
applied
sciences

Article

PreNNsem: A Heterogeneous Ensemble Learning
Framework for Vulnerability Detection in Software

Lu Wang 1,2,3,* , Xin Li 1,3, Ruiheng Wang 1,3 , Yang Xin 1,2,3,* and Mingcheng Gao 1,3

and Yulin Chen 2

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
li_xin@bupt.edu.cn (X.L.); ruiheng@bupt.edu.cn (R.W.); gmc@bupt.edu.cn (M.G.)

2 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China;
ylchen3@gzu.edu.cn

3 National Engineering Laboratory for Disaster Backup Recovery, Beijing 100876, China
* Correspondence: wltongxue@bupt.edu.cn (L.W.); yangxin@bupt.edu.cn (Y.X.)

Received: 21 October 2020; Accepted: 6 November 2020; Published: 10 November 2020
����������
�������

Abstract: Automated vulnerability detection is one of the critical issues in the realm of
software security. Existing solutions to this problem are mostly based on features that are defined
by human experts and directly lead to missed potential vulnerability. Deep learning is an effective
method for automating the extraction of vulnerability characteristics. Our paper proposes intelligent
and automated vulnerability detection while using deep representation learning and heterogeneous
ensemble learning. Firstly, we transform sample data from source code by removing segments that
are unrelated to the vulnerability in order to reduce code analysis and improve detection efficiency
in our experiments. Secondly, we represent the sample data as real vectors by pre-training on the
corpus and maintaining its semantic information. Thirdly, the vectors are fed to a deep learning
model to obtain the features of vulnerability. Lastly, we train a heterogeneous ensemble classifier.
We analyze the effectiveness and resource consumption of different network models, pre-training
methods, classifiers, and vulnerabilities separately in order to evaluate the detection method.
We also compare our approach with some well-known vulnerability detection commercial tools and
academic methods. The experimental results show that our proposed method provides improvements
in false positive rate, false negative rate, precision, recall, and F1 score.

Keywords: cyber security; vulnerability detection; word embedding; deep learning

1. Introduction

Software vulnerabilities are one of the root causes of cybersecurity issues. Despite the improving
software quality in academia and industry, new vulnerabilities have been exposed, causing huge losses.
A large number of vulnerabilities were proven by Common Vulnerabilities and Exposures [1].

Vulnerability detection is an effective method for discovering software bugs. Overall, vulnerability
detection methods can be categorized as static and dynamic methods. High coverage and low false
positives are the advantages of static methods and dynamic methods, respectively. Many studies
of source-code-based static analysis during the software development stage considered open-source
tools [2–4], commercial tools [5–7], and academic research tools [8–10] to reduce dynamic runtime costs.
Most of these tools are based on pattern matching. The pattern-based methods require experts
to manually define vulnerability features for machine learning or rule matching. In summary,
there are two significant drawbacks with the existing solutions: (1) relying on human experts and
lacking automation; (2) the high false positive rate and low recall. Both are described below.

Appl. Sci. 2020, 10, 7954; doi:10.3390/app10227954 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3388-8053
https://orcid.org/0000-0001-6833-9551
http://www.mdpi.com/2076-3417/10/22/7954?type=check_update&version=1
http://dx.doi.org/10.3390/app10227954
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7954 2 of 17

The existing solutions rely on human experts to define vulnerability features. It is difficult to
guarantee the correctness and comprehensiveness of features because of complexity, even for experts.
This is a highly subjective task, because the knowledge and experience of experts influence the results.
It follows that there cannot be a unified standard for manually extracting features. Therefore, we must
reduce or eliminate reliance on intense labor from human experts.

The existing solutions produce a high false positive rate and low recall. Most new tools detect all
possible vulnerability patterns when matching the rules, regardless of context, structure, or semantics.
As such, the detection results have low recall and a high false positive rate. Because of the fixed nature
of rule detection, errors occur when detecting the same vulnerability across projects. Although machine
learning has been applied to solve the above problems [11,12], the results are still unsatisfactory.
These problems suggest that we must achieve a low false positive rate while maintaining a high recall rate.

For the two problems that are mentioned above, the featured engineer should be the core
of the solution. Firstly, automated feature extraction will overcome the need for human labor.
Secondly, precise vulnerability features will improve the precision of the result. As an automated
feature tool, deep learning [13,14] was proposed for vulnerability detection. Applicable deep learning
models can automatically and precisely learn various low- and high-level features. However, there are
many deep-learning models, and one problem is selecting a model for achieving automation and a
lower false positive rate.

In this paper, the proposed framework, which involves pre-training for vector representation,
neural networks for automated feature extraction, and ensemble learning for classification (PreNNsem),
focuses on improving the feature engineering of vulnerability detection. To validate PreNNsem,
we applied different models of pre-training, neural networks, and ensemble learning.
Word2vec continuous bag-of-words (CBOW), multiple structural convolutional neural
networks (CNNs), and stacking classifiers were found to be the best combination by comparing
classification results. In summary, we make four contributions:

1. When compared with our prior work [15], we propose a framework for systematizing
feature extraction to automatically detect vulnerabilities based on natural language processing.
PreNNsem enables multiple kinds of deep neural networks to extract various kinds of
vulnerability features.

2. We transfer the standard language features in an extended corpus to the current model’s training
and maintain its structural and semantic information through pre-training. We evaluate trainable
and non-trainable pre-training methods in terms of detection capability and performance. It is
essential to weigh the pros and cons of different pre-training methods for specific vulnerability
detection tasks.

3. We compare different neural network models to obtain features of vulnerability, providing a
reference for future automated vulnerability detection. Improving the effectiveness of feature
extraction, we compose a parallel and sequential architecture neural network.

4. Our proposed method is more effective than the state-of-the-art methods. The experimental results
show that PreNNsem is more useful than traditional static analysis tools and state-of-the-art
vulnerability detection systems.

The remainder of this paper is structured, as follows: Section 2 reviews related work. Section 3
presents the PreNNsem framework. Section 4 describes our experimental evaluation of PreNNsem
and comparison results and Section 5 discusses problems and concludes the paper.

2. Related Work

2.1. Prior Studies Related to Vulnerability Detection

From the degree of automation, previous vulnerability detection methods can be divided
into three categories: (i) Manual methods: Many static vulnerability tools, such as Flawfinder [2],

Appl. Sci. 2020, 10, 7954 3 of 17

RATS [16], and Checkmarx [17], are based on vulnerability patterns, which are defined by human
experts. Because pattern matching depends on the rule base, the false positives and/or false
negatives are often high. (ii) Semi-automatic methods: Features are manually defined (code-churn,
complexity, coverage, dependency, and organizational [18]; code complexity, information flow,
functions, and invocations [19]; missing checks [20,21]; and, abstract syntax tree (AST) [22,23]) for
traditional machine learning, such as k-nearest neighbor and random forest. MingJian Tang et al. [24]
used artificial statistical characteristics to analyze vulnerability trends and dependencies with the
Cupra model in multivariate time series. (iii) More automatic methods: Human experts do not need to
define features. POSTER [25] presented a method for automatically learning high-level representations
of functions. VulDeePecker [13] is a system showing the feasibility of using deep learning to detect
vulnerabilities. Venkatraman S et al. [26] proposed a hybrid model by employing similarity mining
and deep learning architectures for image analysis. Vasan D et al. [27] analyzed malware images while
using a CNN in order to extract features and support vector machine (SVM) for multi-classification.

PreNNsem is an automated approach and an end-to-end vulnerability detection framework.
When compared with the manual and the semi-automatic methods, our method abandons
subjectivity. Therefore, the features obtained by our method are more persuasive and comprehensive.
POSTER extracts features from the level of the function with a coarser granularity. PreNNsem extracts
richer features directly from the word level. Compared with VulDeepecker, we have expanded the
corpus in the word embedding layer to increase the precision of semantic expression. We used
heterogeneous classifiers to improve the stability and accuracy of classification.

2.2. Prior Similar Studies

Pattern-based approach. Z. Li et al. [13] generated vectors from code gadgets using Word2vec,
like us. They used Recurrent Neural Network (RNN)-based deep learning and SoftMax for learning
classification. Liu S et al. [28] also used RNN for learning high-level representations of abstract syntax
trees (ASTs). Duan X et al. [29] extracted semantic features while using code property graph (CPG),
obtaining feature matrices by encoding the CPG. Finally, they used attention neural networks for
learning classification. Lin G et al. [30] proposed a deep-learning-based framework with the capability
of leveraging multiple heterogeneous vulnerability-relevant data sources for effectively learning latent
vulnerable programming patterns.

Similarity-based approach. Vinayakumar R et al. [31] used a Siamese network to identify the
similarity and deep learning architectures to classify the domain name. Zhao G et al. [32] encoded
code control flow and data flow into a semantic matrix. They designed a new deep learning model that
measures code functional similarity that is based on this representation. Xiao, Yang et al. [33] used a
novel program slicing to extract vulnerability and patch signatures from the vulnerability function and
its patched function at the syntactic and semantic levels. Subsequently, a target function was identified
as potentially vulnerable if it matched the vulnerability signature but did not match the patch signature.
Nair, Aravind et al. [34] examined the effectiveness of graph neural networks for estimating program
similarity by analyzing the associated control flow graphs. In [35], they built a graph representation
of programs called flow-augmented abstract syntax tree (FA-AST) and applied two different types of
graph neural networks (GNNs) on FA-AST to measure the similarity of code pairs.

When compared with any pattern-based approach, the similarity-based approach is sufficient for
detecting the same vulnerability in target programs. However, it cannot detect vulnerabilities in some
code clones, including deletion, insertion, and rearrangement of statements. PreNNsem is categorized
as a pattern-based approach to vulnerability detection. The existing pattern-based approaches have
two problems: first, the extracted information’s granularity is rough; second, the data set used to
learn vulnerability patterns is insufficient. In contrast to the studies reviewed above, PreNNsem has
two advantages: first, it directly extracts features from code granularity in order to avoid the loss of
information during feature abstraction. Second, by expanding the corpus, it can learn from common
programming patterns and improve generalization capabilities.

Appl. Sci. 2020, 10, 7954 4 of 17

3. Design of PreNNsem

3.1. Hypothesis

High-level programming languages, like C and JAVA, are designed for humans, and are
closed to human expression. They have many similarities with natural language. For example,
programming languages are probabilistic in definitions and context-dependent in grammar. Hence,
we can borrow concepts from natural language processing (NLP) for vulnerability detection.
We consider the concepts of code language and natural language as follows:

• Concepts: A slice of code—sentences, keywords, statements, characters, numbers—words.

For natural language processing, we encoded each word as a vector and each sentence as
a sequence of vectors. Therefore, distributed representations are based on an assumption;
words that occur in the same context tend to have similar meanings [36].

For vulnerability detection, we separated the code segment by tokenization and represented
as a sequence of vectors. It has the same form as NLP. Therefore, we made assumptions for
vulnerability detection.

Hypothesis 1. In a programming language, a token’s context is its preceding and succeeding tokens.
Tokens that occur in the same context tend to have similar semantics.

Hypothesis 2. The same types of vulnerabilities have similar semantic characteristics. These characteristics
can be learned from the context of vulnerabilities.

3.2. Overview of PreNNsem

We aimed to automatically detect vulnerability with feature engineering, while using PreNNsem
to achieve the goal. Figure 1 shows the process of our proposed framework, in which we take the sliced
code as the input, and the output is whether the vulnerability is detected. In this paper, an extended
corpus and sample data are transferred from C/C++ source code using security slice [13] and are
represented as a sequence of numbers called “vectorize”. Subsequently, PreNNsem needs three steps
that are related to each other. In this process, the intermediate data serve as the input to the next layer.
In the first step, pre-training uses a vectorized extended corpus to generate distributed representation,
and the output is a vector of tokens. The embedding layer takes the output as the initialization
parameter. In the second step, the sample data pass through the embedding layer. The neural network
and the SoftMax layer obtain high-level features. In the third step, supervised learning takes the
feature as the input to determine whether the sample is vulnerable.

PreNNsem

Sample
Data

Extend
Corpus

Pre-processing

Tokenization

Serialization

Pre-Training
Vector of
Tokens

Representation Learning

Non-Static Word Embedding

Deep Learning
High Level
Features

Ensemble Classifier

Detection
Results

Parameters

Models

Pre-processing

Representation Learning

Classifier Training

Transmission type

Stacking

CNN
Embedding

CNN CNN

LR MNB RF

Figure 1. Overview of the proposed PreNNsem (pre-training for vector representation, neural networks
for automated feature extraction, and ensemble learning for classification) framework.

Appl. Sci. 2020, 10, 7954 5 of 17

3.3. Source Code Pre-Processing

According to code lexical analysis, we remove some semantically irrelevant symbols (e.g., }{) in
order to improve efficiency. We divided segment code into words by spaces and symbols (e.g., +−*/=).
Deep learning models take vectors (arrays of numbers) as the input. When working with text, we had
to develop a strategy to convert strings to numbers before feeding it to the model. Firstly, we indexed
each word as a unique number. For example, we assigned 1 to “i”, 2 to “for”, 4 to “=”, 3 to “100”,
and so on. Subsequently, we encoded the sentence “for i = 100” as a dense vector like [2, 1, 4, 3].
However, different sentences have different lengths. To unify data length for model input, we defined
the max fixed-length as 400 according to sample data. There are two cases: if the sentence length is less
than 400, zero will be padded; otherwise, the excess will be removed. Note that because pre-training
requires a similar representation (Section 3.4) as embedding, extending the corpus only indexes the
words in this step.

3.4. Word Embedding Pre-Training

According to Hypothesis 1, the same vulnerability pattern has similar semantics and structure in
source code, and code representation is significant for pattern analysis. Word embeddings [37,38] are a
type of word representation that allow words with similar meaning to have a similar representation.
As such, a similar representation has the same vulnerability pattern. Vulnerability code and
non-vulnerability code can be distinguished.

In this section, word embedding is divided into random, static, and non-static [39] embedding,
according to the initialization method. Random embedding means all words are randomly
initialized and then modified during training. Static embedding means word vectors are pre-trained
from distribution representation and kept static and unchanged during training. Non-static
embedding means pre-trained vectors from Word2vec are fine-tuned for each task and trained
with a deep learning model. We used continuous bag-of-words (CBOW) to obtain densely
distributed representation.

How does CBOW work? As shown in Figure 2, CBOW is a three-layer network. Firstly, we convert
each word into a one-hot encoding form as the CBOW input. xCk represents the vectors of surrounding
words given a current word xt, where C is the number of surrounding words and k is the number of
vocabulary words. Every x is a matrix with a dimension of k× 1. Secondly, we initialize a weight
matrix Wk×d between the input layer and hidden layer. In Wk×d, d is a word vector size. In the hidden
layer, each x left multiples with W and then adds up to the average as the output hd of the hidden
layer. hd is a matrix with a dimension of d× 1

hd =
WT ·x1 + WT ·x2 + · · ·+ WT ·xC

C
(1)

Next, we initialize a weight matrix Ud×k between the hidden layer and the output layer. In the
output layer, h left multiples with U and then adds the So f tMax activation function. y and x have the
same dimensions, but each element of y represents each word’s corresponding probability distribution.

y = So f tMax(UT · h) (2)

The CBOW model is a method of learning. Finally, y is not the last result we want; the intermediate
product W is the last word vector. In our proposed method, we define surrounding words windows
C = 10 and word vector size d = 200. According to Figure 2, in CBOW, we want to predict the word of
the target location. We use the location’s surrounding words as input and then obtain the probability
distribution of vocabulary words. Finally, we select the word with the highest probability as the final
result. In this process, the weight matrix W is constantly adjusted as the final word vector matrix.

Appl. Sci. 2020, 10, 7954 6 of 17

int

main

!

args

"#$%&

'

())*+

,

One-hot
encoded

vector

Predicting position

Input layer Hidden layer

!"#! !
!

!"#! !
!

!"# !

!"# !

!"#$!

" #
$% & '()$

% & '*)+$% & ',

-
!

!

!"#$!
!

" #$%&'()*+, - ./!
!

int

main

!

args

"#$%&

())*+

0.8

0.01

0.03

0.02

0.08

0.06

Output layer

!"!
!

Figure 2. Overview of continuous bag-of-words (CBOW) models.

3.5. Representation Learning

According to Hypothesis 2, common semantic characteristics can be learned from the context
of vulnerabilities. Traditionally, the characteristics of manual definition are crucial to machine
learning classification. They transform training data and then augment them with additional features
to increase the efficacy of machine learning algorithms. However, with deep learning, we can start
with raw data, as features will be automatically created by the neural network when it learns.

In this section, we choose CNN and Long Short-Term Memory (LSTM) as the base deep
learning model. Figure 3 shows the selected deep learning model used in this study. Firstly, in order
to better learn the structure and semantics of the data, we used transfer learning to build the embedding
layer for neural networks. Secondly, we sequentially combined three concatenated CNNs and one
CNN as a network model. Thirdly, we added a one-dimensional max-pooling layer and a dropout
layer for dimension reduction.

word vectors MaxPooling

int

main

=

1

for

i

v1

v0

v2

vn

buffer

v3

v4

w3

w4

w5

w6

Concatenated

CNNs
CNN

Figure 3. Features of convolutional neural networks (CNNs).

What are the features learned by CNN? As shown in Figure 3, we represent a code segment of
length n as:

S = [v0, v1, ..., vn] (3)

Appl. Sci. 2020, 10, 7954 7 of 17

where vi is the ith word vector in the segment. A filter wh is used to extract new features combined by
the following h words. h is the size of the filter wh; ch

i represents the feature generated by combining
the ith word and the h words following it.

ch
i = f (whvi:i+h−1 + b), (4)

where f is a non-linear function, b is a bias, and:

vi:i+h−1 = vi ⊕ vi+1 ⊕ ...⊕ vi+h−1, (5)

where ⊕ is the concatenation operator. According to the filter size, there are four different types of
filters, including size three, size four, size five, and size six filters. We considered a filter in order
to generate a new feature. The larger the filter size, the richer the context of consideration. In our
experiment, we applied multiple filters to multiple features. CNN is characterized by parallelism,
and each filter is not related to each other, which improves the execution efficiency.

According to Figure 4, LSTM processes one code segment at a time, and the loop allows for
information to be passed from one step of the network to the next. This chain-like nature reveals that
the recurrent neural networks are intimately related to sequences. They are the genetic architecture of
the neural network to use for such data.

In the application of extracting sequence features, RNN can obtain more comprehensive
inter-sequence information than CNN. In theory, CNN can only consider consecutive words’
characteristics, and RNN can consider the entire sentence. However, in the experiment, the more
information stored, the longer the processing time. Even if LSTM has chosen to forget some of the
information, there is still the problem of prolonged time consumption for long sequences.

strcpy buffer data

Input layer

Hidden layer

Output layer

Sentence

Vector

T=1 T=2

T=N

!"#$"#%

&'$"#%

#()*+,#*$%

Figure 4. Features of Long Short-Term Memory (LSTM).

3.6. Heterogeneous Ensemble Learning

Recent experimental studies [40] showed that the classifier ensemble may improve the
classification performance if we combine multiple diverse classifiers that disagree with each other.
Neural network models are nonlinear and have a high variance, which can cause problems when
preparing a final model for making predictions. A solution to the high variance of neural networks is
to train multiple models and combine their predictions. Ensemble is a standard approach in applied
machine learning to ensure that the most stable and best possible prediction is made. We replaced the
simple SoftMax classifier with the stacking learning classifier to improve vulnerability classification.

According to [41], heterogeneous ensemble methods have emerged as robust, more reliable,
and accurate, intelligent techniques for solving pattern recognition problems. They use different basic
classifiers in order to generate several different hypotheses in the feature space and combine them to
achieve the most accurate result possible.

Appl. Sci. 2020, 10, 7954 8 of 17

How does the stacking framework work? Figure 5 shows the conception of the stacking
ensemble. Stacking is used to combine multiple classifiers generated using different learning algorithms
L1, · · · , LN on a training dataset S and a testing dataset S′, which consist of samples si = (xi, yi)

(xi: feature vectors, yi: classifications). Define C as a classifier. Thus,{
Ci = Li(S), i ∈ 1, · · · , N
Cmeta = Lmeta(S′)

, (6)

where Ci is the base classifiers and Cmeta is a meta classifier. In the first stage, we choose two
base algorithm, L1 = LogisticRegression and L2 = MultinomialNaiveBayesian. We divide training
data into K = 10 parts, one of which is the validation subset Sd, d ∈ 1, · · · , K. We trained Ci on S and
evaluated while using 10-fold cross-validation. For the model trained in each step d, we complete
predictions on the test set Y′. ∀i ∈ 1, · · · , N, and ∀d ∈ 1, · · · , K.

Cd
i = Li(S− Sd)

Yd
i = Cd

i (Sd)

Pd
i = Cd

i (S
′)

(7)

Stage 1

logistic

regression

(LR)

train1

train2

train3

train

test

train1

train2

train3

train1

train2

train3 train3

train2

train1Fold

Average

Multinomial

Naive

Bayesian

(MNB)

train1

train2

train3

train

test

train1

train2

train3

train1

train2

train3 train3

train2

train1Fold

Average

Stage 2

train

A1

LR

A2

MNB label

test

label

B1 B2

LR MNB

Random

Forest

Figure 5. Stacking classifier framework.

Subsequently, each Yd
i is stacked into a feature Ai. Take the average of all Pi to obtain feature Bi.{

Ai = Y1
i
⊎

Y2
i
⊎

Y3
i
⊎ · · ·⊎Yd

i
Bi = average(P1

i , P2
i , P3

i , · · · , Pd
i)

(8)

In the second stage, we concatenate Ai to form a new training data A and concatenate Bi to form
new testing data B. {

A = Ai
⊕

Ai
⊕

Ai
⊕ · · ·⊕ Ai

B = Bi
⊕

Bi
⊕

Bi
⊕ · · ·⊕ Bi

(9)

Appl. Sci. 2020, 10, 7954 9 of 17

Finally, the meta-classifier is trained on A and predict the result of B.{
Cmeta = Lmeta(A)

Result = Cmeta(B)
(10)

3.7. Construct Framework

Now, we build a vulnerability detection framework and propose an implementation.
Our proposed framework (PreNNsem) consists of distributed representation, deep learning,
and machine learning. We chose an implemented solution, Word2vec CBOW, for distributed
representation, multiple structural CNNs for deep learning, and heterogeneous ensemble classifier
(stacking) for machine learning.

We tokenize the extended corpus in order to obtain word vectors for similar code representations.
Sample data are indexed and sequenced as input to the deep learning model. Word vectors are used as
a parameter of the embedding layer. The processed sample data are embedded with neural networks
as the input to generate an automatic feature extraction model. Subsequently, features are trained by
machine learning and predict whether the samples are vulnerable or not.

4. Experiments and Results

4.1. Evaluation Metrics

Let true positive (TP) denote the number of vulnerable samples detected correctly, false positive
(FP) denote the number of normal samples detected incorrectly, false negative (FN) denote the number
of vulnerable samples undetected, and true negative (TN) denotes the number of clean samples
classified correctly. Running time and memory were considered for testing resource consumption.

We used five metrics to measure vulnerability detection results. The FP rate (FPR) metric
measures the ratio of falsely classified normal samples to all normal samples.

FalsePositiveRate(FPR) = FP/(FP + TN) (11)

False negative rate (FNR) measures the ratio of vulnerable samples classified falsely to all
vulnerable samples.

FalseNegativeRate(FNR) = FN/(FN + TP) (12)

Precision measures the correctness of the detected vulnerabilities.

Precision(P) = TP/(TP + FP) (13)

Recall represents the ability of a classifier to discover vulnerabilities from all vulnerable samples.

Recall(R) = TP/(TP + FN) (14)

The F1 measure considers both precision and recall.

F1−Measure(F1) = 2 ∗ P ∗ R/(P + R) (15)

The low FPR and FNR, and high P, R, and F1 metrics indicated the excellent performance in the
experimental results. Low resource consumption is also vital.

4.2. Experimental Setup

In terms of collection programs, the Software Assurance Reference Dataset (SARD) [42] serves as
the standard dataset to test vulnerability detection tools with software security errors, and the National
Vulnerability Database (NVD) [43] contains vulnerabilities in production software. In the SARD,

Appl. Sci. 2020, 10, 7954 10 of 17

each program case contains one or multiple common weakness enumeration Identifiers (CWE IDs).
In the NVD, each vulnerability has a unique common vulnerabilities and exposures identifier (CVE ID)
and a CWE ID to identify the vulnerability type. Therefore, we finally collected the programs with
CWE IDs that contained vulnerabilities.

We chose two types of vulnerabilities as detection object: buffer overflow (CWE-119) and
resource management error (CWE-399). We also collected some other C/C++ programs on NVD
as an extended corpus for pre-training. Table 1 summarizes statistics on training data and pre-training
data. The datasets were preliminarily processed by [13]. We collected data from the 10,440 programs
related to buffer error vulnerabilities and 7285 programs related to resource management error
vulnerabilities from the NVD; we also collected 420,627 programs as an extended corpus to improve
code representation. The extended dataset focuses on 1591 open-source C/C++ programs from the
NVD and 14,000 programs from the SARD. It includes 56,395 vulnerable samples and 364,232 samples
that are not vulnerable.

Table 1. Statistics on training data and pre-training data.

Datasets Samples Vulnerable Not Vulnerable Vocabulary

CWE-119 39,753 10,440 29,313 80,692
CWE-399 21,885 7285 14,600 37,499

Extended dataset 420,627 56,395 364,232 89,642

Regarding training programs vs. target programs, we randomly chose 80% of the programs that
were collected as training programs and 20% as target programs. This ratio is applied when dealing
with one or both types of vulnerabilities. We also used 10-fold cross-validation over the training set to
select the model and used the test set to test the obtained model.

For the deep learning model, we implemented the deep neural network in Python with Keras [44].
We ran experiments on a Google Colaboratory [45] with Nvidia K80, T4, P4, or P100 graphics processing
unit (GPU). Genism [46] Word2vec was used to train the word embedding layer. Scikit-learn [47]
provides KNeighborsClassifier, RandomForestClassifier, MultinomialNB, and LogisticRegression
algorithm as classifiers. Every experiment monitored valid F1 as a condition of early stopping in
10 epochs. Table 2 shows the parameters in the representation learning phase.

Table 2. Tuned parameters for representation learning.

Parameter Description

Input_dim The size of sample vocabulary.
Output_dim The dimensionality of vectors to which the tokens are converted (200).

Sequence_length The length of each sample (400).
CNN units There are 4 CNNs with128 filters each, and the sizes of the filters are 3, 4, 5, 6.
Batch_size The number of samples that are propagated through the network (128).

Loss function A function to calculate the loss between the predicted value and real value (binary_crossentropy).
Optimizer The algorithm to optimize the neural network (Adam)
Monitor The metric to be monitored for early stop (F1) and patience (10).

4.3. Comparison of Different Embedding Methods

We compared CBOW and Skip-gram to verify the effect of the embedding method. Different types
of tokens were selected to test the methods. Then, their embedded results were lowered to a
two-dimensional diagram, as shown in Figure 6. CBOW performed better. After embedding,
semantically similar words are closer to each other in the diagram, which means that word embedding
extracts token semantic information in the context code structure. CBOW is more accurate than the
information extracted by Skip-gram.

Appl. Sci. 2020, 10, 7954 11 of 17

Figure 6. CBOW and Skip-gram tokenization results.

4.4. Comparison of Different Neural Networks

We trained six neural network models on the CWE-119 dataset to evaluate the different
neural network models for representation learning. Note that we only indexed and sequenced
the dataset instead of vectorizing, so the training dataset is two-dimensional in this section.
The models contained: (1) three sequential CNNs with128 filters each; (2) two long short-term memory
(LSTM) layers, with a 128-dimensional output; (3) bidirectional long short-term memory (BiLSTM)
with a 128-dimensional output; (4) combined CNN (128) and BiLSTM (64× 2); (5) combined CNN,
BiLSTM, and Attention; and, (6) sequentially combine three concatenated convolutional layers and
one convolutional layer. To avoid the disappearance of gradients during RNN structural training,
in networks that use LSTM, we use sigmoid as the last dense layer activation function, which is
different from our previous papers [15]. Table 3 shows the comparison results.

Table 3. Comparison of different representation learning models. CNN, convolutional neural
networks. convolutional; BiLSTM, bidirectional long short-term memory; FPR, false positive rate; FNR,
false negative rate; P, precision; R, recall; F1, f1-score.

Models FPR (%) FNR (%) P (%) R (%) F1 (%)

Sequential CNNs 7.2 80.8 48.0 19.2 27.4
Sequential LSTM 12.2 47.5 60.2 52.5 56.1

BiLSTM 10.6 51.5 61.4 48.5 54.2
CNN + BiLSTM 8.0 72.7 54.5 27.3 36.3

CNN + BiLSTM + Attention 8.6 67.5 57.0 32.5 41.4
Concatenated CNNs + CNN 7.4 76.2 52.9 23.8 32.8

Within the margin of error, sequential CNNs and concatenated CNNs achieved the best FPR result.
Sequential LSTM has balanced performance and achieved the best results in FNR, recall, and F1. It also
has excellent precision. Of the CNNs, concatenated CNNs perform better. Therefore, we tested the
embedding layer on sequential LSTM and concatenated CNNs.

4.5. Combination of Different Embedding Methods and Different Neural Networks

According to [39], we divided the pre-training into random, static, and non-static initialization,
and then defined the vectors’ dimension as 200. Random initialization means that all words are
randomly initialized and then modified during training. Static initialization means that all words are
pre-trained from Word2vec to generate vectors and non-trainable in work. Non-static initialization
means that pre-trained vectors are fine-tuned for each work. We used the CWE-119 dataset and tested

Appl. Sci. 2020, 10, 7954 12 of 17

different pre-training methods on the sequential LSTM and concatenated CNN models. For training
the Word2vec embedding layer, we used CWE-119 as the corpus and SySeVR [48] data as the extended
corpus. In this section, we count the memory and training time of the models to compare their resource
consumption. Table 4 shows the comparison results.

Table 4. Comparison of different embedding methods on different corpora. Memory, memory consumption;
Time, time consumption.

Methods Corpus FPR (%) FNR (%) P (%) R (%) F1 (%) Memory (MB) Time (s/epoch)

CNN-random - 3.4 12.3 90.1 87.7 88.9 1675.1 15.0
CNN-static CWE-119 3.9 16.6 88.4 83.4 85.8 1671.0 9.9
CNN-non-static CWE-119 2.5 10.7 92.6 89.3 90.9 1694.1 14.9
CNN-static SySeVR 2.5 13.6 92.4 86.4 89.3 1670.9 10.1
CNN-non-static SySeVR 2.6 9.7 92.3 90.2 91.2 1673.5 15.2
LSTM-random - 2.1 12.9 93.5 87.1 90.2 1377.2 200.5
LSTM-static CWE-119 2.3 13.4 92.8 86.6 89.6 1365.6 183.4
LSTM-non-static CWE-119 1.9 9.8 94.1 90.2 92.1 1366.8 201.9
LSTM-static SySeVR 1.6 10.5 95.1 89.5 92.2 1370.4 183.6
LSTM-non-static SySeVR 2.3 10.7 93.0 89.3 91.1 1373.5 197.1

As shown in Table 4, CNN excelled in terms of FNR and recall, and LSTM excelled for FPR
and precision. However, the time consumption of LSTM was 18 times that of CNN. For both,
we obtained the following conclusions. According to the corpus, the extended corpus has better
metrics because the more words we trained, the more appropriate the obtained vector. According to
the false rate (FPR + FNR), P, R, and F1, we found that trainable embedding is better than static
embedding because the fine-tuning can be adjusted to each work. The memory of training is almost the
same, because the input sample data and the embedding size were the same. Less time was required
for static embedding because the increase in trainable parameters leads to increased training time.

In conclusion, when considering the results and efficiency, we chose non-static CNN with
extending the corpus as our final deep learning model.

4.6. Comparison of Different Classification Algorithms

Through Section 4.4, we observed that concatenated CNNs are the appropriate deep learning
model to extract features. In Table 5, we directly use traditional machine learning after the
word-embedding layer. In order to improve the classification results, we chose a different ensemble
learning model [49] to substitute the simple activation sigmoid after CNNs. We chose boosting and
bagging as our homogeneous ensemble model, including gradient boosting decision tree (GBDT)
and random forest (RF). We used stacking for generating ensembles of heterogeneous classifiers,
logistic regression (LR) and MultinomialNB (NB) as the base classifiers, and RF as the final classifier.
For comparison with ensemble classifiers, we also chose traditional classifiers, including KNeighbors
(KN), NB, and LR. Finally, Table 5 shows the comparison results.

Table 5. Comparison of different classification algorithms. ML, machine learning; KN, KNeighbors;
LR, logistic regression; NB, MultinomialNB; GBDT, gradient boosting decision tree; RF, random forest.

Methods Base Classifier FPR (%) FNR (%) P (%) R (%) F1 (%) Time (s)

Traditional ML KN 6.5 22.3 80.6 77.7 79.1 0.7
Traditional ML LR 5.6 27.1 81.9 72.9 77.1 0.7
CNNs + Traditional ML KN 3.3 6.6 90.7 93.4 93.0 0.6
CNNs + Traditional ML NB 5.6 6.1 85.4 93.9 89.5 0.1
CNNs + Traditional ML LR 2.1 7.9 93.9 92.1 92.9 0.6
CNNs + Boosting GBDT 1.6 9.1 95.5 90.7 93.0 48.8
CNNs + Bagging RF 1.6 8.8 95.8 91.2 93.1 10.7
CNNs + Stacking LR, NB, RF 1.5 8.0 95.4 91.9 93.6 13.7

Appl. Sci. 2020, 10, 7954 13 of 17

Table 5 shows that the first two lines did not use representation learning to extract features,
and the classification effect was poor. Machine learning with CNNs performed better than
traditional machine learning. We concluded that word embedding can only extract the granular
features of words. CNNs can obtain the features of code structure, not only word semantics.
Therefore, multiple granularity features help to improve the performance of the classifier.

The results of the last three lines (CNN + Ensemble) were generally better than those of lines three
to five. Although CNN + NB produced the best recall results (93.9%), its precision was worse, at 85.4%,
resulting in an F1 score of only 89.5%, which represents comprehensive performance. Low precision
leads to spending more effort and time on the wrong detection results. Therefore, ensemble learning
can further improve vulnerability detection. Of the three ensemble learnings, the stacking that was
used in this article yielded the best results because it combines multiple diverse algorithms to generate
several different hypotheses in the feature space and achieves the most accurate result possible.
Though time consumption is higher compared to traditional machine learning methods, we emphasize
the detection results for vulnerability detection tasks. Therefore, the increased time consumption is
within an acceptable range.

Above all, we selected the most appropriate implementation of PreNNsem through
our experiments; it consists of non-static pre-training with an extended corpus, concatenated CNNs
representation learning, and stacking classifier.

4.7. Ability to Detect Different Vulnerabilities

As shown in Table 6, the proposed method was applied to the six datasets. We tested our
model on the buffer overflow CWE-119 dataset and resource management error CWE-339 dataset
in order to evaluate our method’s detection ability for different types of vulnerabilities. To validate
our approach’s generalization capabilities, we selected three different types of vulnerability datasets:
Array Usage, API Function Call, and Arithmetic Expression. Each type of dataset contains multiple
CWE vulnerabilities. Array Usage (87 CWE IDs) accommodates the vulnerabilities related to arrays
(e.g., improper use of array element access, array address arithmetic, and address transfer as a
function parameter). API Function Call (106 CWE IDs) accommodates the vulnerabilities related to
library/API function calls. Arithmetic Expression (45 CWE IDs) contains the vulnerabilities that are
related to improper arithmetic expressions (e.g., integer overflow). Finally, we combined the three to
form a hybrid vulnerability dataset, Hybrid Vulnerabilities.

Table 6. Comparison of different classification algorithms.

Vulnerability Vulnerability Dataset FPR (%) FNR (%) P (%) R (%) F1 (%)

Specific CWE ID Buffer Overflow 1.5 8.0 95.4 91.9 93.6
Resource Management Error 0.3 2.2 99.5 97.7 98.6

Multiple CWE IDs

Array Usage 2.6 7.9 92.3 92.1 92.2
API Function Call 2.1 9.5 92.4 90.5 91.5

Arithmetic Expression 1.4 5.2 92.7 94.8 93.8
Hybrid Vulnerabilities 1.5 6.3 94.4 93.7 94.1

According to the results, we found that the method for detecting specific vulnerabilities
performs well. Resource management error has the best result, F1 Score, at 98.6%. Our approach
also performs well in detecting the same type of vulnerability. API Function Call has the lowest F1
score, but the result was still no less than 91.5%. The method performed better on hybrid vulnerability
datasets than on the same vulnerability datasets, because having more data can improve the model’s
indicators. In summary, our approach performs well on a variety of data sets.

Appl. Sci. 2020, 10, 7954 14 of 17

4.8. Comparative Analysis

We compared our best experimental results with those of state-of-the-art methods in order to verify
the performance of the proposed method. We chose open-source static analysis tool Flawfinder [2],
commercial static analysis tool Checkmarx [17], vulnerable code clone detection tool VUDDY [50],
and academic deep learning methods VulDeePecker [13], DeepSim [32], and VulSniper [29]. Our three
reasons for selecting these were: (1) these tools represent the state-of-the-art static analyses for
vulnerability detection; (2) they directly operate on the source code; and, (3) they were available
to us. Flawfinder and Checkmarx represent manual methods based on static analysis. VUDDY is
suitable for detecting vulnerabilities incurred by code cloning. VulDeePecker, DeepSim, and Vulsnipper
use deep learning to analyze source code. All of the results in Table 7 are based on the CWE-119
dataset. The results of Checkmarx and VulDeePecker were obtained from [13]. The results of DeepSim
and VulSniper were obtained from [29].

Table 7. Comparison of experimental results obtained using the proposed method and those using
state-of-the-art methods.

Method FPR (%) FNR (%) P (%) R (%) F1 (%)

Flawfinder 46.3 69.0 23.7 40.5 29.9
Checkmarx 43.1 41.1 39.6 58.9 47.3
VUDDY 3.5 91.3 47.0 8.7 14.7
VulDeePecker 2.9 18.0 91.7 82.0 86.6
DeepSim 16.1 41.6 71.6 58.4 64.4
VulSniper 6.42 26.2 88.7 73.8 80.6
PreNNsem 1.5 8.0 95.4 91.9 93.6

Our method outperformed the state-of-the-art methods. Because these traditional tools
depend on the rule base, they incurred high FR (FPR and FNR) and lower precision, recall,
and F1. VulDeePecker was found to be better than the other tools, with a precision of 91.7%.
However, VulDeePecker’s recall rate was low, only 82.0%, because it does not expand the corpus during
the word embedding phase. DeepSim and VulSnipper extract features from the intermediate code,
which loses some of the information. Accordingly, both precision and recall do not work well.
Our method automatically extracts vulnerability features directly from the slice source code and
does not rely on the rule library. In the word embedding phase, we expand the corpus to obtain
richer semantics. Therefore, we improved vulnerability detection capabilities. When compared to
VulDeePecker, we improved FPR by 1.4%, FNR by 10%, pPrecision by 3.7%, recall by 9.9%, and F1
by 7%.

5. Conclusions

In this paper, according to existing detection methods, we analyzed vulnerability detection’s
core problem, which is the lack of proper feature extraction. Firstly, we researched vulnerability
detection methods related to deep learning. We then presented the PreNNsem framework to detect
vulnerabilities by analyzing source code. We drew some insights that were based on the collected
dataset, including explanations for word embedding, deep learning model, and classifier comparisons
in vulnerability detection. We used six different vulnerability datasets to prove our method’s
generalization ability. Finally, we compared the results that were obtained with our method with those
of the state-of-art tools and academic methods to validate the improvement in vulnerability detection.

In terms of practicality, our summary is as follows: (i) our method performs well on various
mixed vulnerability data sets. Our method can detect various vulnerabilities. (ii) Because we
analyze the source code from the perspective of analyzing text, other high-level language source
code vulnerabilities can also use our framework. (iii) Each part of PreNNsem also supports other
methods, which proves the scalability of the framework.

Appl. Sci. 2020, 10, 7954 15 of 17

However, our method has several limitations: (i) our method only focuses on the source program,
and our framework can not be applied in executable programs. (ii) Our approach relies on
VulDeePecker’s [13] code snipping, which will be proposed and integrated into our future framework.
(iii) Although we chose several deep learning models, we need to evaluate other models. (iv) The
sample length is padded if it is shorter than the fixed length and cut off if it is longer; future works
need to investigate how to handle vectors’ varying lengths.

Author Contributions: Conceptualization, L.W. and X.L.; methodology, L.W. and X.L.; software, L.W.;
validation, L.W.; formal analysis, L.W.; investigation, L.W. and R.W.; resources, L.W.; data curation, L.W.;
writing—original draft preparation, L.W.; writing—review and editing, L.W.; visualization, L.W.; supervision,
L.W.; project administration, L.W.; funding acquisition Y.X., Y.C., and M.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Major Scientific and Technological Special Project of Guizhou Province
(20183001), the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (No. 2018BDKFJJ021),
the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (No. 2017BDKFJJ015), and the National
statistical scientific research project of China (2018LY61, 2019LY82).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. CVE. Available online: http://cve.mitre.org (accessed on 1 March 2020).
2. Flawfinder. Available online: https://dwheeler.com/flawfinder/ (accessed on 1 March 2020).
3. RIPS. Available online: http://rips-scanner.sourceforge.net (accessed on 1 March 2020).
4. Cppcheck. Available online: https://sourceforge.net/projects/cppcheck (accessed on 1 March 2020).
5. Coverity. Available online: http://www.coverity.com/index.html (accessed on 1 March 2020).
6. Fortify SCA. Available online: http://www.fortify.com/ (accessed on 1 March 2020).
7. Ounec5.0. Available online: http://www.ouncelabs.com/ (accessed on 1 March 2020).
8. Cobra. Available online: https://github.com/WhaleShark-Team/cobra (accessed on 1 March 2020).
9. mygcc. Available online: http://mygcc.free.fr (accessed on 1 March 2020).
10. Uno. Available online: http://spinroot.com/uno/ (accessed on 1 March 2020).
11. Yamaguchi, F.; Maier, A.; Gascon, H.; Rieck, K. Automatic inference of search patterns for taint- style

vulnerabilities. In Proceedings of the 36th IEEE Symposium on Security and Privacy, San Jose, CA, USA,
17–21 May 2015; pp. 797–812.

12. Pang, Y.; Xue, X.; Namin, A.S. Predicting vulnerable software components through N-gram analysis and
statistical feature selection. In Proceedings of the 14th International Conference on Machine Learning and
Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 543–548.

13. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A deep learning-based
system for vulnerability detection. In Proceedings of the 25th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA, 18–21 February 2018.

14. Zhou, Y.; Liu, S.; Siow, J.; Du, X.; Liu, Y. Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

15. Li, X.; Wang, L.; Xin, Y.; Yang, Y.; Chen, Y. Automated Vulnerability Detection in Source Code Using
Minimum Intermediate Representation Learning. Appl. Sci. 2020, 10, 1692. [CrossRef]

16. RATS. Available online: https://code.google.com/archive/p/rough-auditing-tool-for-security/ (accessed on
5 March 2020).

17. Checkmarx. Available online: https://www.checkmarx.com (accessed on 5 March 2020).
18. Zimmermann, T.; Nagappan, N.; Williams, L. Searching for a needle in a haystack: Predict- ing security

vulnerabilities for windows vista. In Proceedings of the 3rd International Conference on Software Testing,
Verification and Validation, Paris, France, 6–10 April 2010; pp. 421–428.

19. Younis, A.; Malaiya, Y.; Anderson, C.; Ray, I. To fear or not to fear that is the question: Code characteristics
of a vulnerable function with an existing exploit. In Proceedings of the CODASPY’16: 6th ACM
Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 9–11 March 2016;
ACM: New York, NY, USA, 2016; pp. 97–104.

http://cve.mitre.org
https://dwheeler.com/flawfinder/
http://rips-scanner.sourceforge.net
https://sourceforge.net/projects/cppcheck
http://www.coverity.com/index.html
http://www.fortify.com/
http://www.ouncelabs.com/
https://github.com/WhaleShark-Team/cobra
http://mygcc.free.fr
http://spinroot.com/uno/
http://dx.doi.org/10.3390/app10051692
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://www.checkmarx.com

Appl. Sci. 2020, 10, 7954 16 of 17

20. Yamaguchi, F.; Wressnegger, C.; Gascon, H.; Rieck, K. Chucky: Exposing missing checks in source code
for vulnerability discovery. In Proceedings of the CCS’13: 20th ACM SIGSAC Conference on Computer
& Communications Security, Berlin Germany, 4–8 November 2013; ACM: New York, NY, USA, 2013;
pp. 499–510.

21. Thummalapenta, S.; Xie, T. Alattin: Mining alternative patterns for detecting neglected conditions.
In Proceedings of the 24th IEEE/ACM International Conference on Automated Software Engineering,
Auckland, New Zealand, 16–20 November 2009; pp. 283–294.

22. Yamaguchi, F.; Lindner, F.; Rieck, K. Vulnerability extrapolation: Assisted discovery of vulnerabilities
using machine learning. In Proceedings of the 5th USENIX Workshop on Offensive Technologies,
San Francisco, CA, USA, 8 August 2011; USENIX Association: Berkeley, CA, USA, 2011.

23. Yamaguchi, F.; Lottmann, M.; Rieck, K. Generalized vulnerability extrapolation using abstract
syntax trees. In Proceedings of the ACSAC’12: 28th Annual Computer Security Applications Conference,
Orlando, FL, USA, 3–7 December 2012; ACM: New York, NY, USA, 2012; pp. 359–368.

24. Tang, M.; Alazab, M.; Luo, Y. Big Data for Cybersecurity: Vulnerability Disclosure Trends and Dependencies.
IEEE Trans. Big Data 2017, 5, 317–329. [CrossRef]

25. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; Xiang, Y. POSTER: Vulnerability discovery with function representation
learning from unlabeled projects. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 2539–2541.

26. Venkatraman, S.; Alazab, M.; Vinayakumar, R. A hybrid deep learning image-based analysis for effective
malware detection. Inf. Secur. Tech. Rep. 2019, 47, 377–389. [CrossRef]

27. Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-Based malware classification using ensemble
of CNN architectures (IMCEC). Comput. Secur. 2020, 92, 101748. [CrossRef]

28. Liu, S.; Lin, G.; Han, Q.L.; Wen, S.; Zhang, J.; Xiang, Y. DeepBalance: Deep-Learning and Fuzzy Oversampling
for Vulnerability Detection. IEEE Trans. Fuzzy Syst. 2020, 28, 1329–1343. [CrossRef]

29. Duan, X.; Wu, J.; Ji, S.; Rui, Z.; Luo, T.; Yang, M.; Wu, Y. VulSniper: Focus Your Attention to Shoot
Fine-Grained Vulnerabilities. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence IJCAI-19, Macao, China, 10–16 August 2019.

30. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; De Vel, O.; Montague, P.; Xiang, Y. Software Vulnerability Discovery via
Learning Multi-domain Knowledge Bases. IEEE Trans. Dependable Secur. Comput. 2019. [CrossRef]

31. Vinayakumar, R.; Alazab, M.; Srinivasan, S.; Pham, Q.V.; Padannayil, S.K.; Simran, K. A Visualized Botnet
Detection System based Deep Learning for the Internet of Things Networks of Smart Cities. IEEE Trans.
Ind. Appl. 2020, 56, 4436–4456. [CrossRef]

32. Zhao, G.; Huang, J. DeepSim: deep learning code functional similarity. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Lake Buena Vista, FL, USA, 4–9 November 2018; ACM: New York, NY, USA, 2018.

33. Xiao, Y.; Chen, B.; Yu, C.; Xu, Z.; Yuan, Z.; Li, F.; Liu, B.; Liu, Y.; Huo, W.; Zou, W.; et al. MVP:
Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures. In Proceedings of the 29th USENIX
Security Symposium, Boston, MA, USA, 12–14 August 2020.

34. Nair, A.; Roy, A.; Meinke, K. funcGNN: A Graph Neural Network Approach to Program Similarity.
In Proceedings of the ESEM ’20: 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), Bari, Italy, 5–7 October 2020. [CrossRef]

35. Wang, W.; Li, G.; Ma, B.; Xia, X.; Jin, Z. Detecting Code Clones with Graph Neural Networkand
FlowAugmented Abstract Syntax Tree. In Proceedings of the 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER), London, ON, Canada, 18–21 February 2020.

36. Pantel, P. Inducing ontological co-occurrence vectors. In Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics; Association for Computational Linguistics: Stroudsburg, PA, USA, 2005;
pp. 125–132.

37. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
arXiv 2013, arXiv:1301.3781.

38. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases
and their Compositionality. In Proceedings of the Advances in Neural Information Processing Systems
(NIPS), Stateline, NV, USA, 5–10 December 2013; pp. 3111–3119.

39. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.

http://dx.doi.org/10.1109/TBDATA.2017.2723570
http://dx.doi.org/10.1016/j.jisa.2019.06.006
http://dx.doi.org/10.1016/j.cose.2020.101748
http://dx.doi.org/10.1109/TFUZZ.2019.2958558
http://dx.doi.org/10.1109/TDSC.2019.2954088
http://dx.doi.org/10.1109/TIA.2020.2971952
http://dx.doi.org/10.1145/3382494.3410675

Appl. Sci. 2020, 10, 7954 17 of 17

40. Salunkhe, U.R.; Mali, S.N. Classifier Ensemble Design for Imbalanced Data Classification: A Hybrid
Approach. Procedia Comput. Sci. 2016, 85, 725–732. [CrossRef]

41. Tewari, S.; Dwivedi, U.D. A comparative study of heterogeneous ensemble methods for the identification of
geological lithofacies. J. Petrol. Explor. Prod. Technol. 2020, 10, 1849–1868. [CrossRef]

42. SARD. Available online: https://samate.nist.gov/index.php/SARD.html (accessed on 20 March 2020).
43. NVD. Available online: https://nvd.nist.gov/ (accessed on 20 March 2020).
44. Keras. Available online: https://github.com/fchollet/keras (accessed on 20 March 2020).
45. GoogleColaboratory. Available online: https://colab.research.google.com/notebooks/intro.ipynb (accessed on

20 March 2020).
46. Gensim. Available online: https://radimrehurek.com/gensim/ (accessed on 20 March 2020).
47. Scikit-learn. Available online: https://scikit-learn.org/stable/index.html (accessed on 20 March 2020).
48. SySeVR. Available online: https://github.com/SySeVR/SySeVR (accessed on 20 March 2020).
49. Fang, Y.; Liu, Y.; Huang, C.; Liu, L. FastEmbed: Predicting vulnerability exploitation possibility based on

ensemble machine learning algorithm. PLoS ONE 2020, 15, e0228439. [CrossRef] [PubMed]
50. VUDDY. Available online: https://github.com/squizz617/vuddy (accessed on 20 March 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2016.05.259
http://dx.doi.org/10.1007/s13202-020-00839-y
https://samate.nist.gov/index.php/SARD.html
https://nvd.nist.gov/
https://github.com/fchollet/keras
https://colab.research.google.com/notebooks/intro.ipynb
https://radimrehurek.com/gensim/
https://scikit-learn.org/stable/index.html
https://github.com/SySeVR/SySeVR
http://dx.doi.org/10.1371/journal.pone.0228439
http://www.ncbi.nlm.nih.gov/pubmed/32027693
https://github.com/squizz617/vuddy
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Prior Studies Related to Vulnerability Detection
	Prior Similar Studies

	Design of PreNNsem
	Hypothesis
	Overview of PreNNsem
	Source Code Pre-Processing
	Word Embedding Pre-Training
	Representation Learning
	Heterogeneous Ensemble Learning
	Construct Framework

	Experiments and Results
	Evaluation Metrics
	Experimental Setup
	Comparison of Different Embedding Methods
	Comparison of Different Neural Networks
	Combination of Different Embedding Methods and Different Neural Networks
	Comparison of Different Classification Algorithms
	Ability to Detect Different Vulnerabilities
	Comparative Analysis

	Conclusions
	References

