated as T |= φ, if and only if q |= φ, where q represents the initial state of T. A CCS
process p satisfies φ if S(p) |= φ.

Appl. Sci. 2020, 10, 7975 5 of 20

The following abbreviations are exploited (where K is able to range over sets of actions and A is
representing the full set of the actions):

〈α1, . . . , αn〉 ϕ
def
= 〈{α1, . . . , αn}〉 ϕ

〈−〉ϕ def
= 〈A〉 ϕ

〈−K〉ϕ def
= 〈A − K〉 ϕ

Once the Formal Model and the Temporal Logic are defined, we need a Formal Verification
Environment. The Formal Verification Environment is exploited to evaluate whether the property
is satisfied on the automata representing the application under analysis. To this aim, we resort to
a formal verification environment, i.e., a software considering mathematical reasoning to check if a
model satisfies some the properties (expressed in Temporal Logic).

A plethora of different verification techniques are proposed by the research community.
The proposed method exploits the model checking one [21]: this technique requires that the properties
are expressed in terms of Temporal Logic, where each property is evaluated with the Formal Model
(i.e., LTS) model. The verification environment is able to accept a Formal Model and a Temporal Logic
property and it outputs “true” if the model satisfies the Temporal Logic property, otherwise “false”.
The check performed by the formal verification environment (know also as Model Checker) represents
an exhaustive search related to the state space aimed to guarantee the termination (as a matter of fact,
the model is finite).

2.2. Control Flow Graphs and Call Graph

The CFG [22,23] represents all the paths that might be traversed during program execution,
and this kind of graph was widely adopted in malware analysis approaches [24,25]. Each node in
the graph represents a statement or a block of code, while the direct edges represent the transition
of the program execution flow from one statement to another. A CFG has also two special nodes to
control respectively the entry and the exit of the control flow execution. In this paper, we applied an
intra-procedural analysis for building the CFG, thus each graph represents the paths within a single
method or function. In short, we need the CFG to describe the order in which code statements are
executed within a single method, and also the required conditions to take a particular path of execution.

On the other hand, we adopted the CGs to represent the entire functionalities of the application
under analysis [26,27]. In a CG, the nodes represent the methods of the application and the direct
edges represent their connection (i.e., caller and callee). The CGs are built by looking for the invoke
statements in the code, that link one method to another, and describes an inter-procedural analysis.

3. The Method

In the following section, we present the proposed methodology, devoted to Android malicious
family detection. The methodology can be split into two steps: the first step aims to identify the
Potentially Malicious Application (PMA), while the second step is related to the fine-grained malicious
family detection. The two steps were summarized respectively in Figures 1 and 2.

3.1. Potentially Malicious Application Detection Step

As shown in Figure 1, we obtain through a reverse engineering process the Java bytecode for the
Android application under analysis (detailed information in Section 4.3).

Appl. Sci. 2020, 10, 7975 6 of 20

Figure 1. Potentially malicious application detection step.

Figure 2. Fine-grained malicious family detection step.

Once the Java byte-code of the installed applications is obtained, we generate a model for each
application (i.e., CFG Automaton step in Figure 1). In the following, we explain how we generate
the automata, based on the CFG. We represent each method of an Android application as a CCS
model. We obtain the CCS models by traducing each java byte-code instruction as a CCS process.
In reference [28], more details about the correspondence between java bytecode instructions and CCS
process are available.

Relating to the sequential Java bytecode instructions, the following translation is exploited:

proc xcurrent = instruction.xnext

where, xcurrent represents the current instruction, xnext represents the process related to the next
instruction, instruction represents the name of the byte-code instruction. We highlight that in order to
define constant definitions, we resort to the syntax of the Concurrency Workbench of New Century [14],
the Model Checker we exploit for the experiments. This is the reason why we write proc x = p,

instead of x def
= p.

In Listings 1 and 2 are depicted two examples of translation of sequential instructions.

Listing 1: CCS process for Listing 1.

Appl. Sci. 2019, 1, 5 6 of 20

Figure 1. Potentially malicious application detection step.

Once the Java byte-code of the installed applications is obtained, we generate a model for each
application (i.e., CFG Automaton step in Figure 1). In the following, we explain how we generate
the automata, based on the CFG. We represent each method of an Android application as a CCS
model. We obtain the CCS models by traducing each java byte-code instruction as a CCS process.
In reference [28], more details about the correspondence between java bytecode instructions and CCS
process are available.

Relating to the sequential Java bytecode instructions, the following translation is exploited:

proc xcurrent = instruction.xnext

where, xcurrent represents the current instruction, xnext represents the process related to the next
instruction, instruction represents the name of the byte-code instruction. We highlight that in order to
define constant definitions, we resort to the syntax of the Concurrency Workbench of New Century [14],
the Model Checker we exploit for the experiments. This is the reason why we write proc x = p,

instead of x def
= p .

In Listings 1 and 2 are depicted two examples of translation of sequential instructions.

Listing 1. CCS process for Listing 1

1 proc M1 = pop.M2
2 proc M2 = push.M3
3 proc M3 = getfield.nil

Listing 2. CCS process for Listing 2

1 proc N1 = push.N2
2 proc N2 = invokeinit.N3
3 proc N3 = invokejavaioFile.N4
4 proc N4 = getfield.N5
5 proc N5 = load.N6
6 proc N6 = dup.N7
7 proc N7 = pop.nil

The instructions related to branches are exploited to alter the execution of the instruction.
To represent the branch, as explained in Section 2, the CCS + operator is considered.

For each method of the application, a CCS process is generated. Let us consider aua an application
under analysis. Considering that the aua exhibits n methods, i.e., F1, . . . , Fn, the aua CCS representation
has n M1, . . . , Mn CCS processes.

Appl. Sci. 2020, 10, 7975 7 of 20

Listing 2: CCS process for Listing 2.

Appl. Sci. 2019, 1, 5 6 of 20

Figure 1. Potentially malicious application detection step.

Once the Java byte-code of the installed applications is obtained, we generate a model for each
application (i.e., CFG Automaton step in Figure 1). In the following, we explain how we generate
the automata, based on the CFG. We represent each method of an Android application as a CCS
model. We obtain the CCS models by traducing each java byte-code instruction as a CCS process.
In reference [28], more details about the correspondence between java bytecode instructions and CCS
process are available.

Relating to the sequential Java bytecode instructions, the following translation is exploited:

proc xcurrent = instruction.xnext

where, xcurrent represents the current instruction, xnext represents the process related to the next
instruction, instruction represents the name of the byte-code instruction. We highlight that in order to
define constant definitions, we resort to the syntax of the Concurrency Workbench of New Century [14],
the Model Checker we exploit for the experiments. This is the reason why we write proc x = p,

instead of x def
= p .

In Listings 1 and 2 are depicted two examples of translation of sequential instructions.

Listing 1. CCS process for Listing 1

1 proc M1 = pop.M2
2 proc M2 = push.M3
3 proc M3 = getfield.nil

Listing 2. CCS process for Listing 2

1 proc N1 = push.N2
2 proc N2 = invokeinit.N3
3 proc N3 = invokejavaioFile.N4
4 proc N4 = getfield.N5
5 proc N5 = load.N6
6 proc N6 = dup.N7
7 proc N7 = pop.nil

The instructions related to branches are exploited to alter the execution of the instruction.
To represent the branch, as explained in Section 2, the CCS + operator is considered.

For each method of the application, a CCS process is generated. Let us consider aua an application
under analysis. Considering that the aua exhibits n methods, i.e., F1, . . . , Fn, the aua CCS representation
has n M1, . . . , Mn CCS processes.

The instructions related to branches are exploited to alter the execution of the instruction.
To represent the branch, as explained in Section 2, the CCS + operator is considered.

For each method of the application, a CCS process is generated. Let us consider aua an application
under analysis. Considering that the aua exhibits n methods, i.e., F1, . . . , Fn, the aua CCS representation
has n M1, . . . , Mn CCS processes.

Once the CCS processes is generated, where each process is generated for each method of the aua,
we invoke the Model Checker with a set of properties (PMA Properties in Figure 1) aimed to detect
whether the analysed application exhibit a potentially malicious behaviour. The PMA Properties were
manually created after code inspection, details are reported in Section 4.2.

Thus, if the Model Checker outputs true, this is symptomatic that one of the PMA Properties is
verified in at least a CCS process (i.e., a method of the application) and, for this reason, the application
under analysis is marked as PMA (as shown in Figure 1) and it is send to the next step, the fine-grained
malicious family detection, for a deeper analysis. Considering that we built a CCS process for each
method of the application, the PMA Properties are verified on each CCS process and, consequently,
we are able to perform the analysis at method grain. For this reason the output of the potentially
malicious application detection step is a list of methods potentially malicious for each analysed
applications. Otherwise, whether all the CCS processes of the application under analysis are resulting
false when the Model Checker checks the PMA properties, the application is labelled as legitimate and
the analysis terminates.

This list of PMA with the related methods are sent to the next step, the fine-grained malicious
family detection one, shown in Figure 2.

3.2. Fine-Grained Malicious Family Detection Step

While the first step of the methodology aims to detect potentially malicious application by looking
for methods that manifest malicious behaviour, the second step takes into account the entire application
and looks for malicious sequences of operations to classify the malware into behavioural families.

Most of the time, the harm of an application comes from sequences of methods and operation,
instead of a single method itself. Every operation could be legitimate for some functionalities or
performances reason. For instance, reading SMS messages can be considered as a legitimate action
when performed during a verification step for login into an application, while the operation should be
marked as malicious if performed together with others, like reading the information in the background,
or sending data without user interaction and permission.

Nevertheless, inter-procedural analyses are tasks requiring a lot of computational time which
require deeper checks of all the possible sequence of operations. The number of paths to test grows
exponentially, suffering from the path explosion problem, which makes the analysis unfeasible with
a brute-force approach. In light of the above considerations, the second step of the methodology
aims to address this problem by using the information provided by the first step and completing the
classification in a feasible way; while the first step is essential to improve efficiency and reduce false
positive, the second one concludes the methodology by performing the classification and by analysing
only a subset of methods.

Appl. Sci. 2020, 10, 7975 8 of 20

First of all, a static analysis is performed on the potentially malicious application and a CG is
generated. The methods are analysed at the code level and all the call/invoke statements are extracted.
A node in the graph represented a method and is linked to all the other methods that invokes in the
code, and thus to all the other methods to which is passing values and data. The CG represents the
entire structure of the application from an execution flow and data point of view. We already had
the information on single methods from the first step, and now we extend our knowledge on the
application with the interactions between all the methods.

Then, the generated CG is visited and we look for the interactions of pair of nodes, and the paths
between them. By using the list of malicious methods provided by the first step, the graph is sliced and
many subgraphs are generated, one for each couple of malicious methods linked. This subset of nodes
and edges contains all the possible paths only between the malicious methods selected previously,
and this operation greatly cut down the number of paths to analyse.

A CSS process is built for each selected path of the graph, and then the Model Checker evaluates
if the process exhibits some data flow properties typical of a particular malware family. If so,
the application is marked as a malware of that family, and the methods which constitute the malicious
path can be manually analysed.

4. Experimental Analysis

The experiment we propose to evaluate the performance of our approach is discussed in
this section.

4.1. Dataset

The real-world Android applications considered in the experimental analysis were obtained
from three different application repositories. The first repository is composed by freely available
samples with ransomware behaviours belonging to 11 diffused malicious families and gathered
using the VirusTotal web service [29]. In particular, we consider the following ransomware families:
Doublelocker, Koler, Locker, Fusob, Porndroid, Pletor, Lockerpin, Simplelocker, Svpeng, Jisuit and
Xbot. Ransomware behaviour in Android environment can basically exhibit two main malicious
actions: the first one aimed to lock the device, and the second one is devoted to cipher the user files.
Both of these actions ask to the infected user for paying a ransom (typically in bitcon) in order to use
their own devices and to access their own files. In particular, the Fusob, Koler, Lockerpin, Locker,
Porndroid and Svpeng families exhibit the locker behaviour (i.e., they do not perform any ciphering
operation but prevent victims from accessing their devices), the Pletor, Doublelocker and Simplelocker
payloads are able to cipher the user files (but when infected with samples belonging to this family
users are able to use the device), while samples of the Jisuit and Xbot malicious family exhibits both
the locker and cipher typical ransomware behaviours.

The second repository we considered is Drebin [30,31], a widespread collection of malware
considered by researchers for the evaluation of malware detection methods, including several Android
malicious families. No ransomware samples are comprised in the Drebin dataset.

In all the exploited malicious datasets, each sample is labelled with respect to the belonging
malware family. Basically, each family is grouping applications to the same malicious payload.

In Table 2, a brief description of the malicious behaviours and the number of the applications
involved in the experimental analysis is provided.

As shown in Table 2, a total of 2552 malicious samples, belonging to 21 different malicious families,
are exploited in the experimental analysis.

The last dataset we exploit is composed of 500 legitimate Android applications that we obtained
from Google Play, by invoking a script exploiting a python API [32] with the aim to search and
download apps. The downloaded applications belong to all the 26 different available categories,
for instance Comics, Music and Audio, Games, Local Transportation, Weather, Widgets). We considered
for each category the most downloaded free applications.

Appl. Sci. 2020, 10, 7975 9 of 20

The goodware applications were crawled between January 2020 and March 2020. To confirm the
trustworthiness of the Goole Play applications we considered the VirusTotal service, aimed to check
the applications with 57 different antimalware for instance, Kasperky and Symantec and many other:
this analysis confirmed that the goodware applications did not exhibit malicious payload. We take
into account this dataset in order to check the false positives but also the true negatives.

The (malicious and legitimate) dataset we obtained is composed by 3052 real-world
Android applications.

Table 2. Malicious families’ description with the relative number of samples.

Family Description #

FakeInstaller server-side polymorphic behaviour 50
Plankton it exploits class loading to send user information 50
DroidKungFu it executes a backdoor 50
GinMaster it executes a malicious background service for devices rooting 50
BaseBridge it sends sensitive information to a Command & Control server 50
Adrd it steals user and device information 50
Kmin it forwards user information by sending messages to premium-rate numbers 50
Geinimi first Android botnet 50
DroidDream able to obtain root accesses 50
Opfake first server side polymorphic Android malware 50
Doublelocker able to change the PIN and to cipher device files by exploiting the AES algorithm 3
Fusob It asks to pay a ransom from $100 to $200 United States dollars 271
Jisuit it is aimed to show user information on the QQ social network 173
Koler porting in the Android world of the Reveton ransomware 183
Locker it shows a ransom messages quoting a Criminal Code article 248
Lockerpin it is aimed to change the PIN on the infected device, but also to change it if it was already enabled 181
Pletor mobile porting of the Cryptolocker ransomware 278
Porndroid able to reset the PIN lock of the screen 272
Simplelocker able to cipher the SD card files with the AES algorithm with a key hardcoded in the samples. 221
Svpeng a keylogger able to steal bank credentials 186
Xbot it exploits phishing to steal credit card data and banking credentials 36

4.2. The µ-Calculus Formulae

In this section, we show an example of µ-calculus formula we exploited for the detection of
malicious payloads in Android environment. The formulae are generated from authors by deeply
inspecting the code of a couple of malicious samples for family. The idea is to codify the malicious
payload in a Temporal Logic formula to easily verify the maliciousness of an application without
additional work from the security analysts, providing also a method for end user for malware detection.
We recall also that the proposed method is aimed to exactly detect the package, the class and the
method with the related Java byte code instructions performing the harmful action.

As previously stated in the method section, we represent Android applications in terms of
automaton and we verify several Temporal Logic properties (expressed in µ-calculus to verify in a
first step whether the application under analysis exhibit behaviour potentially malicious and, in a
second step, to effectively check the maliciousness). We formulate two properties for each considered
family: the first property is aimed to detect if the aua can exhibit a potentially malicious behaviour
belonging to this family, while the second one to confirm the maliciousness of the analysed application.
In particular, with the first property, we aim to detect if in the application exists a method showing
a behaviour that can be sued for malicious purposes then, with the second property, we verify if
this behaviour is effectively considered for malicious purposes. We evaluate the first property on an
automaton build by exploiting the CFG of the application, while the second property is evaluated on
an automaton built on the application CG.

Below, we show a series of code snippets to better understand how we built both the properties
and the related automata.

In detail, the following snippets are related to a malicious Android sample identified by the
6fdbd3e091ea01a692d2842057717971 hash, belonging to the Simplelocker family.

Appl. Sci. 2020, 10, 7975 10 of 20

Listing 3 shows the Java code snippet obtained for the sample belonging to the Simplelocker
application. Basically, it exhibits several instructions aimed to cipher a file using the AES encryption.

Listing 3: A Java code snippet of a samples belonging to the Simplelocker family.

Appl. Sci. 2019, 1, 5 10 of 20

Listing 3 shows the Java code snippet obtained for the sample belonging to the Simplelocker
application. Basically, it exhibits several instructions aimed to cipher a file using the AES encryption.

Listing 3. A Java code snippet of a samples belonging to the Simplelocker family.

1 public a(final String s) {
2 final MessageDigest instance = MessageDigest.getInstance("SHA-256");
3 instance.update(s.getBytes("UTF-8"));
4 final byte[] array = new byte[32];
5 System.arraycopy(instance.digest(), 0, array, 0, array.length);
6 this.a = Cipher.getInstance("AES/CBC/PKCS7Padding");
7 this.b = new SecretKeySpec(array, "AES");
8 this.c = new IvParameterSpec(new byte[16]);
9 }

The bytecode obtained from the Java code snippet in Listing 3 is shown in Listing 4.

Listing 4. A Java bytecode snippet of a samples belonging to the Simplelocker family.

1 public a(java.lang.String arg0) { // <init> //(Ljava/lang/String;)V
2 aload0 // reference to self
3 invokespecial java/lang/Object.<init>()V
4 ldc "SHA-256" (java.lang.String)
5 invokestatic java/security/MessageDigest.getInstance(Ljava/lang/String;)Ljava/security/MessageDigest;
6 astore2
7 aload2
8 aload1
9 ldc "UTF-8" (java.lang.String)

10 invokevirtual java/lang/String.getBytes(Ljava/lang/String;)[B
11 invokevirtual java/security/MessageDigest.update([B)V
12 bipush 32
13 newarray 8
14 astore1
15 aload2
16 invokevirtual java/security/MessageDigest.digest()[B
17 iconst_0
18 aload1
19 iconst_0
20 aload1
21 arraylength
22 invokestatic java/lang/System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V
23 aload0 // reference to self
24 ldc "AES/CBC/PKCS7Padding" (java.lang.String)
25 invokestatic javax/crypto/Cipher.getInstance(Ljava/lang/String;)Ljavax/crypto/Cipher;
26 putfield org/simplelocker/a.a:javax.crypto.Cipher
27 aload0 // reference to self
28 new javax/crypto/spec/SecretKeySpec
29 dup
30 aload1
31 ldc "AES" (java.lang.String)
32 invokespecial javax/crypto/spec/SecretKeySpec.<init>([BLjava/lang/String;)V
33 putfield org/simplelocker/a.b:javax.crypto.spec.SecretKeySpec
34 aload0 // reference to self
35 new javax/crypto/spec/IvParameterSpec
36 dup
37 bipush 16
38 newarray 8
39 invokespecial javax/crypto/spec/IvParameterSpec.<init>([B)V
40 putfield org/simplelocker/a.c:java.security.spec.AlgorithmParameterSpec
41 return
42 }

As shown from the Java bytecode snippet in Listing 4, there are several ldc instructions, aimed
to push a one-word constant into the operand stack, containing all the arguments used by the
ciphering operation. Moreover, in the bytecode we found also the invocation of classes considered
for ciphering, such as MessageDigest, Cipher and SecretKeySpec. As stated in the method section,

The bytecode obtained from the Java code snippet in Listing 3 is shown in Listing 4.

Listing 4: A Java bytecode snippet of a samples belonging to the Simplelocker family.

Appl. Sci. 2019, 1, 5 10 of 20

Listing 3 shows the Java code snippet obtained for the sample belonging to the Simplelocker
application. Basically, it exhibits several instructions aimed to cipher a file using the AES encryption.

Listing 3. A Java code snippet of a samples belonging to the Simplelocker family.

1 public a(final String s) {
2 final MessageDigest instance = MessageDigest.getInstance("SHA-256");
3 instance.update(s.getBytes("UTF-8"));
4 final byte[] array = new byte[32];
5 System.arraycopy(instance.digest(), 0, array, 0, array.length);
6 this.a = Cipher.getInstance("AES/CBC/PKCS7Padding");
7 this.b = new SecretKeySpec(array, "AES");
8 this.c = new IvParameterSpec(new byte[16]);
9 }

The bytecode obtained from the Java code snippet in Listing 3 is shown in Listing 4.

Listing 4. A Java bytecode snippet of a samples belonging to the Simplelocker family.

1 public a(java.lang.String arg0) { // <init> //(Ljava/lang/String;)V
2 aload0 // reference to self
3 invokespecial java/lang/Object.<init>()V
4 ldc "SHA-256" (java.lang.String)
5 invokestatic java/security/MessageDigest.getInstance(Ljava/lang/String;)Ljava/security/MessageDigest;
6 astore2
7 aload2
8 aload1
9 ldc "UTF-8" (java.lang.String)

10 invokevirtual java/lang/String.getBytes(Ljava/lang/String;)[B
11 invokevirtual java/security/MessageDigest.update([B)V
12 bipush 32
13 newarray 8
14 astore1
15 aload2
16 invokevirtual java/security/MessageDigest.digest()[B
17 iconst_0
18 aload1
19 iconst_0
20 aload1
21 arraylength
22 invokestatic java/lang/System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V
23 aload0 // reference to self
24 ldc "AES/CBC/PKCS7Padding" (java.lang.String)
25 invokestatic javax/crypto/Cipher.getInstance(Ljava/lang/String;)Ljavax/crypto/Cipher;
26 putfield org/simplelocker/a.a:javax.crypto.Cipher
27 aload0 // reference to self
28 new javax/crypto/spec/SecretKeySpec
29 dup
30 aload1
31 ldc "AES" (java.lang.String)
32 invokespecial javax/crypto/spec/SecretKeySpec.<init>([BLjava/lang/String;)V
33 putfield org/simplelocker/a.b:javax.crypto.spec.SecretKeySpec
34 aload0 // reference to self
35 new javax/crypto/spec/IvParameterSpec
36 dup
37 bipush 16
38 newarray 8
39 invokespecial javax/crypto/spec/IvParameterSpec.<init>([B)V
40 putfield org/simplelocker/a.c:java.security.spec.AlgorithmParameterSpec
41 return
42 }

As shown from the Java bytecode snippet in Listing 4, there are several ldc instructions, aimed
to push a one-word constant into the operand stack, containing all the arguments used by the
ciphering operation. Moreover, in the bytecode we found also the invocation of classes considered
for ciphering, such as MessageDigest, Cipher and SecretKeySpec. As stated in the method section,

As shown from the Java bytecode snippet in Listing 4, there are several ldc instructions, aimed
to push a one-word constant into the operand stack, containing all the arguments used by the
ciphering operation. Moreover, in the bytecode we found also the invocation of classes considered
for ciphering, such as MessageDigest, Cipher and SecretKeySpec. As stated in the method section,
we resort to bytecode because it is always obtainable, even if the application is obfuscated with strong
morphing techniques.

Appl. Sci. 2020, 10, 7975 11 of 20

In Figure 3, there is a fragment of CCS automaton obtained from the Java bytecode snippet shown
in Listing 4.

Figure 3. A Control Flow Graph (CFG) automaton fragment obtained from the Java bytecode shown in
Listing 4.

The fragment basically shows the sequence of the bytecode instruction, with the only exception
that the bytecode ldc instructions are replaced with the push ones.

Table 3 shows the Temporal Logic property for the identification of potentially malicious behaviour
belonging to the Simplelocker family.

Table 3. Temporal Logic property for Simplelocker potentially malicious behaviour detection.

ϕ = µX. 〈pushSHA256〉 ϕ2 ∨ 〈−pushSHA256〉 X
ϕ2 = µX. 〈invokegetInstance〉 ϕ3 ∨ 〈−invokegetInstance〉 X
ϕ3 = µX. 〈pushAESCBCPKCS7Padding〉 ϕ4 ∨ 〈−pushAESCBCPKCS7Padding〉 X
ϕ4 = µX. 〈newjavaxcryptospecSecretKeySpec〉 ϕ5 ∨ 〈−newjavaxcryptospecSecretKeySpec〉 X
ϕ5 = µX. 〈pushAES〉 ϕ6 ∨ 〈−pushAES〉 X
ϕ6 = µX. 〈invokeinit〉 tt 〈−invokeinit〉 X

The model is resulting true if the different actions (i.e., bytecode instructions) expressed in the
property are present in the model, regardless of the number of other actions that are within the model.
In this case, the CFG automaton is resulting true, because it exhibits the following actions: pushSHA256
(in the row 2 of the fragment in Figure 3), invokegetInstancepushAESCBCPKCS7Padding (in the row
15 of the fragment in Figure 3), newjavaxcryptospecSecretKeySpec (in the row 17 of the fragment in
Figure 3), pushAES (in the row 18 of the fragment in Figure 3) and invokeinit (in the row 19 of the
fragment in Figure 3).

In this case, we mark the application under analysis as potentially malicious. As a matter of fact,
there are several applications that can be performed for legitimate purposes ciphering operations;
for instance, for data protection. For this reason, as depicted from the proposed method main pictures,
shown in Figures 1 and 2, we perform a deep analysis of the application, by building the CG and
the related automaton, to understand all the application paths invoking the method (i.e., the CFG
automaton) resulting true to the previous property.

Coherently with the proposed method, once at least one method is found (i.e., a CFG automaton)
resulting true to a property, we found all the paths in the application under analysis invoking the
potentially malicious method.

Appl. Sci. 2020, 10, 7975 12 of 20

In Listing 5, we show two methods invoking the ciphering method: the first method, starting from
line 23 in Listing 5, is looking for all the file paths in the device and stores the file paths in an ArrayList
variable (declared as private instance variable).

Listing 5: Two methods invoking the ciphering method.

Appl. Sci. 2019, 1, 5 12 of 20

In Listing 5, we show two methods invoking the ciphering method: the first method, starting
from line 23 in Listing 5, is looking for all the file paths in the device and stores the file paths in an
ArrayList variable (declared as private instance variable).

Listing 5. Two methods invoking the ciphering method.

1 private void a(final File file) {
2 final File[] listFiles = file.listFiles();
3 for (int i = 0; i < listFiles.length; ++i) {
4 final File file2 = new File(file.getAbsolutePath(), listFiles[i].getName());
5 if (file2.isDirectory() && file2.listFiles() != null) {
6 this.a(file2);
7 } else {
8 final String absolutePath = file2.getAbsolutePath();
9 final String substring = absolutePath.substring(absolutePath.lastIndexOf(".") + 1);

10 if (this.c.contains(substring)) {
11 this.b.add(file2.getAbsolutePath());
12 } else if (org.simplelocker.b.a.contains(substring)) {
13 this.a.add(file2.getAbsolutePath());
14 }
15 }
16 }
17 }
18

19 private static boolean c() {
20 return "mounted".equals(Environment.getExternalStorageState());
21 }
22

23 public final void a() {
24 if (!this.d.getBoolean("FILES_WAS_ENCRYPTED", false) && c()) {
25 final a a = new a("jndlasf074hr");
26 for (final String s : this.a) {
27 a.a(s, String.valueOf(s) + ".enc");
28 new File(s).delete();
29 }
30 j.a(this.d, "FILES_WAS_ENCRYPTED");
31 }
32 }

We highlight that the filenames are stored only if the file extension (computed in line 32 starting
of Listing 5) is belonging to a value of the org.simplelocker.b.a list, containing all the file extensions to
select for the ciphering operations. For reader clarity, in Figure 6 we show the values of this list, i.e., the
list of file extension candidates for the ciphering operation.

Figure 4. A Call Graph (CG) slice automaton obtained from the Java code shown in Listing 5.

The second method, starting from line 43 in Figure 5, is aimed to retrieve the ArrayList with
the list of the file candidate for the ciphering operation and, by invoking the potentially malicious
method in a cycle (i.e., one time for each file), it performs the cipher operation. We highlight that
in the Simplelocker family the ciphering password is also hard coded in the application, as shown
from line 48 of Listing 5. Other ransomware we considered employ more obfuscation techniques,
for instance they require the password from a command and control server, that is able to generate
ad-hoc passwords for each infected device (usually by considering the IMEI device). We note also,
as shown from lines 51 and 52 of Listing 5 thT, once a file is ciphered, the original file is deleted and
the ciphered file is stored with the .enc extension.

We highlight that the filenames are stored only if the file extension (computed in line 32 starting of
Listing 5) is belonging to a value of the org.simplelocker.b.a list, containing all the file extensions to select
for the ciphering operations. For reader clarity, in Figure 4 we show the values of this list, i.e., the list
of file extension candidates for the ciphering operation.

Figure 4. A Call Graph (CG) slice automaton obtained from the Java code shown in Listing 5.

The second method, starting from line 43 in Figure 3, is aimed to retrieve the ArrayList with
the list of the file candidate for the ciphering operation and, by invoking the potentially malicious
method in a cycle (i.e., one time for each file), it performs the cipher operation. We highlight that
in the Simplelocker family the ciphering password is also hard coded in the application, as shown
from line 48 of Listing 5. Other ransomware we considered employ more obfuscation techniques,
for instance they require the password from a command and control server, that is able to generate
ad-hoc passwords for each infected device (usually by considering the IMEI device). We note also,
as shown from lines 51 and 52 of Listing 5 thT, once a file is ciphered, the original file is deleted and
the ciphered file is stored with the .enc extension.

Appl. Sci. 2020, 10, 7975 13 of 20

From the Java code snippet in Listing 5, we generate the Call Graph to build the CG automaton
shown in Listing 6.

Listing 6: Java code snippet related to the list of file extensions considered for the ciphering operations.

Appl. Sci. 2019, 1, 5 13 of 20

From the Java code snippet in Listing 5, we generate the Call Graph to build the CG automaton
shown in Listing 6.

Listing 6. Java code snippet related to the list of file extensions considered for the ciphering operations.

1 package org.simplelocker;
2

3 import java.util.*;
4

5 public final class b
6 {
7 public static final List a;
8

9 static {
10 a = Arrays.asList("jpeg", "jpg", "png", "bmp", "gif", "pdf", "doc", "docx", "txt",
11 "avi", "mkv", "3gp", "mp4");
12 }
13 }

From the CG CCS automaton in Figure 2 emerge several considerations: first of all, there is the
creation of an ArrayList (the one containing the list of files to cipher), as shown from line 2. Moreover
line 5 is symptomatic of a cyclic invocation on a file (the M37 proc is returning on itself). In line 3 (i.e.,
proc M39) there is also the delete operation on a file (javaioFile_delete) and in lines 8 and 9 there are also
several action symptomatics of the ciphering operation.

In this case, the property for the identification of the malicious behaviour is the one shown in
Table 4.

Table 4. Temporal logic property for Simplelocker malicious behaviour detection.

ψ1 = µX. 〈javautilArrayList_init〉 tt∨ 〈−javautilArrayList_init〉 X
ψ2 = µX. 〈javaioFile_delete〉 tt∨ 〈−javaioFile_delete〉 X
ψ3 = µX. 〈javaioFile〉 tt∨ 〈−javaioFile〉 X
ψ4 = µX. 〈javaxcryptoCipherOutputStream_write〉 tt∨ 〈−javaxcryptoCipherOutputStream_write〉 X
ψ5 = µX. 〈javasecurityMessageDigest_update〉 tt∨ 〈−javasecurityMessageDigest_update〉 X
ψ = ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5

The temporal property is aimed to confirm that the sample under analysis is effectively
performing a ciphering operation coherently with the Simplelocker family behaviour; in
particular, the property verifies that the CG slice automaton simultaneously exhibits the
javautilArrayList_init, javaioFile_delete, javaioFile, javaxcryptoCipherOutputStream_write and the
javasecurityMessageDigest_update actions, symptomatic of the operation related to file reading,
ciphering and deleting.

4.3. Implementation

For the generation of the CFG automata, we obtain the Java bytecode representation for each
method of Android applications by invoking the dex2jar tool [33]. Starting from the .dex file (the
executable file of the Android virtual machine), the tool extracts the .class files zipped as .jar, which
makes possible to represent the Java byte-code representations of the class files stored in the .jar.

The Soot framework was exploited to generate the CGs. Soot is a framework developed by
the Sable Research Group at McGill University [34]. It supports the analysis and transformation
of Java bytecode for optimization tasks and it is an open-source software available online [35].
We implemented a static analysis to generate the CG subgraph and to output the result as a CSS
process. We are extending the Soot framework with more operations for handling, generate and export
graph to CCS, our tool is available on Github [36].

Soot provides four different intermediate representations for Java bytecode. Among these,
we used Jimple, a typed 3-address intermediate representation that forms a simplified version of
Java source code. To apply Soot graph analyses, Java bytecode is converted to Jimple, where all

From the CG CCS automaton in Figure 2 emerge several considerations: first of all, there is the
creation of an ArrayList (the one containing the list of files to cipher), as shown from line 2. Moreover
line 5 is symptomatic of a cyclic invocation on a file (the M37 proc is returning on itself). In line 3
(i.e., proc M39) there is also the delete operation on a file (javaioFile_delete) and in lines 8 and 9 there are
also several action symptomatics of the ciphering operation.

In this case, the property for the identification of the malicious behaviour is the one shown in
Table 4.

Table 4. Temporal logic property for Simplelocker malicious behaviour detection.

ψ1 = µX. 〈javautilArrayList_init〉 tt∨ 〈−javautilArrayList_init〉 X
ψ2 = µX. 〈javaioFile_delete〉 tt∨ 〈−javaioFile_delete〉 X
ψ3 = µX. 〈javaioFile〉 tt∨ 〈−javaioFile〉 X
ψ4 = µX. 〈javaxcryptoCipherOutputStream_write〉 tt∨ 〈−javaxcryptoCipherOutputStream_write〉 X
ψ5 = µX. 〈javasecurityMessageDigest_update〉 tt∨ 〈−javasecurityMessageDigest_update〉 X
ψ = ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5

The temporal property is aimed to confirm that the sample under analysis is effectively
performing a ciphering operation coherently with the Simplelocker family behaviour;
in particular, the property verifies that the CG slice automaton simultaneously exhibits the
javautilArrayList_init, javaioFile_delete, javaioFile, javaxcryptoCipherOutputStream_write and the
javasecurityMessageDigest_update actions, symptomatic of the operation related to file reading,
ciphering and deleting.

4.3. Implementation

For the generation of the CFG automata, we obtain the Java bytecode representation for each
method of Android applications by invoking the dex2jar tool [33]. Starting from the .dex file
(the executable file of the Android virtual machine), the tool extracts the .class files zipped as .jar,
which makes possible to represent the Java byte-code representations of the class files stored in the .jar.

The Soot framework was exploited to generate the CGs. Soot is a framework developed by
the Sable Research Group at McGill University [34]. It supports the analysis and transformation
of Java bytecode for optimization tasks and it is an open-source software available online [35].
We implemented a static analysis to generate the CG subgraph and to output the result as a CSS
process. We are extending the Soot framework with more operations for handling, generate and export
graph to CCS, our tool is available on Github [36].

Soot provides four different intermediate representations for Java bytecode. Among these,
we used Jimple, a typed 3-address intermediate representation that forms a simplified version of
Java source code. To apply Soot graph analyses, Java bytecode is converted to Jimple, where all
the call statements (InvokeStmt in Jimple) are marked to create the CG. Our tool implements a

Appl. Sci. 2020, 10, 7975 14 of 20

SceneTrans f ormer in the whole-jimple transformation pack (wjtp) to perform analyses to generate
incrementally CFG, Program Dependence Graph and then the CG.

4.4. Experimental Results

Below, we present the results obtained by the proposed approach. To evaluate the effectiveness in
term of malicious family detection, we compute the precision, recall, F-measure and accuracy metrics.

The Precision represents the proportion of the Android applications truly belonging to a certain
family among all those which were labelled to belonging to this family. It is the ratio of the number of
relevant applications retrieved to the total number of irrelevant and relevant applications retrieved:

Precision =
tp

tp + f p

where tp represents the true positives number and fp represents the false positives number.
The Recall is defined as the proportion of Android applications assigned to a certain malicious

family, among all the Android applications truly belonging to the family under analysis; in other
words, how many samples of the family under analysis were retrieved. It represents the ratio of the
number of relevant applications retrieved to the total number of relevant applications:

Recall =
tp

tp + f n

where fn is the false negatives number.
The F-Measure represents the weighted average between the recall and the precision metrics:

F−Measure =2 ∗ Precision ∗ Recall
Precision + Recall

The Accuracy represents the classifications fraction resulting as correct and it is calculated as the
sum between tp and tn divided by the full set of the the Android applications considered:

Accuracy =
tp + tn

tp + f n + f p + tn

where tn represents the true negative number.
In Table 5, we present the results we obtained using the proposed approach.
The proposed approach reaches an accuracy ranging between 0.97 and 1. In particular, for

several families (Plankton, Opfake, Doublelocker, Locker and Simplelocker) we obtain an accuracy
equal to 1, symptomatic that we are able to detect all the samples belonging to the specific family
without misclassifying samples belonging to others families. An accuracy of 0.97 is obtained for the
FakeInstaller family, while for the DroidKungFu, GinMaster,Adrd, Kmin, Geinimi, Koler, Pletor and
Svpeng families we obtain an accuracy of 0.98. The remaining families (i.e., DroidDream, Fusob, Jisuit,
Lockerpin and Porndroid) obtain an accuracy of 0.99, showing the ability of the proposed method to
correctly detect most of the samples with the right belonging family.

Appl. Sci. 2020, 10, 7975 15 of 20

Table 5. Performance evaluation.

Family Precision Recall F-Measure Accuracy
FakeInstaller 0.97 0.97 0.97 0.97
Plankton 1 1 1 1
DroidKungFu 0.98 0.99 0.98 0.98
GinMaster 0.98 0.98 0.98 0.98
BaseBridge 0.98 1 0.98 0.99
Adrd 0.97 0.98 0.97 0.98
Kmin 0.99 0.97 0.97 0.98
Geinimi 0.98 0.97 0.97 0.98
DroidDream 0.99 0.99 0.99 0.99
Opfake 1 1 1 1
Doublelocker 1 1 1 1
Fusob 0.98 1 0.98 0.99
Jisuit 0.98 0.99 0.98 0.99
Koler 0.98 0.98 0.98 0.98
Locker 1 1 1 1
Lockerpin 0.99 1 0.99 0.99
Pletor 0.98 1 0.98 0.98
Porndroid 0.99 1 0.99 0.99
Simplelocker 1 1 1 1
Svpeng 0.98 1 0.98 0.98
Xbot 0.99 1 0.99 0.99

5. Related Work

Previous researches demonstrated that formal verification can help to detect malware [8,37,38].
In the following, we describe malware detection methodologies employing formal methods, and briefly
compare them to our approach. This section focuses mainly on Android malware detection with static
analysis approaches, to compare our methodology with similar ones.

We adopted the process algebra as the Formal Model to describe the functionalities of the malware
under analysis, but many more approaches were adopted in the literature. For instance, the work by
Song et al. [39] models the inner-working of the applications as a sequential program (PushDown
System), and then classifies the applications by checking the model over Linear Temporal Logic
formulas that express malicious behaviour. Similarly to our approach, the applications were first
disassembled to smali code into Control Flow Graphs. Nevertheless, including the different Formal
Models adopted, the two approaches differ also on the detection task. In our methodology, we tried to
find formulas able to describe the behaviours of an entire malware family, while in the approach of
Song et al. each formula expresses a specific malicious behaviour, not related to any malware family or
malware variants. By doing so, they have to analyse the entire application in order to detect at least
one of the malicious behaviours; contrarily, our approach focuses on specific behaviour per family and
splits the analysis into two granularity levels, thus, it can efficiently detect malware by analysing only
subsets of the Formal Model.

Similarly to our approach, the Leila tool [28] also classifies Android apps into malware families
by using a behavioural based approach. The tool is able to classify the application as belonging to
a malware family and also localize the payload and the malicious code. The Leila tool adopts the
process algebra to convert malicious behaviour to Temporal Logic formula, and their methodology
can be easily compared to our second step of the analysis, the potentially malicious detection step.
Nevertheless, our first step of the methodology narrows down the number of methods to analyse and
make the entire approach liWeghter than the Leila one, preserving all the benefits. Moreover, the Leila
tool was tested on 300 malware samples split among 6 different families, and 4 of them are included
also in our dataset (FakeInstaller, Plankton, GinMaster and Op f ake); we achieved better performance
comparing the evaluation results of the four families in common between our datasets.

Appl. Sci. 2020, 10, 7975 16 of 20

In addition, the paper by Battista P. et al. [38] detected Android malware and classified them in
families using formal methods. Our dataset includes also the two families analysed by their approach
(DroidKungFu and Op f ake), and we outperform their results on both of the families.

A similar approach is applied by the Talos tool [8], which is focused on ransomware. It is
able to pinpoint the payload location, achieves an accuracy of 0.99 and is also robust to obfuscation.
The possibility to identify the malicious payload in Android malware using a model checking based
approach were explored also by these papers [40,41]. Being able to locate the payload code is essential
for automatizing and extend the scope of formal verification tools, because allow formalising more
and more specific and efficient Temporal Logic formulas by manual analysing the code.

The paper by Jasiul B. et al. [42] presents an approach to modelling a malware with Colored Petri
nets, and discusses its possible applications. The paper is mainly theoretical and it does not provide
experimental results to compare the approaches.

Beaucamps P. et al. [43] presents the theoretical base for a framework able to produce
abstracted program traces from malware, independently by the software language implementation.
Their approach was applied to information leak detection task. They obtained a CFG from static
analysis and collect the program set of traces. They also represent some malicious behaviour with
First-Order Linear Temporal Logic, and then check if some of these behaviours were detected in
the program traces. There are many similarities in our approaches, they also took into account the
feasibility of the detection task in the search space, trying to address the problem of path explosion
by applying techniques to restrict the set of traces. We also studied this problem and adopt the use
of two graph data structures to reduce the search space and detection tasks to different granularities.
The main difference resides in the practical application of the approaches proposed. While the work of
Beaucamps P. et al. presents a formal framework mainly at a theoretical level, we provide a functional
methodology for a well-defined problem in Android environment and present a robust experimental
analysis to support our approach.

In addition, the work by Bai G. et al. [44] presents an interesting dynamic approach that takes
into account, with static analysis, the problem of search space explosion. The authors have built a
framework named DroidPF, based on Java PathFinder, which use software model checking to verify
Android apps. The framework runs internally the application and explores the concrete state spaces,
including simulated user interaction and environmental input. The state space is reduced using static
analysis techniques and then the software model checking is applied to verify security properties
and, eventually, pinpoint the actual violations and data leakage. Although this approach mainly uses
dynamic tests on the apps, it adopts static analysis to reduce the problem of search space explosion.
Therefore, the main theoretical difference in our approaches resides in the adoption of the dynamic
explorations to detect the actual violations, while we use static analysis and CG representation to
detect malicious behaviour. Indeed, the dynamic analysis approaches need time to collect data and
build a dataset; this time-consuming task, usually, leads to test the approach on smaller datasets than
similar but static approaches.

Table 6 reports a comparison between some of the related works discussed in this section.
The overall performances were calculated, when applicable, using the data reports in the papers.
The comparison shows that our approach improves the performance in malware detection and also
takes into account malicious code localization and path explosion mitigation, which were only partially
discussed by previous works.

Appl. Sci. 2020, 10, 7975 17 of 20

Table 6. Comparison with related works; the ticks in the bracket for the “Malware Families” and
“Localisation malicious code” columns refer, respectively, to the few numbers of families evaluated and
to the localization to a higher level than method code (for instance, to class level).

Publication Evaluation Overall Performances
Localisation
Malicious
Code

Path
Explosion
Mitigation

Trusted
&

Malware

Malware
Families # Dataset Prec. Rec. F-Meas. Acc.

[44] X × 131 n.a. n.a. n.a. n.a. × X
[43] X × - - - - - × X
[28] X X 400 0.933 0.946 0.928 0.983 (X) ×
[39] X × 1331 n.a. n.a. n.a. n.a. × ×
[38] × (X) 400 0.928 0.805 0.858 0.878 (X) ×
[8] X (X) 6055 0.96 0.99 0.97 0.99 X ×

Our Work X X 3052 0.986 0.995 0.986 0.988 X X

6. Conclusions and Future Work

Considering the need of novel methods to the real-world mobile malware detection, in this paper
we design an approach exploiting model checking aimed to detect the belonging malware family of
Android malware samples.

We represent an Android application in terms of Control Flow and Call Graph automata: the first
automaton (i.e., the one based on Control Flow Graph) aimed to detect whether an application can
potentially exhibit malicious behaviour, while the second automaton, exploiting Call Graph, performs a
finer grain analysis by analysing all the paths in the application where the malicious behaviour detected
by the CFG-based automata is called.

Static analysis approaches may suffer from the path explosion problem when they face an
exponential increase of the search space on which apply the analysis, and mitigations should be
taken into account by all static analysis approaches. Our approach implements a two step analysis
with different classification granularity to reduce the search space and apply more specific detection
formulae. By doing so, we are able to reduce the number of paths to analyse in the CGs, and, in case of
malware, localize the malicious code on a method code level. Compared to similar works presented
in the literature, our methodology is the only one who takes into account both localization of the
malicious code and mitigation of path explosion problem. Moreover, we achieved also good results in
the evaluation, outperforming many similar works, as reported in Section 5.

The real-world experiment reaches an accuracy from 0.97 to 1 in the evaluation of 21 Android
malicious families, taking into account more than 3000 Android samples (including 2552 malicious
samples). With regard to the future research directions, we will focus our attention to investigate if the
proposed approach can effectively identify malware on the iOS platform. Moreover, we are working
on the formulation of an algorithm aimed to automatically extract the malicious behaviour property in
order to make the proposed approach fully automatic.

Author Contributions: Conceptualization, G.I., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.;
methodology, G.I., F.M. (Francesco Mercaldo) and A.S.; software, G.I. and F.M. (Francesco Mercaldo); validation,
G.I. and F.M. (Francesco Mercaldo); formal analysis, G.I., F.M. (Francesco Mercaldo) and A.S.; investigation,
G.I., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.; resources, G.I., F.M. (Fabio Martinelli),
F.M. (Francesco Mercaldo) and A.S.; data curation, G.I., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo)
and A.S.; writing–original draft preparation, G.I., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.;
writing–review and editing, G.I., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.; visualization,
G.I., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.; supervision, F.M. (Fabio Martinelli) and A.S.;
project administration, F.M. (Fabio Martinelli) and A.S.; funding acquisition, F.M. (Fabio Martinelli). All authors
have read and agreed to the published version of the manuscript.

Appl. Sci. 2020, 10, 7975 18 of 20

Funding: This work has been partially supported by MIUR—SecureOpenNets, EU SPARTA, CyberSANE and
E-CORRIDOR projects.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bhat, H.J. Investigate the Implication of “Self-service Business Intelligence (SSBI)”—A Big Data Trend in
Today’s Business World. Curr. Trends Inf. Technol. 2020, 10, 17–22.

2. Taylor-Quiring, D.P.; Wiebe, N.J. Cognitive and Predictive Analytics on Big Open Data. In Proceedings of
the Cognitive Computing—ICCC 2020: 4th International Conference, Held as Part of the Services Conference
Federation, SCF 2020, Honolulu, HI, USA, 18–20 September 2020; Springer Nature: London, UK, 2020;
Volume 12408, p. 88.

3. Gautam, A.; Chatterjee, I. Big Data and Cloud Computing: A Critical Review. Int. J. Oper. Res. Inf. Syst.
(IJORIS) 2020, 11, 19–38. [CrossRef]

4. Chatfield, A.T.; Reddick, C.G. Cybersecurity innovation in government: A case study of US pentagon’s
vulnerability reward program. In Proceedings of the 18th Annual International Conference on Digital
Government Research, Staten Island, NY, USA, 7–9 June 2017; pp. 64–73.

5. Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 2011, 9, 49–51. [CrossRef]
6. Liagkou, V.; Kavvadas, V.; Chronopoulos, S.K.; Tafiadis, D.; Christofilakis, V.; Peppas, K.P. Attack detection

for healthcare monitoring systems using mechanical learning in virtual private networks over optical
transport layer architecture. Computation 2019, 7, 24. [CrossRef]

7. Cimino, M.G.; De Francesco, N.; Mercaldo, F.; Santone, A.; Vaglini, G. Model checking for malicious family
detection and phylogenetic analysis in mobile environment. Comput. Secur. 2020, 90, 101691. [CrossRef]

8. Cimitile, A.; Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Talos: no more ransomware victims with
formal methods. Int. J. Inf. Secur. 2018, 17, 719–738. [CrossRef]

9. Statista.com. Development of New Android Malware Worldwide from June 2016 to March 2020.
Available online: https://www.statista.com/statistics/680705/global-android-malware-volume/ (accessed
on 20 September 2020).

10. Fan, M.; Liu, T.; Liu, J.; Luo, X.; Yu, L.; Guan, X. Android malware detection: A survey. Sci. Sin. Inf. 2020,
50, 1148–1177.

11. Casolare, R.; Martinelli, F.; Mercaldo, F.; Santone, A. Android Collusion: Detecting Malicious Applications
Inter-Communication through SharedPreferences. Information 2020, 11, 304. [CrossRef]

12. Bayazit, E.C.; Sahingoz, O.K.; Dogan, B. Malware Detection in Android Systems with Traditional Machine
Learning Models: A Survey. In Proceedings of the 2020 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–28 June 2020; pp. 1–8.

13. Pedreschi, D.; Giannotti, F.; Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F. Meaningful explanations of
Black Box AI decision systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu,
HI, USA, 27 January–1 February 2019; Volume 33, pp. 9780–9784.

14. Milner, R. Communication and Concurrency; PHI Series in Computer Science; Prentice Hall: Upper Saddle
River, NJ, USA, 1989.

15. Camilleri, J.; Winskel, G. CCS with priority choice. Inf. Comput. 1995, 116, 26–37. [CrossRef]
16. Milner, R.; Parrow, J.; Walker, D. A calculus of mobile processes, I. Inf. Comput. 1992, 100, 1–40. [CrossRef]
17. Stirling, C. An Introduction to Modal and Temporal Logics for CCS. In Concurrency: Theory, Language,

And Architecture; Springer: Berlin/Heidelberg, 1989; pp. 2–20.
18. Emerson, E.A. Temporal and modal logic. In Formal Models and Semantics; Elsevier: Amsterdam,

The Netherlands, 1990; pp. 995–1072.
19. Gabbay, D.M.; Hodkinson, I.; Reynolds, M.A.; Finger, M. Temporal Logic: Mathematical Foundations and

Computational Aspects; Clarendon Press Oxford: Oxford, UK, 1994; Volume 1.
20. Ben-Ari, M.; Pnueli, A.; Manna, Z. The temporal logic of branching time. Acta Inform. 1983, 20, 207–226.

[CrossRef]
21. Francesco, N.D.; Lettieri, G.; Santone, A.; Vaglini, G. Heuristic search for equivalence checking.

Softw. Syst. Model. 2016, 15, 513–530. [CrossRef]

http://dx.doi.org/10.4018/IJORIS.2020070102
http://dx.doi.org/10.1109/MSP.2011.67
http://dx.doi.org/10.3390/computation7020024
http://dx.doi.org/10.1016/j.cose.2019.101691
http://dx.doi.org/10.1007/s10207-017-0398-5
https://www.statista.com/statistics/680705/global-android-malware-volume/
http://dx.doi.org/10.3390/info11060304
http://dx.doi.org/10.1006/inco.1995.1003
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1007/BF01257083
http://dx.doi.org/10.1007/s10270-014-0416-2

Appl. Sci. 2020, 10, 7975 19 of 20

22. Orailoglu, A.; Gajski, D.D. Flow graph representation. In Proceedings of the 23rd ACM/IEEE Design
Automation Conference, Las Vegas, NV, USA, 29 June–2 July 1986; pp. 503–509.

23. Allen, F.E. Control flow analysis. ACM Sigplan Not. 1970, 5, 1–19. [CrossRef]
24. Cesare, S.; Xiang, Y. Classification of malware using structured control flow. In Proceedings of the Eighth

Australasian Symposium on Parallel and Distributed Computing, Darlinghurst, Australia, 3–7 February 2010;
Volume 107, pp. 61–70.

25. Bruschi, D.; Martignoni, L.; Monga, M. Detecting self-mutating malware using control-flow graph matching.
In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 129–143.

26. LaToza, T.D.; Myers, B.A. Visualizing call graphs. In Proceedings of the 2011 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), Pittsburgh, PA, USA, 18–22 September 2011;
pp. 117–124.

27. Kinable, J.; Kostakis, O. Malware classification based on call graph clustering. J. Comput. Virol. 2011,
7, 233–245. [CrossRef]

28. Canfora, G.; Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Leila: formal tool for
identifying mobile malicious behaviour. IEEE Trans. Softw. Eng. 2018, 45, 1230–1252. [CrossRef]

29. VirusTotal. VirusTotal Developer Hub. Available online: https://developers.virustotal.com/reference
(accessed on 28 September 2020).

30. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable
detection of android malware in your pocket. NDSS 2014, 14, 23–26.

31. Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A.; Vaglini, G. Model Checking and Machine Learning
techniques for HummingBad Mobile Malware detection and mitigation. Simul. Model. Pract. Theory 2020;
Volume 105, 102169. [CrossRef]

32. Google Play Unofficial Python API. Available online: https://github.com/egirault/googleplay-api (accessed
on 28 September 2020).

33. dex2jar—Tools to Work with Android.dex and java.class Files. Available online: https://github.com/
pxb1988/dex2jar (accessed on 20 September 2020).

34. Vallée-Rai, R.; Gagnon, E.; Hendren, L.; Lam, P.; Pominville, P.; Sundaresan, V. Optimizing Java bytecode
using the Soot framework: Is it feasible? In International Conference on Compiler Construction; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 18–34.

35. Soot Java Optimization Framework. Available online: https://github.com/soot-oss/soot (accessed on 20
September 2020).

36. Iadarola, G. graph4apk—Analysis for Generating Graphs from Apk File. Available online: https://github.
com/Djack1010/graph4apk (accessed on 20 September 2020).

37. Iadarola, G.; Martinelli, F.; Mercaldo, F.; Santone, A. Formal Methods for Android Banking Malware Analysis
and Detection. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), Granada, Spain, 22–25 October 2019; pp. 331–336.

38. Battista, P.; Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Identification of Android Malware Families
with Model Checking. In Proceedings of the ICISSP, Rome, Italy, 19–21 February 2016; pp. 542–547.

39. Song, F.; Touili, T. Model-checking for android malware detection. In Asian Symposium on Programming
Languages and Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 216–235.

40. Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Ransomware Steals Your Phone. Formal Methods
Rescue It. In Proceedings of the Formal Techniques for Distributed Objects, Components, and Systems—36th
IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece, 6–9 June 2016;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9688, pp. 212–221.

41. Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Download malware? No, thanks: how formal
methods can block update attacks. In Proceedings of the 4th FME Workshop on Formal Methods in Software
Engineering, FormaliSE@ICSE 2016, Austin, TX, USA, 15 May 2016; ACM: New York, NY, USA, 2016;
pp. 22–28.

42. Jasiul, B.; Szpyrka, M.; Śliwa, J. Formal specification of malware models in the form of colored Petri nets.
In Computer Science and its Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 475–482.

http://dx.doi.org/10.1145/390013.808479
http://dx.doi.org/10.1007/s11416-011-0151-y
http://dx.doi.org/10.1109/TSE.2018.2834344
https://developers.virustotal.com/reference
http://dx.doi.org/10.1016/j.simpat.2020.102169
https://github.com/egirault/googleplay-api
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/soot-oss/soot
https://github.com/Djack1010/graph4apk
https://github.com/Djack1010/graph4apk

Appl. Sci. 2020, 10, 7975 20 of 20

43. Beaucamps, P.; Gnaedig, I.; Marion, J.Y. Abstraction-based malware analysis using rewriting and model
checking. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany,
2012; pp. 806–823.

44. Bai, G.; Ye, Q.; Wu, Y.; van der Merwe, H.; Sun, J.; Liu, Y.; Dong, J.S.; Visser, W. Towards Model Checking
Android Applications. IEEE Trans. Softw. Eng. 2017, 44, 595–612. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSE.2017.2697848
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Model Checking
	Control Flow Graphs and Call Graph

	The Method
	Potentially Malicious Application Detection Step
	Fine-Grained Malicious Family Detection Step

	Experimental Analysis
	Dataset
	The -Calculus Formulae
	Implementation
	Experimental Results

	Related Work
	Conclusions and Future Work
	References

