
applied  
sciences

Article

Block Compressive Sensing Single-View Video
Reconstruction Using Joint Decoding Framework for
Low Power Real Time Applications

Mansoor Ebrahim 1,* , Syed Hasan Adil 1 , Kamran Raza 1 and Syed Saad Azhar Ali 2

1 Faculty of Engineering, Science & Technology, Iqra University, Karachi 75500, Pakistan;
hasan.adil@iqra.edu.pk (S.H.A.); drkamran@iqra.edu.pk (K.R.)

2 Center for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronics Engineering
Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
saad.azhar@utp.edu.my

* Correspondence: mebrahim@iqra.edu.pk

Received: 29 September 2020; Accepted: 29 October 2020; Published: 10 November 2020 ����������
�������

Abstract: Several real-time visual monitoring applications such as surveillance, mental state
monitoring, driver drowsiness and patient care, require equipping high-quality cameras with
wireless sensors to form visual sensors and this creates an enormous amount of data that has to be
managed and transmitted at the sensor node. Moreover, as the sensor nodes are battery-operated,
power utilization is one of the key concerns that must be considered. One solution to this issue
is to reduce the amount of data that has to be transmitted using specific compression techniques.
The conventional compression standards are based on complex encoders (which require high
processing power) and simple decoders and thus are not pertinent for battery-operated applications,
i.e., VSN (primitive hardware). In contrast, compressive sensing (CS) a distributive source coding
mechanism, has ransformed the standard coding mechanism and is based on the idea of a simple
encoder (i.e., transmitting fewer data-low processing requirements) and a complex decoder and
is considered a better option for VSN applications. In this paper, a CS-based joint decoding (JD)
framework using frame prediction (using keyframes) and residual reconstruction for single-view
video is proposed. The idea is to exploit the redundancies present in the key and non-key frames to
produce side information to refine the non-key frames’ quality. The proposed method consists of
two main steps: frame prediction and residual reconstruction. The final reconstruction is performed
by adding a residual frame with the predicted frame. The proposed scheme was validated on
various arrangements. The association among correlated frames and compression performance is
also analyzed. Various arrangements of the frames have been studied to select the one that produces
better results. The comprehensive experimental analysis proves that the proposed JD method
performs notably better than the independent block compressive sensing scheme at different subrates
for various video sequences with low, moderate and high motion contents. Also, the proposed
scheme outperforms the conventional CS video reconstruction schemes at lower subrates. Further,
the proposed scheme was quantized and compared with conventional video codecs (DISCOVER,
H-263, H264) at various bitrates to evaluate its efficiency (rate-distortion, encoding, decoding).

Keywords: compressive sensing; video compression; image processing; joint reconstruction;
redundancies; residual based coding

1. Introduction

The transformation of wireless sensor networks (WSNs) into visual sensor networks (VSNs) has
set new horizons in the IT ecological space, making it broadly adapted in various applications. Equally,
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the coupling of high-quality cameras with sensors has greatly increased the size of the data that has
to be managed and transmitted (increasing the computational burden). Furthermore, as the sensor
nodes are battery-operated, power utilization is a key concern that must be considered. One potential
solution to the aforementioned issues is to reduce the amount of data transmitted using specific
image/video compression techniques. In a conventional video capturing arrangement, a compression
algorithm is usually applied to the video data once the complete frame set is obtained to exploit the
inter-view and intra-view correlations between the frames. Various approaches have been proposed
to exploit these correlations for standard video compression [1,2]. The standard complex-encoder
simple-decoder method is mostly used by traditional video compression schemes i.e., at encoder heavy
processing compared to the decoder. The encoder usually uses the motion estimation and compensation
(ME/MC) method to utilize the correlations between the frames that require high computation. Thus,
the conventional schemes are not apt for low power real-time applications, i.e., VSN (battery-powered
nodes with primitive hardware). Most of the conventional schemes entail the use of extra computational
resources for data processing leading to additional power requirements, with few trade-offs between
the reconstruction quality and computational constraints [1].

The emergence of compressive sensing (CS) [3] has widened the approach for 3D reconstruction,
multi-camera imaging, armed personnel tracing and surveillance, magnetic resonance imaging (MRI)
and seismic identification for applications such as surveillance, mental state monitoring, driver
drowsiness and patient care, etc. CS is specifically useful for the transmission of correlated data for
low power real-time applications, i.e., visual sensors networks and wireless sensors networks. CS has
transformed the idea of conventional data compression schemes as it is based on the principle of
exemplifying a signal using a much smaller sampling rate than the standard Nyquist rate. Hence,
using CS is one of the best solutions. Unlike the conventional schemes it is based on a simple
encoder (i.e., transmitting fewer data) and a complex decoder. It is also known that the primary
motivation for considering CS is that it offers the potential to reduce sensor costs and computational
complexity significantly. For example, it is proposed that the famous single-pixel camera, with only
one photo-sensor, could provide an imaging sensor that is much cheaper to build than one with several
million photosensors. Moreover, CS is a form of dimensionality reduction only, and it is not specifically
a type of compression [4].

CS makes sense only when the dimensionality reduction that it provides takes place directly
within the sensing device’s hardware. In other words, the image never exists anywhere in the sensor
in its full dimensionality, unlike most of the conventional video coding schemes in which the acquired
image is used in its full dimensionality, increasing the load on the sensor node. However, CS can be
used for compression, provided that the dimensionality reduction it offers is coupled with quantization
and entropy coding to create a bit of data from the CS measurements.

In this paper, a joint decoding (JD) framework is proposed. The proposed scheme aims to decrease
the redundancies among video frames at the decoder using side information. The proposed scheme
first decodes the encoded keyframes and non-key frames of a video sequence received at the host
workstation. After independently decoding the frames, a side information process is initiated. The side
information produced is utilized to enhance the reconstruction quality of the non-key frames. The side
information process consists of registration and fusion steps used to exploit the inter/intra view
correlation between the frames to generate a frame prediction. Next, the difference among the predicted
frame measurements and the acquired measurements is calculated to minimize the prediction errors.
The difference at the level of the measurement, known as the residual measurements, is recovered
to produce the residual. The final frame reconstruction is performed by adding the residual and the
predicted frame to compensate for the difference.

The rest of the paper is organized as follows: Section 2 presents an overview of the various existing
CS-based video reconstruction coding schemes. A detailed explanation of the proposed JD scheme for
single view video reconstruction using block CS is provided in Section 3. In Section 4 the experimental
results are presented and the conclusions are drawn in Section 5.
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2. Literature Review

Compressive sensing (CS) has emerged as one of the most substantial mechanisms for compressing
visual data (video) in recent times. The principle is to sample each video frame independently using
CS (encoder), and then at a decoder the correlations within the video frames are exploited using joint
reconstruction schemes for image reconstruction. In literature various video reconstruction coding
schemes have been proposed (dictionary-based coding, 3D-transformation coding, residual-based
coding, etc), each having their benefits and challenges. In the following, only the state-of-the-art
residual coding schemes are discussed as the proposed model relies on residual-based coding and will
be compared with these schemes. However, complete explanations of the other coding schemes can be
found in [5–11].

In [12], the modified-CS-residual scheme is presented. The scheme is based on a residual
reconstruction approach in which side information helps manage the reconstruction issue related
to sparse signals (minutest quantity of linear projections). The least mean squares or Kalman filter
estimation methods are used to produce side information. However, this side information can be
exposed to errors. The proposed scheme aims to counter the convex relaxation problem correlated to
data restraints and sparsity outside the side information.

A reconstruction scheme known as k-t FOCUSS is presented in [13,14]. It is also built on a similar
residual reconstruction idea. The scheme first generates side information assuming n keyframes using
disparity (compensation/estimation) predictions and a residual encoding approach. This leads to an
ideal sample allocation among the estimated and residual steps. The residuals among the bidirectional
(DC/DE) estimation of each keyframes and non-key frame is used to attain the reconstruction.

A DC/DE-based reconstruction scheme with residuals is introduced in [15]. The scheme generates
the side information by integrating DC/DE-based prediction and is referred to as DC-BCS-SPL. The final
reconstruction is aided by calculating the residuals among the side information and the original view.

Also, in [16], a DC/DE-based joint reconstruction scheme is proposed. The proximal gradient
method is adopted by the proposed scheme to resolve the optimization problem.

The motion (compensation/estimation)-based scheme is introduced in [17]. The proposed MC/ME
scheme is incorporated into the block compressive sensing (BCS-SPL) video restoration method and
called MC-BCS-SPL. In this approach, each frame of the video sequence is initially sampled using
random block-based CS measurements (at the encoder) and transmitted to the decoder. The received
encoded measurements are then decoded and the proposed residual dependent ME/MC approach is
applied to generate the final view. The proposed scheme generates video frames alternately along with
the motion fields associated with the frames i.e., using one to improve the other iteratively.

In [18], a joint reconstruction algorithm using MC/ME and fusion is presented. The proposed
scheme uses the down-sample approach (lowering sampling rate of the views) and then MC/ME and a
fusion approach are applied on the down-sampled views to produce a view prediction, which helps
generate the final view.

A view estimation and residual reconstruction-based joint reconstruction method is introduced
in [19]. The method integrates a MC/ME approach into the reconstruction to generate the side
information. The side information then helps in the reconstruction of the final output.

The residual coding schemes discussed above help improve the reconstruction quality of the
video frames, however, they are exposed to a few issues such as imprecise estimation or computational
intricacy. For example, Ref. [12] claims that the proposed scheme is more suitable for video applications
and uses least mean squares (LMS) or Kalman filter prediction methods. However, the scheme is
exposed to prediction errors. The schemes proposed in [13–19] are mostly based on DC/MC and DE/ME
prediction methods. In such a scheme, precise predictions are hard to achieve if basic transformation
(translation/affine) models are used. This is because video captured from different view angles
might display some distortions that are hard to handle by using fundamental transformations. Thus,
the proposed scheme usually uses a more complex transformation model to resolved prediction issues.
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However, such a solution might lead to an additional computational burden. A summary of CS-based
residual coding schemes for single view video reconstruction is presented in Table 1.

Table 1. Summary of various CS-based residual coding schemes for visual reconstruction.

Work Scheme Description Issues

[12] Kalman-Filter (KF)
based Prediction

Make use of side information to
handle the sparse signals
reconstruction issue (minimum
number of linear projections).
It also resolves the convex relaxation
issue linked with data restraints and
sparsity, outer the side information.

It is usually viable for video
applications, as it assumes that the
sparsity pattern develops
progressively from frame to frame.
Besides, Prediction make use of
state dynamics and measurement
models. The prediction might fail
due to incorrect initialization of
the model and filter.
A tree-structured KF algorithm
can be used to cater the issue at
the cost of higher computational
resources.

[13]
Disparity Estimation &

Compensation
(DE/DC) based

Prediction

Incorporates disparity estimation
and compensation prediction
methods into the reconstruction
process of BCS-SPL that generate
side information aiding final
reconstruction.

Introduces discontinuities at the
block borders (blocking artefacts).
Accurate predictions are hard to
achieve with fundamental
estimation, and compensation
algorithms as images/frames
captured from different view
angles may exhibit some
deformations.
May result in producing false
edges and ringing effects.
Requires more complex estimation
and compensation algorithms that
result in additional computational
burden.
Significant improvements at
higher subrate as compared to
lower subrate i.e., the scheme does
not accurately predict the motions
due to the smaller number of
measurements at lower subrates
that leads to low-quality initial
reconstructions

[14]

Solve the optimization problem by
implementing the
proximal-gradient method, and side
information is generated by DE/DC
prediction approach.

[15,16]

Motion Estimation &
Compensation

(ME/MC) based
Predication

Uses motion-based prediction and
residual encoding to optimize the
sample allocation among the
estimated and residual encoding
steps.

[17]

The MC/ME approach is
incorporated with the BCS-SPL
reconstruction process for the video.
The video sequence frames are
generated alternatively i.e., one
helps to improve the quality of the
other iteratively.

[18]

The scheme uses low sample rate,
ME/MC and fusion method to
produce a view prediction, which
helps in the generation of an
ultimate view for the multi-view
video.

[19]

The MC/ME approach is
incorporated with the BCS-SPL
reconstruction process for
multi-view video.

3. Proposed Joint Decoding (JD) Framework for Video

In this section, the proposed joint decoding (JD) framework for single view video is discussed.
The archetype of the complete system is shown in Figure 1. At the encoder side, we consider a visual
node S, capturing a scene (video), and block-based compressive sensing (BCS) is applied on each frame
in the video sequence for encoding. The encoded frames are then independently transmitted to the
host workstation.
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Figure 1. Archetype of the complete system for single-view video coding using the proposed JD (joint decoding).

At the host workstation (decoder), a sequence of J recurrent frames is received from the visual
node S, referred to as a group of pictures (GoP). As the video is uninterrupted, it is established that
the current GoP is tailed by another GoP. The GoP comprises a keyframe and J-1 non-key frames,
represented as FK (the primary) and FNK. The encoding of FK and FNK is performed at the subrate of
MK and MNK, respectively, with MK > MNK.

At the visual node (encoder), each frame Fx (where x is the frame number) in the video sequence is
initially portioned into a small block of 16 × 16. Then, the sensing matrix Φx as in Equation (1) is used
to sample each block within a frame producing a set of measurements (Yx) as in Equation (2) [20–22]:

Φx =


Φx · · · 0
...

. . .
...

0 · · · Φx

 (1)
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Yx = ΦxFx (2)

The set of measurements (Yx) produced at the encoder is sent to the host workstation (server)
independently. At the server side (decoder), firstly, the received encoded frames (Yx) are decoded
independently (frame by frame) using the total variation (TV) minimization [23,24] problem till a
complete GoP is obtained. The TV minimization makes use of piece-wise smooth features of the signals
to provide a better solution within the possible space rather than finding the sparse solution within the
transformation domain Ψ. The basic TV minimization function is given in Equation (4):

TV(F) =
∑

i,j

∣∣∣Fi+1,j − Fi,j
∣∣∣+ ∣∣∣Fi,j+1 − Fi,j

∣∣∣ (3)

F = argminF

∣∣∣y−ΘF
∣∣∣
`2
+ λ TV(F) (4)

However, the CS reconstruction using TV minimization as in Equation (4) is exposed to extra
computational problems that limit its use for CS, i.e., it is harder to computationally access and explain
certain properties of TV minimization (non-differentiable, non-linear) than `1 minimization. To counter
such issues, a scheme [24] referred as TV-AL3 is presented that uses the conventional augmented
Lagrangian (AL) with variable splitting and alternating direction method. The approach decreases the
computational burden and provides the same output as standard TV.

After obtaining the complete GoP, the proposed joint decoding (JD) method is implemented to
utilize the inter and intra-view correlations among the frames. As shown in Figure 1, the first frames
of the current and next GoP’s aid as the keyframes FK (reference frames) for the JD to produce side
information of frames (prediction, residual) that will help in enhancing the quality of (J-1) non-key
frames FNK of the current GoP.

3.1. Correlation Estimation of the CS Measurements among Adjacent Frames

A correlation estimation of the CS measurements among the adjacent frames is presented in this
section. As discussed earlier, adjacent frames with a video sequence have a high inter-frame level
correlation with each other. Consequently, it can also be assumed that the CS measurements of such
frames are also highly correlated. Although, acquiring CS measurements is entirely different from
linear transformations, as CS measurements form a random Gaussian distribution. The correlation
among the two random entities can be estimated by using Pearson’s correlation coefficient. It is
defined as “the correlation coefficient of two random variables is a measure of their linear dependence”.
Consider the CS measurements of two adjacent frames Yn and Yn+1 of a video sequence, then their
correlation coefficient is estimated as:

ρ(Yn, Yn+1) =
1

ϕ− 1

ϕ∑
n−1

(
Yn − µYn

σYn

)
·

(
Yn+1 − µYn+1

σYn+1

)
(5)

where, ϕ is the number of measurements, µYn and µYn+1 are the mean of Yn and Yn+1, respectively,
while σYn and σYn+1 are the standard deviation of Yn, and Yn+1, respectively.

The evaluation of CS measurement correlation among various frames is performed on
various standard grayscale CIF video sequences (Foreman, Coastguard, Container, Hall Monitor,
Mother-Daughter). Each video sequence contains 300 frames and is divided into GoPs of size 8. The CS
measurements for each frame within a video sequence are obtained at a measurement rate of 0.5.
The CS measurement correlation coefficient for each non-keyframe for various video sequences is
estimated and shown in Figure 2. The results presented are an average of all the correlations for
non-key frame w.r.t keyframes. It can be noticed that all the frames within the video sequence show
a high correlation, i.e., above 0.92. Moreover, for moderate motion content video sequences, the
correlation is also higher.
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This subsection discusses in detail the decoding process of the proposed JD scheme. The proposed
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Figure 3. Reconstruction of frames using the proposed joint decoding (JD) framework.

The descriptions of each step are provided in the following sections.

3.2.1. Frame Estimation

This step proposes a frame estimation technique using registration and fusion methods. The idea
is to utilize the frames’ correlations to estimate the J-1 non-key frame (F′NK) in the GoP from the
keyframes (F′K). The proposed method assists in utilizing the inter and intra-view correlations between
the frames and produce a set of predicted non-key frames.

Registration Approach

The frame estimation step is initialized by performing registration (intensity) on the two
independently generated keyframes F′K in the GoP. The aim is to align the F′K on the same plane as
of F′NK (F′K is aligned to F′NK, and the redundancies between them are exploited). Firstly, a phase
correlation method (finding the gross alignment) is used on the F′K and F′NK frames to calculate the
initial transformation matrix. Next, the translation transformation over affine is used for aligning F′K



Appl. Sci. 2020, 10, 7963 8 of 23

w.r.t. F′NK to produce transformed F′K called F”KT. The reason for using a translation transform is that
affine transform makes sense when multiple images are not on the same plane and are to be rectified,
whereas, in the case of a video sequence, each frame is usually on the same plane, so it would be
sufficient to consider translation transform.

The similarity metric and optimization function is then applied on the transformed frame F”KT to
estimate the registration precision and generate the final registered image F”K, as shown in Equation (6):

F′′K = argminN

∣∣∣∣∣∣
∣∣∣∣∣∣∑y∈LF′KT

∑
x∈LF′NK

PF′KTF′NK
(y, x; a)log2

 PF′KTF′NK
(y, x; a)

PF′KT
(x)PF′NK

(y; a)

∣∣∣∣∣∣
∣∣∣∣∣∣ (6)

The similarity metric makes use of the mutual information (MI) method where the optimizer
uses one evolutionary (OE). The evolutionary optimizer is used to exploits the alike alignment that
usually occurs within the frames of a video sequence that better helps the OE optimizer than the
other optimizers such as gradient descent (GD). The optimizer is one of the vital parameters of the
registration process that defines the method to exploit the attained similarity metric M and produce a
final result. Once both the keyframes F”K is registered, a wavelet-based fusion process is applied on
them to produce the predicted frame FP.

Fusion Approach

In the fusion process, the registered keyframes F”K are down-sampled up to three levels using
symlet 4-tap filter into their respective approximation (A) and detail (D) coefficient maps. Then,
the point-to-point operations are performed to fuse the A and D coefficients in the two decomposition
maps. The coefficients A and D are set as shown in Equations (7) and (8), respectively:

AMean(a,b) = (AK (a,b) + ANK (a,b))/2 (7)

DMean(a,b) = (DK (a,b) + DNK (a,b))/2 (8)

The average magnitudes for each A and D coefficient having a similar coordinate of the two
decomposition maps is calculated. The average value obtained then serves as the output for the fused
map (FM). Once the fused map is generated, an inverse transformation is applied to generate the FP’s
predicted frames. The proposed frame estimation method predicts the object motions and produces
predicted frames FP:

Fp = Transform−1(FM) (9)

The defined set of parameters for registration and fusion processes remained best when related to
other sets of parameters for various video sequences that have been used.

3.2.2. Residual Reconstruction

In this step, the predicted frames FP is projected onto the measurement basis YP = Φx IP. Once,
the predicted measurements YP is generated, they are then differentiated from the given frame
measurements Yx to produce the residual measurement Yr as in Equation (10):

Yr = Yx − YP (10)

The obtained residual measurements Yr are then decoded by using BCS-TV-AL3 method to
generate the residual frames Fr.

3.2.3. Final Frame Reconstruction

The final reconstructed frames F”NK within the GoP are generated by adding the Fr and FP frames.
It is a standard point-to-point addition that is expressed in Equation (11). By doing so, uniformity in
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terms of frame measurements (Y) is achieved, i.e., the measurements computed for F”NK is to some
extent equal to the measurements YNK:

F”NK = Fr + FP (11)

After the keyframes, F′K (F0 and FJ from Y0 and YJ) are reconstructed using BCS-TV-AL3, they are
used as the reference frames for reconstructing the non-key frames F′NK between them.

The proposed scheme produces the non-key frame F”1 from Y1, F0, and FJ; similarly F”2 is generated
from Y2, F0 and FJ. The method endures for all the remaining non-key frames. The reconstructed
frames’ quality is expected to drop as the distance of the key frames from the non-key frames increases.
Thus, the quality of the reconstruction may decrease with the increase in the GoP size (J). A complete
GoP (J = 8) reconstruction for News video sequence is shown in Figure 4. The highlighted red dotted
circles clearly show that as the difference among the key frames and non-key frame increases the
reconstruction quality decreases.
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4. Experimental Results

4.1. Setup

In this subsection, the validation of the proposed JD scheme incorporated with TV-AL3 (i.e., JD-TV)
in terms of performance and efficiency is presented. A standard set of grayscale CIF [25] and HD
resolution [26] video sequences with sizes of 352 × 288 and 1024 × 678 are selected on which the
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proposed scheme is applied for evaluation. The selected video sequences are based on different
parameters such as # of frames, motion content type (slow, moderate, fast). The details of the video
sequences (# frames, motion type) are presented in Table 2. The video sequence indicated as low,
moderate, and high contents are based on spatial details plus camera and object movement.

The experimental setup comprises of the application of proposed JD-TV having various GoP (J)
sizes (3, 5, and 8) to validate its efficiency at various levels. The assessment is performed by observing
the peak signal to noise ratio (PSNR) at various sampling rates (subrate). Subrate or sampling rate is the
number of recorded samples (pixel) per unit distance when converting from an analog signal to digital
and is give as S = MB/N. Where, M is the number of CS measurements, N = B × B (B = block size).

Table 2. Various grayscale CIF and HD standard video sequences.

Video Sequence No. Frames Content-Type

CIF
(352 × 288)

Hall-Monitor 300 Low
Mother Daughter 300 Low
Coast-Guard 300 Moderate
Foreman 300 Moderate
Mobile Calendar 300 High
Stefan 300 High

HD
(1024 × 678)

Love Birds 300 Low
News 300 Moderate
Book-Arrival 300 Moderate

Also, the structural similarity index (SSIM) is also recorded as it is anticipated as more precise and
consistent (human visual perception) than PSNR. All PSNR and SSIM values presented are the mean of
five independent experiments. The values are averaged because the Φ is of random nature, and thus,
the image quality may vary. A smaller block size of 16 × 16 is implemented compared to larger ones
(32 × 32, 64 × 64), as it is observed that larger block size will produce more samples and will require
additional time and energy to transmit. Although, the larger block size provides better reconstruction
quality but at the expense of complexity. The selection of block size is a tradeoff between reconstruction
quality and computational complexity. In this regard, it is not feasible for a battery-powered device to
always encode and transmit the captured images at larger block size. In addition, most of the research
works focused on low powered application have adopted block size of 16 × 16 or 32 × 32 as it provides
better image quality with less computational complexity. The encoding of all keyframes are performed
at a fixed subrate of 0.5 while the non-key frames within a GoP are encoded at various lower subrates
(0.05, 0.1, 0.15, 0.2, 0.25, 0.3).

4.2. Effect of GoP Size on the Performance of Proposed JD-TV

In this subsection, the proposed JD-TV is assessed and equated with independent BCS-TV-AL3
using various GoP sizes. Table 3 shows the impact of three different GoP sizes (3, 5, 8) on the
performance of the proposed JD at various subrates for several video sequences.

The results shown are the average values of the non-key frames obtained for each complete video
sequence. The result shows that the proposed scheme performs well when compared with independent
BCS-TV-AL3. For low, moderate, and high content types, the improvement over independent
BCS-TV-AL3 is 3 dB- 7 dB, 2.5 dB-5 dB and 2 dB-4 dB, respectively, on average for all GoP sizes. Also,
it is also noticed that the gain for reconstructed low content video sequence is better than moderate
and high content as the association between the frames is higher than in moderate and high content
videos. The better correlation results in more precise frame estimation and residual reconstruction.
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Table 3. Average PNSR evaluation of proposed JD-TV scheme and the independent BCS-TV-AL3 for
different low, moderate, and high motion content video sequences at various GoP.

Low Motion Content
Video Sequence

Mother-Daughter

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV 24.88 30.36 32.35 33.73 35.55 37.15

JD-TV GoP3 36.35 40.10 41.03 41.41 41.94 42.41

JD-TV GoP5 34.16 35.55 36.73 38.43 39.88 40.72

JD-TV GoP8 32.00 34.26 35.81 37.65 38.63 39.61

Hall Monitor

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV 21.20 23.71 25.26 26.68 28.18 29.71

JD-TV GoP3 32.31 32.70 33.28 33.93 34.45 35.08

JD-TV GoP5 29.52 31.56 32.10 32.98 33.64 34.26

JD-TV GoP8 28.98 30.65 31.77 32.81 33.83 34.85

Moderate Motion
Content Video

Sequence

Foreman

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV 23.66 25.38 27.05 29.0 30.70 33.83

JD-TV GoP3 29.82 31.94 32.31 33.59 34.14 35.81

JD-TV GoP5 26.3 29.9 31.06 32.84 33.59 35.03

JD-TV GoP8 26.29 27.86 30.05 31.42 32.96 34.61

Coast Guard

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV 21.86 23.98 25.01 26.15 27.18 27.99

JD-TV GoP3 29.18 29.73 30.22 30.9 31.51 32.00

JD-TV GoP5 25.43 26.84 27.51 28.6 29.27 30.02

JD-TV GoP8 24.53 25.61 26.69 27.6 28.38 29.14

High Motion
Content Video

Sequence

Mobile Calendar

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV 17.79 19.71 20.69 21.77 22.71 23.61

JD-TV GoP3 24.54 25.38 25.82 26.49 27.2 27.76

JD-TV GoP5 22.46 23.49 24.26 24.95 25.71 26.39

JD-TV GoP8 21.26 22.39 23.35 24.08 24.9 25.76

Stefan

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV 19.92 21.76 22.89 24.14 25.23 26.42

JD-TV GoP3 24.3 27.06 27.13 28.71 29.53 30.44

JD-TV GoP5 23.68 25.34 26.59 27.87 28.52 29.76

JD-TV GoP8 23.39 25.08 26.27 27.07 27.93 29.00

Note: The bold values represent the highest PSNR (dB) achieved at specific subrate for video sequence.

It is also observed that the larger the GoP size, the lower the PSNR gain will be. This is because
the principle of the proposed scheme is to reconstruct the non-key frames by utilizing the correlation of
the keyframes. Thus, the non-key frames closer to the keyframe are more correlated than those further
away. For GoP = 3 the average gain is 3dB to ~6dB, while for GoP = 8 ~2dB to 4dB is achieved.

Additionally, as the subrate increases, the gain decreases. In other words, as the keyframes,
FK is encoded at a subrate higher than that of non-key frames FNK, it produces a larger measurement,
covering the related smaller set of FNK measurements. This, in result decreases the estimation errors of
FNK that arises due to smaller set measurements and generates a better form of FNK.
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The reconstructed frames’ visual quality is also tested by using SSIM metric on the same video
sequences used for PSNR. The SSIM graphs of various video sequences with GoP sizes of 3, 5, and 8 at
different subrates are presented in Figure 5.
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The SSIM shows a similar trend in terms of gain as of PSNR. Moreover, the result also indicates an
enhancement in visual quality and a notable increase over the independent scheme. Also, the proposed
scheme is tried at higher GoP sizes (16, 32). However, the frame reconstruction was not substantial
enough to be imitated. In the case of VSN, the frequent transmission of the keyframes is not encouraged
due to limited battery life as in the instance with GoP size 3 and 5; it will upsurge the computational
load at the encoder (Low power node). Thus, GoP size 8 is measured as a more stable point between
all the GoP sizes and will later opt-in trials.

4.3. Subrate

This subsection presents the impact of different FK subrate used in the proposed JD-TV on the
FNK reconstruction. A GoP size of 8, as indicated from the former experimentation (balance point)
instead of 16/32 is opted. The evaluation is carried on two arrangements.
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• First setup, encoding of both FK and FNK at the similar subrate i.e., MK = MNK (0.05, 0.1, 0.15, 0.2,
0.25, 0.3).

• Second setup, the encoding of FK at a static subrate of MR = 0.5 and FNK at various subrates
i.e., MNK (0.05, 0.1, 0.15, 0.2, 0.25, 0.3) with 0.05 interval among the subrate.

The evaluation result shown in Table 4 indicates the importance of subrate on the reconstruction
quality of the frames. In other words, FK subrate has a substantial effect on the FNK reconstruction
quality. In the first setup, where subrate MK = MNK the reconstruction quality, when compared
with traditional scheme, improves on average from 2 dB–3.5 dB. However, when the subrate is
MK > MNK, it is noted that the gain increases significantly (3.5 dB–5 dB) when compared with JD-TV
(MK = MNK) and BCS-TV. The reason that the reconstruction quality at subrate MK > MNK is better
than at subrate MK = MNK is because, when encoding of both FK and FNK is performed at the same
subrate, the generated FK does not comprehend enough material that could considerably assist the
reconstruction of FNK.

Table 4. Average PNSR evaluation of proposed JD-TV scheme and the independent BCS-TV-AL3 for
different low, moderate and high motion content video sequences at GoP = 8.

Low Motion
Content
Video

Hall Monitor

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 21.70 23.53 24.76 26.44 28.16 29.77

JD-TV (MR =MNR) 22.88 25.54 27.37 29.34 30.84 32.62

JD-TV (MR = 0.5) 28.98 30.65 31.77 32.81 33.83 34.85

Mother Daughter

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 24.88 30.36 32.19 33.73 35.55 37.15

JD-TV (MR =MNR) 29.02 32.15 33.81 35.57 37.83 39.15

JD-TV (MR = 0.5) 32.00 34.26 35.81 37.65 38.63 39.61

Moderate
Motion
Content
Video

Coast guard

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 21.86 23.98 25.01 26.15 27.18 27.99

JD-TV (MR =MNR) 22.32 24.90 25.37 26.41 27.67 28.58

JD-TV (MR = 0.5) 24.53 25.61 26.69 27.6 28.38 29.14

Foreman

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 23.66 25.38 27.05 29.0 30.70 33.83

JD-TV (MR =MNR) 24.92 26.39 28.10 29.84 31.35 33.35

JD-TV (MR = 0.5) 26.29 27.86 30.05 31.42 32.96 34.61

High Motion
Content
Video

Mobile Calendar

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 16.68 18.58 19.58 20.52 21.58 22.50

JD-TV (MR =MNR) 17.99 19.43 20.65 21.80 22.88 24.03

JD-TV (MR = 0.5) 20.15 21.28 22.24 22.97 23.79 24.65

Stefan

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 19.92 21.76 22.89 24.14 25.23 26.42

JD-TV (MR =MNR) 20.23 22.65 23.85 25.09 26.12 27.50

JD-TV (MR = 0.5) 23.39 25.08 26.27 27.07 27.93 29.14

Note: The bold values represent the highest PSNR (dB) achieved at specific subrate for video sequence.
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4.4. Proposed JD Framework and HD Video Sequences

In this section, the proposed JD framework is tested with HD video sequences in order to evaluate
its effectiveness at various video resolutions. The HD video sequence selected contains both low
content and moderate content types. A block size of 16 × 16 and GoP size of 8 is adopted.

The PSNR and SSIM results presented in Tables 5 and 6 respectively, clearly show that the
proposed JD framework also performs well for HD video sequences compared with conventional BCS
framework. A similar trend as that of CIF video sequence can be noticeable using JD reconstructions.
For low motion video (Lovebird) the gain in term of PSNR and SSIM is more significant than moderate
motion videos (Newspaper, Book arrival).

Table 5. Average PNSR evaluation of proposed JD-TV scheme and the independent BCS-TV-AL3 for
different HD video sequences at various subrates having GoP = 8.

Book Arrival

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 27.24 30.21 32.08 33.64 34.77 35.8

JD-TV 32.99 33.8 35.04 36.19 36.92 37.76

Gain 5.75 3.59 2.96 2.55 2.15 1.96

Newspaper

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 26.00 29.58 31.71 33.30 34.64 40.13

JD-TV 32.58 35.06 36.36 37.32 38.23 38.80

Gain 6.58 5.48 4.65 4.02 3.59 3.33

Lovebird

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 25.08 28.64 30.35 32.02 33.54 34.86

JD-TV 34.50 36.52 37.95 38.94 40.08 40.12

Gain 9.42 8.88 7.60 6.92 6.54 5.26

Note: The bold values represent the PSNR (dB) gain difference achieved by JD-TV for various video sequence.

Table 6. Average SSIM evaluation of proposed JD-TV scheme and the independent BCS-TV-AL3 for
different HD at various subrates having GoP = 8.

Book Arrival

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 0.79 0.85 0.88 0.9 0.9 0.92

JD-TV 0.91 0.92 0.94 0.95 0.96 0.97

Gain 0.12 0.07 0.06 0.05 0.06 0.05

Newspaper

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 0.77 0.84 0.88 0.91 0.92 0.93

JD-TV 0.93 0.94 0.95 0.97 0.97 0.98

Gain 0.16 0.10 0.07 0.06 0.05 0.05

Lovebird

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

BCS-TV-AL3 0.75 0.83 0.87 0.9 0.91 0.93

JD-TV 0.95 0.96 0.96 0.97 0.97 0.98

Gain 0.20 0.13 0.09 0.07 0.06 0.05

Note: The bold values represent the PSNR (dB) gain difference achieved by JD-TV for various video sequence.



Appl. Sci. 2020, 10, 7963 15 of 23

4.5. Visual Result Comparison

Visual quality analysis is one of the vital evaluation parameters for the reconstruction of compressed
images. In this subsection, the visual quality of the reconstructed frames using proposed JD is analyzed.
The proposed framework performs better in terms of PSNR and SSIM at lower sub-rate. However,
it is also important to verify that the frame produced at lower subrate are visually perceptible.
Thus, we perform the analysis on three different video sequences having low, moderate and high
motion contents.

Figure 6 presents the visual results of the random center frame of each GoP selected from the
reconstructed video sequence (the similar visual quality was observed for all center frames of each
GoP) by using JD-TV and BCS-TV-AL3. The result shows that the visual quality of reconstructed
frames by using proposed method at lower subrates is better visually perceptible than the conventional
method. In addition, for low motion content video sequence (Mother-Daughter) the proposed JD-TV
shows higher visual quality (due to precise frame prediction and residual reconstruction) as compared
to moderate (News) and higher Motion content video sequences.
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Figure 6. Visual quality analysis of different video sequences at multiple subrates using independent
BCS-TV-AL3 and the proposed JD-TV.

It should also be noted that at a lower subrate (0.05) due to the insufficient estimation information
of motion few distortions are detected (red dotted circle). Further, for video sequences with fast-moving
objects (Mobile Calendar), the JD-TV is vulnerable to a few distortions as emphasized by the red
spotted circle.

4.6. Proposed JD-TV v/s Standard CS Video Compression Schemes

In order to analyze the performance of the proposed JD-TV methodically it is compared with
conventional CS-based schemes i.e., MS-residual [12], k-t FOCUSS [13], MC-BCS-SPL [17] as referred
in Section 2. The results presented in Table 7 (gain of proposed and conventional schemes w.r.t
independent BCS) are the average of the total frames obtained at a block size of 16 × 16 and GoP of 8.
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Table 7. Average PSNR gain (dB) analysis of the proposed JD with conventional CS schemes for various
video sequences.

Subrate 0.05 0.10 0.15 0.20 0.25 0.30

Hall
Monitor

JD-TV 6.88 6.75 6.68 6.51 6.47 6.33

MC-BCS-SPL 2.64 3.88 4.96 5.77 5.98 6.21

kt-Focuss 1.50 1.96 2.45 3.21 3.97 4.05

MS-Residual 0.85 1.06 1.55 2.17 2.88 3.35

Mother
Daughter

JD-TV 5.96 5.83 5.69 5.57 5.41 5.27

MC-BCS-SPL 2.17 3.04 3.77 4.30 4.85 5.14

kt-Focuss 1.08 1.87 2.65 3.34 3.99 4.75

MS-Residual 0.38 0.77 1.27 1.83 2.59 3.05

Coast
Guard

JD-TV 2.76 2.65 2.55 2.42 2.31 2.22

MC-BCS-SPL 0.95 1.35 1.49 1.74 1.98 2.15

kt-Focuss 0.45 1.01 1.21 1.40 1.60 1.89

MS-Residual 0.25 0.54 0.75 0.95 1.20 1.49

Foreman

JD-TV 5.56 4.96 4.26 3.69 2.14 2.08

MC-BCS-SPL 0.90 2.01 2.81 3.44 3.57 3.74

kt-Focuss 0.45 0.67 0.81 1.07 1.23 1.59

MS-Residual 0.15 0.24 0.55 0.77 0.95 1.19

Mobile
Calendar

JD-TV 3.84 3.7 3.58 3.43 3.3 3.17

MC-BCS-SPL 1.07 1.93 2.26 3.06 3.92 4.66

kt-Focuss 0.77 1.13 2 2.63 3.23 3.97

MS-Residual 0.37 0.66 1.06 1.63 2.13 2.89

Stefan

JD-TV 4.28 4.15 4.12 4.07 3.98 3.84

MC-BCS-SPL 0.35 0.55 0.93 1.46 2.18 2.91

kt-Focuss 0.23 0.41 0.67 1.1 1.53 2.06

MS-Residual 0.16 0.21 1.06 0.55 0.98 1.15

Note: The bold values represent the highest PSNR (dB) gain achieved at specific subrate for video sequence.

The results in Table 7 clearly show that the proposed JD provides considerable gain for various
motion content video sequences at lower subrates than conventional CS-based schemes. Further, is can
also be observed that the gain decreases as the subrate increases, which is due to impact of FK subrate
as discussed earlier. In addition, the focus of the proposed scheme is to provide better reconstruction
at lower subrates.

4.7. Comparison of Proposed JD-TV with Conventional Video Compression Schemes

As discussed earlier, CS is a type of dimensionality reduction such that the signal at no time exists
in the sensor in its full dimensionality. CS is based on a simple-encoder complex-decoder archetype,
which is in contrast to the conventional video codecs. In order to use CS as a compression mechanism,
quantization and entropy coding must be coupled with CS to generate bit from the CS measurements.

In this section, the proposed JD-TV is coupled scalar quantization- adaptive differential pulse
code modulation (SQ-ADPCM) referred as SQ-ADPCM-JD to compare it with state-of-the-art video
codecs i.e., DISCOVER [27], H.264 (intra, (I-P-P)) [28] and H.263 (intra, (I-P-P)) [29]. The results shown
in Figure 7 are the average values of the frames obtained for each complete video sequence at group of
picture (GoP) = 3 and block size = 16 for all implementations.
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It can be noted from the results that the CS codec, coupled with SQ-ADPCM, performs better than
the standard video codec at various bitrates. For example, when compared with H.263 (Intra) and
H.264 (Intra), the CS codec outperforms them for all video sequences at various bitrates. For the case of
moderate content type video (Foreman, Coastguard), the CS codec performs noteworthily better than
H.263 (I-P-P) at various bitrates, while it should also be noted that the performance of the proposed
SQ-ADPCM incorporated with the JD scheme performs better than DISCOVER and H.264 (I-P-P) at
lower bitrates. As mentioned earlier, the proposed JD-TV make use of keyframes that contains larger
set of measurements (higher subrate) to improve the non-key frames with lower measurement set (low
subrates). Thus, the key frames having larger set of measurements superimposes the correlated smaller
measurements set encompass by non-key frames. This, helps to decrease the non-key frame prediction
errors, that arises due to smaller measurements set and predict a better version of non-keyframes.
Further, DISCOVER and H.264 (I-P-P) schemes use the feedback channel to improve the reconstruction
of the keyframes.

4.8. Number of Bits

The proposed JD scheme is developed with the idea of benefiting low power real-time applications
(VSNs) in terms of efficiency, data transmission and power utilization. This subsection observed the
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bit rate savings among the independent BCS-TV-AL3 and the proposed JD-TV for different video
sequences at the various reconstruction qualities (PSNR).

The results presented in Table 8 shows the reconstruction quality at different numbers of bits
for different video sequences. The results obtained can also be calculated as given in [30]. It can be
noted that the number of bits essential for conventional BCS and the proposed JD schemes to achieve
the same PSNR varies. The proposed scheme utilizes minimum number of bits as compared to the
independent BCS scheme to achieve the same PSNR i.e., for higher motion content video sequence
the average saving rate is ~42%, while for lower content video sequence the average saving rate is
~65% for all videos. This is due to the fact that the proposed JD offers improved reconstruction quality
at lower bit rates. As the proposed scheme provides better reconstruction at lower bits this helps to
reduce the computational burden from the encoder as the encoder will be transmitting small amounts
of data. On average, the number of bits saved by the proposed scheme contrary to the independent
scheme is ~50% at different reconstruction qualities.

Table 8. Analysis of the proposed JD and BCS-TV-AL3 scheme in terms of bits saved at various
reconstruction qualities (PSNR).

PSNR
Bits

BCS-TV-AL3
Bits

JD-TV
Bits

Saved
Bits

Saving (%)
Bits

Average (%)

Hall Monitor
~24.03 13068 1980 11088 84

~25.05 17424 5148 12276 72 75

~25.57 20196 7128 13068 68

Coast Guard
~23.42 12276 5940 6336 52

~24.02 14256 9108 5148 37 40

~24.53 17424 12276 5148 30

Mother Daughter
~29.37 9108 3960 5148 58

~30.20 13068 7128 5940 45 49

~31.59 17424 9908 7516 43

Calendar
~18.32 9108 3168 5940 66

~18.78 12276 5148 7128 58 58

~19.39 14256 7128 7128 50

4.9. Execution Time (Encoding/Decoding Complexity)

In this subsection, the encoding and decoding complexity (average compression and reconstruction
time) of the proposed JD-TV and other conventional video schemes i.e., DISCOVER [27], and H.264
(intra) [28] with GoP size 3 and block size 16 for various video sequences is presented. Also,
the reconstruction complexity of the proposed schemes is compared with other CS-based reconstruction
schemes. All the schemes are implemented using MATLAB (R2019a) running on a computer equipped
with an Intel® CoreTM i7-6700 CPU @ 3.4 GHz and 16 GB RAM.

The results presented in Table 9 shows that the average encoding time of the proposed JD-TV,
DISCOVER [27], and H.264 (intra) [28] ranges from 6.31 s–7.38 s, 31.05 s–60.08 s, and 62.40 s–125.45 s,
respectively. It is also observed that at higher subrates, the proposed JD-TV requires more encoding
time than lower subrates. In contrast to conventional video codecs, the proposed JD-TV codec takes
lesser time to encode the video frames i.e., for all types of video sequence (low, medium, high) the
average encoding time of the proposed JD-TV method is significantly lower than the DISCOVER and
H.264 (intra) video codecs. For example the encoding time required by JD-TV to encode the Foreman
video sequence is 6.94 s which, is 4–5 times less than DISCOVER (36.40 s) and 9–10 times less than the
H.264 (Intra) (78.50 s). A similar trend can be observed for other video sequences. Thus, this validates
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the fact that the conventional video schemes’ encoders are exposed to heavy computation burden and
are not suitable for low power real-time applications.

Table 9. Average encoding (execution) time (sec) comparison of proposed CS based JD-TV codec with
conventional video codecs (DISCOVER, H.264 (intra)) for various video sequences.

Sequence Proposed (JD-TV) DISCOVER H.264 (Intra)

Hall-Monitor 6.31 s 31.21 s 65.66 s
Mother Daughter 6.39 s 40.65 s 86.58 s
Coast-Guard 6.53 s 31.05 s 62.40 s
Foreman 6.94 s 36.40 s 78.50 s
Mobile Calendar 7.38 s 60.08 s 125.45 s

We also observed the decoding complexity (average reconstruction time) of the proposed JD-TV,
DISCOVER, and H.264 (intra). The results presented in Table 10 shows that the proposed JD-TV
requires more reconstruction time as compared to the conventional codecs, i.e., its decoder has a heavy
computational complexity when compared with DISCOVER and H.264 (intra). This validates the
fact the CS-based codecs are based on a simple encoder and complex decoder, unlike conventional
codecs (DISCOVER and H.264 (intra)). Also, it should also be noted that the results shown are a
trade-off between encoding/decoding complexity and rate-distortion performance and has a weak
comparability aspect.

Table 10. Average decoding (execution) time (sec) comparison of proposed CS based JD-TV codec with
conventional video codecs (DISCOVER, H.264 (intra)) for various video sequences.

Sequence Proposed (JD-TV) DISCOVER H.264 (Intra)

Hall-Monitor 7.21 s 1.13 s 0.60 s
Mother Daughter 7.17 s 1.11 s 0.59 s
Coast-Guard 9.22 s 1.27 s 0.75 s
Foreman 9.19 s 1.22 s 0.67 s
Mobile Calendar 9.43 s 1.27 s 0.75 s

Additionally, the average reconstruction time of the proposed JD-TV and other CS reconstruction
schemes i.e., MS-residual [12], k-t FOCUSS [13], and MC-BCS-SPL [17], is also shown in Figure 8.
Overall, the proposed JD-TV executes about 2–3 times faster than MC-BCS-SPL and kt-Focuss whereas,
the proposed JD-TV outperforms MS-residual. This reason is that the proposed scheme incorporates
BCS-TV-AL3 (less complex) for initial reconstruction and the simplified process of predicting the
non-key frames.
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5. Conclusions

In this paper, a joint decoding (JD) framework is proposed that reduces the redundancies
present between video frames at the decoder and reduces the computational burden on the encoder.
The proposed scheme makes use of an efficient registration and fusion method to generate side
information that helps in the reconstruction of final frame sequences. The simulation results are based
on different arrangements with different subrates and GoP sizes (3, 5, 8). The results show the effect of
different GoP sizes on the reconstruction quality i.e., smaller GoP = 3 provides improved reconstruction
quality compared to larger ones. The comprehensive experimental analysis proves that the proposed
JD-TV performs notably better than the independent BCS-TV-AL3 scheme at different subrates for
various video sequences having low, moderate and high motion contents. In addition, the proposed
scheme outperforms the conventional CS video reconstruction schemes at lower subrates. Further,
when compared with conventional video codecs (DISCOVER, H-263, H264) the proposed framework
shows notable performance at various bitrates. Further, the coding efficiency in terms of encoding and
decoding time of the proposed and conventional video codes are also compared.

The developed scheme can be used in real-time transport safety applications such as driver
warning systems for motorbikes or cars, or driver drowsiness detection. Similarly, it can be applied for
real-time visual patient monitoring, MRI, patient care and remote sensing.
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