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Featured Application: This work can be used to reduce the emission of pollutants expelled by
motor vehicles in specific areas of a city.

Abstract: A new bio-inspired meta-heuristic, called the micro artificial immune system (MAIS), has been
developed in order to reduce the rates of pollution for a specific region of Mexico City through the
optimization of vehicular flow. Simulation of urban mobility (SUMO) was used to simulate the effects
of the programming of the traffic lights obtained by the MAIS. Currently, pollution and travel times
from one place to another are increasing due to the number of inhabitants that live in big cities,
which has generated a decrease in people’s quality of life. Hence, we propose the optimization of the
programming of the sequences of traffic lights through this bio-inspired meta-heuristic. The obtained
results show that the MAIS outperforms most of the algorithms tested in this research.

Keywords: traffic light; control; micro-algorithms; artificial immune system; mobility

1. Introduction

Vehicular traffic has grown exponentially, in an excessive way, in all the big cities of the world.
Developing strategies to control or at least reduce the problems associated with vehicular traffic in
large cities mainly involves solutions in two areas: the modification of infrastructure and the topology
of the city, but in many cases, this is not feasible. Hence, researchers have developed other strategies to
deal with the problem of vehicular traffic. One of these is the control of traffic lights. It has been found
that their proper programming is able to reduce congestion, improving vehicular traffic and reducing
travel times as well as the levels of pollutants emitted. Properly configuring the synchronization
of traffic light cycles to optimize vehicle flow is a problem with a non-polynomial computational
complexity. Mexico City has a unique geographical location as well as very particular orographic
conditions, such as its population of 20 million, its elevation of 2000 m above sea level, and the fact
that it lies in a valley surrounded by volcanoes, so there is only a limited possibility of modifying
the infrastructure of roads, streets, and avenues. The proper use of synchronization in traffic lights
is a viable option to support the reduction of pollutant emissions throughout the city. Therefore, it
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is necessary to use computational tools that can find good solutions to the problem in a reasonable
time. Bio-inspired computation has shown that it is capable of solving difficult problems in real-world
applications, particularly for programming traffic light cycles, see [1–6].

In recent years, efforts have been made to seek the correct management and optimization of
traffic in an automatic way without the need for human interaction. For example, the adaptive control
system proposed by McKenney [7] has better results than the fixed signal control that is traditionally
used. In Sanchez et al. [8] a three-element architecture was used: a genetic algorithm (GA) as a
non-deterministic optimization technique, cellular automata (CA) based on the traffic simulation
performed within the GA routine, and a Beowulf cluster. The simulation consists of creating many
vehicles that enter and leave the network. During the process, some of them arrive at their destination
and leave the network. The number of vehicles arriving at their destination is an indicator of the
effectiveness of the simulation and serves as a point of comparison for another cycle of particles.
A microscopic simulator is used, where the traffic is considered as a discrete collection of particles
following certain rules for their interaction. Subsequently, we sought to develop a model that had
the ability to learn and adapt actively. Through a neural network model, it is possible to perform this
task. Nagare et al. [9] used a back propagation neural network (BPNN), which analyzes the positive
and negative signals of the propagation indefinitely until the error output is reduced. However, the
prediction of the algorithm becomes ineffective when there are complex crossroads. In the cities of
Bahia Blanca, Argentina, and Malaga, Spain, Olivera et al. [10], carried out tests with hundreds of
traffic lights to optimize traffic light cycle programs through particle swarm optimization (PSO). They
used a mono-objective function based on polluting emissions to control the timing of the traffic light
signals although they did not take into account the vehicular flow for sections of heavy traffic in the
cities. Garcia-Nieto et al. [4] used a simulation of urban mobility (SUMO) to model the behavior of
vehicular flow and traffic light changes, for Malaga and Seville in Spain. As a proposal to address the
vehicular flow and the emission of pollutants, Ji proposed a system establishing a complete emission
model and also using a microscopic emission simulation platform to estimate the reduction of pollutant
emissions for the city of Changzhou in China [11]. A similar task was done by Damay to reduce
emissions and improve vehicular flow using a multi-objective genetic algorithm and a microscopic
traffic simulator optimizing the duration of the green lights in the traffic lights for a real traffic network
in the city of Rouen in France [12].

Ferrer et al. [13] proposed a validation of scenarios by checking the robustness of the traffic
programs. Tests were carried out in Malaga, Spain and a group of programs generated by four
optimization algorithms were validated: PSO for traffic lights, differential evolution for traffic lights,
random search and the SUMO cycle program generator. The tests were carried out taking into account
the following factors. (1) Climate: the types of weather considered were rainy, thunderstorm, sunny,
windy and cloudy. Weights were assigned to each of them taking into account the percentage of the
days of the year that have these conditions. (2) Number of vehicles: the number of vehicles was
established as a little or a lot. (3) Driver imperfection: this characteristic represents poor driving quality
(low, medium or high). In many traffic situations, the driver makes a difference, which is why three
levels of driving were defined. (4) Reaction time of the driver: time interval needed by the driver to
perform an action. Three levels were considered (low, medium and fast). (5) Type of vehicle: two
types of vehicles were taken into account (light and heavy). The weights were defined according to the
information about the vehicles that operate in the city.

Perez used a multi objective evolutionary algorithm (MOEA) for the optimization of traffic signal
control in the city of Montevideo in Uruguay for the programming of intelligent traffic lights with
good results [14]. MOEA algorithms were combined with a microscopic traffic model to simulate
the vehicular flow while simultaneously reducing pollutant emissions. Another approach is the one
used by Leal et al. [15], applying a predictive model with time delay used in conjunction with
differential evolution techniques and GAs in an urban simulator reproduction of a city in Belo
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Horizonte, Brazil. They achieved a 47% reduction of the delay time of the vehicles with respect
to the normal programming of the traffic systems.

A study by Vidal and Olvera [16] of two neighborhoods of cities in South America, Jacinto Vera
in Montevideo and the micro-center Posadas in Argentina (areas with very different topologies),
performed tests of the programming of traffic light cycles with the objective of minimizing the waiting
time of the vehicles and maximizing their speed. As a result, traffic flow was improved, reducing fuel
consumption and therefore the emission of pollutants. They tested five metaheuristics and concluded
that the one that produced the best results was differential evolution.

The present paper proposes a method, referred to as the micro artificial immune system algorithm
(MAIS), for the optimization of traffic cycle programming based on an artificial immune system
micro-algorithm, and analyzes it on a real urban topology in a very important avenue of Mexico City
(Avenida Insurgentes) using meta-heuristic techniques combined with simulation with the objective
of improving the vehicular flow and reducing the emission of pollutants into the environment. The
objective is to minimize the waiting time of the vehicles flowing in the network and maximize their
speed. The results obtained improve the traffic flow by reducing waiting times and increasing the
speed of the vehicles, favoring a decrease in fuel consumption and environmental pollution. The MAIS
demonstrates that it improves not only the flow of the vehicles but also reduces pollution and fuel
consumption.

Our objective is to test MAIS as an option for the efficient programming of traffic lights, and verify
whether it is equivalent to other similar algorithms and if it has some advantages. The MAIS algorithm
was designed and configured in a unique way not used before by an artificial immune system with
reduced population.

The main contributions of this paper are as follows.

1. The proposed MAIS is the first to be used in a practical problem of this kind.
2. MAIS and PSO provide the best results, better than the other tested algorithms,

namely, simulated annealing (SA), the genetic algorithm (GA), and differential evolution (DE).
3. The behavior of the MAIS is tested.
4. The reason for the improved performance of the MAIS is its reduced population and the periodical

replacement of the antibodies to introduce diversity.

The rest of this paper is organized as follows: after the Introduction, Section 2 presents the
microscopic simulator and introduces the artificial immune system. Section 3 presents the algorithms
that are the basis of the MAIS. The experimental setup and the results are presented in Section 4.
Lastly, the conclusions are given in Section 5.

2. Background

2.1. Simulation of Urban Mobility (SUMO)

SUMO is a traffic simulatorthat has been free since 2001. Its main feature is the modeling of
traffic systems, specifically road vehicles, public transport, and pedestrians. SUMO has a large
number of support tools that are responsible for finding transport routes, vehicle traffic visualization,
and calculation of pollutant emissions. One of the main advantages of the software being open source
is that it offers the opportunity to implement any algorithm to determine the programming of the
traffic lights. SUMO is not software only for traffic simulation, it also offers tools that allow analyzing
the performance of the programming implemented in the road network. As an essential part for the
simulation of SUMO, it is necessary to represent the road network through the “netgen” application,
where each of the network crossings is defined. On the other hand, it is possible to import a map of
a road network that is digital from an original map view (see Figure 1a) and the SUMO network
(see Figure 1b).
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(a) Original map view of OpenStreetMap (b) Network imported into SUMO with real world view

Figure 1. Example of converting a map in OpenStreetMap.

SUMO performs the simulation microscopically, which means that the movement of the vehicles
can be observed graphically, as well as the starting times and the paths they can take within the
network. All the characteristics of the vehicles, such as their speed and position, can be defined. As
relevant information, SUMO offers information at the end of simulation of the vehicles within the
road network. For example, if you want to obtain the global travel information, you must use the
tripinfo-output command. Additionally, SUMO allows several outputs to be generated for each of the
simulations, such as the amount of sound emitted, the pollutants generated, and fuel consumption,
among others. SUMO allows the modification of the cycles of the traffic lights, the observation of
intersections, roads, directions, and vehicles moving along their routes.

2.2. Artificial Immune System

Nunes de Castro and Von Zuben proposed and developed the clonal selection algorithm
(CLONALG) on the basis of the clonal selection theory of the immune system [17,18]. Human B-cells
and T-cells adapt in order to match and kill foreign cells. Clonal selection is based on the way in which
both of these types of cells of the immune system adapt. The algorithm is described as follows:

1. Generate randomly a set P of antibodies (candidate solutions), composed of the memory cells M
and the remaining population Pr, where P = Pr + M;

2. Select the n best antibodies Pn, based on affinity;
3. Clone these n best antibodies in proportion to their affinity using

Nc =
n

∑
i=1

round(
βN

i
) (1)

where Nc is the total number of clones generated for each of the antigens, like an objective
function, β is a multiplying factor, where n is the total number of antibodies, and round is the
operator that rounds its argument toward the closest integer. For n = 100 and β = 1, the antibody
with highest affinity will produce 100 clones; the antibody with the second highest affinity
produces 50 clones, and so on, giving rise to a temporary set of clones C;

4. Apply a hyper mutation to C. The degree of mutation is inversely proportional to the affinity.
The mutated antibodies generate the set C∗;

5. Re-select the best elements from C∗ to compose the memory set M. Some members of P can be
replaced by other improved members of C∗;

6. Replace d antibodies with new ones to introduce the concept of diversity. The probability of being
replaced is inversely proportional to the affinity of the previous remaining population Pr.
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3. Design

The fitness function is a minimization function, and we take the fitness function designed by
Ferrer et al. (see [19]), but with some changes for our particular case. The parameters to minimize of
our model within the optimization of vehicle flows are as follows:

• Emission of pollutants in the environment (Epe).
• Waiting times in the vehicular flow (W).
• The transit of one or more vehicles (V).

The decision variables used by the proposed model are continuous variables, since it yields
decimal values during the entire simulation period.

F(s) =
(Vrem(P)× trem) + (∑

V(P)
v=0 tv(P) + Wv(P) + (Epev(P))2)

V(P) + GR(P)
, (2)

where

• Vrem(P) refers to the vehicles with incomplete journeys and is proportional to the simulation time
trem. This is used to penalize the incomplete journeys during the simulation process.

• tv(P) is the travel time of a vehicle and v is the number of simulation steps.
• Wv(P) is the process that involves the number of vehicles that arrive at their destination (v).
• Epev(P) refers to the emission of polluting waste during the entire simulation process. Since our

main objective is the decrease in the emission of pollutants, we square the variable Epev(P) so
that this parameter is prioritized.

• V(P) refers to the fact that we only consider cars that make complete tours and that arrive at their
destination throughout the simulation process. Vehicles with incomplete routes and that take a
long time to move are those that emit polluting waste.

• The Cr term (see [19]) is calculated with the following equation:

GR(P) =
n

∑
i=0

Ii

∑
j=1

ϕij ×
Gij

Rij
, (3)

where Gij is the number of green traffic lights and Rij is the number of red traffic lights. ϕij is the
duration time of the sequence to change from one state to another, i is the number of traffic lights
in general, and it must always be i = 1, to avoid dividing by 0.

The equation refers to the state of the traffic lights at each instant of time in which each vehicle
must wait at a red light or continue its journey on a green light. A prolonged red light state causes
road chaos at the intersection crossing.

To reduce the computational cost in the solution of population algorithms, the use of
micro-algorithms is proposed, whose main characteristics are a drastically reduced population and a
nominal convergence. The nature of micro-algorithms is different from the standard, so the intention
is to make their performance acceptable in terms of their results and computational time. For the
same reason, in this work we present the micro artificial immune system algorithm (MAIS) as an
alternative to solve the problem of traffic light control and it is not the intention, at least for the moment,
to compare it with other mathematical methods.

Our MAIS algorithm is based on the method proposed by Goldberg in [20], who presented
experiments with different sizes of populations for GAs and showed the relation between the size
and the error levels. Later, Krishnakumar designed a binary representation micro-genetic algorithm
with a population of only 5 individuals [21]. By comparing the performance of this micro-AG against
a simple GA of 50 individuals, Krishnakumar obtained better results on single objective functions.
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Additionally he verified that the micro-GA converged faster than the simple GA. Krishnakumar
reported better and faster results for the micro-GA when tested with two static functions and two
control problems of the real world. Rahnamayan and Tizhoosh [22] developed a micro-DE and a
micro-ODE for image thresholding, where the micro-ODE outperformed the micro-DE as well as a
traditional Kittler thresholding method. Micro-algorithms have been used and have demonstrated
advantages in other hard-to-optimize problems, as in [23–25].

The MAIS proposes applying variation operators to a small population (randomly generated) to
achieve first-phase convergence. Subsequently, a new population should be generated by transferring
the best individuals of the population obtained after the convergence to the new one. The remaining
individuals are randomly generated.

This MAIS was specifically developed for the optimization of the traffic light program cycles
(traffic lights).

In Algorithm 1, ExtGen is the current generation and Max Generations is the stop criterion for
the MAIS external loop. Generation is the current generation and NominalConv is the stop criterion
for the MAIS inner loop. F is the initial population, S is the selected population, and C is the cloned
population. In addition, M denotes the cloned mutated population, R is the ranked population, and E
is for the self regulated population.

Algorithm 1 MAIS—Micro Artificial Immune System

1: function MAIS(F(x))
2: F← Start a population of five antibodies()
3: for ExtGen← 1 to ExtGen < MaxGenerations do
4: for Generation← 1 to Generation < NominalConv do
5: S← Select the n best antibodies based on ranking (F)
6: C← Clone all the antibodies (S)
7: M← Cloning mutation(C)
8: R← Selection based on ranking (M)
9: E← Replace d antibodies by novel ones (R)

10: F← SelfRegulation by eliminating remaining clones(E)
11: end for
12: E← Algorithm reset(F)
13: if Generation < NominalConv then
14: f← Create 3 new random antibodies to maintain diversity(E)
15: end if
16: end for
17: end function

The MAIS algorithm works as follows:

1. A population of five antibodies (individuals) is generated randomly (Algorithm 1, line 2). The first
generation of the population will contain these five antibodies. It is established that ten generations
will be sufficient to achieve nominal convergence. The stop criterion (MaxGenerations for the MAIS
external loop) is given as an input parameter when the algorithm is used.

2. A selection based on ranking with respect to affinity is used (Algorithm 1, line 5), where each of the
antibodies is evaluated using the objective function. In the MAIS terminology, it is called an
antigen (Ag).

3. Subsequently, the cloning of all antibodies is performed (Algorithm 1, line 6), using the
following equation:

Nc =
n

∑
i=1

(n− (i− 1)), (4)

where Nc indicates the number of clones that will be generated for each of the antibodies, n is the
total number of antibodies in the population, and i is the current antibody, starting with the one with
the highest affinity (BestAb). If a population of five antibodies is considered, a population of fifteen
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clones will be generated: the best antibody will generate five antibodies, the second best antibody
will be cloned four times, and so on, until only one clone is generated for the worst antibody.

4. Cloning mutation (Algorithm 1, line 7). The probability of mutation is set at the beginning of the
nominal convergence for each group of clones obtained from the same antibody. This probability
is proportional to the affinity of the antibody that generated the clones and will decrease in
each of the generations. In this way, the clone group of the best antibody will be less likely to
mutate than the other clone groups that were generated from the rest of the antibodies. The clone
obtained from the worst antibody will have the greatest chance of mutating.

ProbMutation(i) =
A f f (i)

∑n
i=1 A f f (i)

(5)

Here, i is the antibody that will establish the probability of mutation for the group of clones that
were generated from it and n is the total number of antibodies of the population. The following
equation is used to uniformly decrease the probability of mutation in each of the generations.

if prob ≤ ProbMutation(i)
Generation

, (6)

where, prob is randomly chosen ∈ [0, 1] and Generation is the current generation within the
nominal convergence. This value is divided by Generation because ProbMutation should not be
divided by zero. There are two operators (for the algorithm section, that will affect the clones)
that allow exploring the search space by performing modification steps of different sizes during
the mutation process. The choice of which operator to apply to the solution vector is made with a
probability of 0.5.

x′ = x± α× range×Generation
Nc

, (7)

or
x′ = x± α× range

Generation× Nc
, (8)

where x′ is the mutated variable, x is the variable to mutate, α is a random number ∈ [0, 1],
g Generation is the current generation of the nominal convergence (inner loop), and Nc is the
total number of clones. To ensure that the values are within the delimited ranges, the following
instruction is defined.

if x ≤ 5 then x ← 5

if x ≥ 60 then x ← 60

For the five clones obtained from BestAb, range ∈ [LB, UB] is a random number between the
lower limit and the upper limit of the values that the decision variable can take. For the rest of the
clones, range is any decision variable of the BestAb antibody and the position within the vector
dimension is obtained randomly.

5. Selection based on ranking. The 15 clones are sorted using ranking with respect to their affinity
(Algorithm 1, line 8), with the best clone having the best affinity. If the nominal convergence
has not been reached, the two best clones are selected and the new population is completed
with another three clones randomly selected from the clone population (Algorithm 1, line 9).
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The remaining clones will be eliminated, maintaining a population of five antibodies (Algorithm 1,
line 10).

6. Algorithm reset (Algorithm 1, lines 13–14). If the nominal convergence has been reached
(Generation = NominalConv), the best two clones will be kept and three other antibodies
will be generated randomly to be able to complete the initial population and restart the
nominal convergence (Algorithm 1, lines 4 and 11) until the external cycle meets the algorithm’s
stop condition.

4. Experiments and Results

The experimental setting was as follows. For each experiment, 700 runs were executed for each
algorithm (micro artificial immune system (MAIS), simulated annealing (SA), genetic algorithm (GA),
particle swarm optimization (PSO), and differential evolution (DE)) with a stop criterion of one million
function evaluations (FEs). Our MAIS used a population of five individuals. For the other algorithms,
the size of the population was forty. The settings used for the two functions were the same (see Table 1).
The MAIS and all other algorithms were programmed in C and compiled by using g++ -O3.

Table 1. Algorithm setting.

Algorithm Parameters Value

Population 5
Micro artificial immune system (MAIS) Clone limit 15

Selection Ranking
Mutation Based on affinity

Population 1
Simulated annealing (SA) Freezing factor 0.995

Disturb Round [−5, 5]
Disturb rate 10%

Population 40
Genetic algorithm (GA) Selection Binary tournament

Crossing type SPX
Crossing probability 100%

Population 10
Particle swarm optimization (PSO) Local coefficient 2.06

Global coefficient 2.06
Inertia 0.5

Population 40
Differential Evolution (DE) F 0.4

CR 0.85

The hardware used was a heterogeneous cluster with 16 machines using Intel Core2 Quad
processors Q9400 running at 2.66 GHz and 4 GB of memory. The cluster was administrated by a
HTCondor 8.2.1. The total computing time was 200 hours of cluster time. The initial solutions for
optimization were defined by the initial state of all the algorithms. The cluster it is located at México
City, México, and is the 3rd cluster version.

Two areas of study were taken as reference to offer a proposal as close to reality as possible.
The research was done on the Avenida Revolucion area and Avenida de los Insurgentes in Mexico City,
see Figure 2a,b. The view of the area in OSM and SUMO is shown in Figure 3. For the simulation,
15 traffic lights were considered, with 66 phases in the changes of its lights, covering 0.66 km2.
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(a) Google Maps Satellite View (b) Google Maps Map View

Figure 2. Study area, “Av. Insurgentes” Street in Mexico City.

(a) Google Maps Satellite View without labels (b) SUMO View

Figure 3. Detailed study area.

From the data obtained so far, it can be seen that the PSO (2.682) and MAIS (2.721) algorithms
obtained better results, in terms of average fitness, than the rest, but PSO has a slightly bigger standard
deviation, 0.060, compared to SA and MAIS (with 0.040).

However, it is important to note that the MAIS algorithm has the best average value after PSO,
see Table 2, consuming less resources in carrying out operations, but with almost the same time when
executing SUMO, and MAIS has a better standard deviation, meaning that it has less variation in the
results, see Table 3.

Table 2. Average results for travel metrics for both experiments.

Algorithm SA GA MAIS PSO DE

Average waiting (minutes) 1.6 2.2 1.3 1.4 1.7
Journey time (minutes) 10.6 11.2 10.3 10.4 10.7

Average distance traveled (kilometers) 3.58 3.85 3.52 3.50 3.61
Average speed (kilometers per minute) 0.337 0.343 0.341 0.336 0.337

Table 3. Average fitness value obtained by the algorithms for the first experiment set.

Number of Traffic Logics (NTL)
Number of Vehicles

100

SA GA MAIS PSO DE

66 phases 2.899 2.943 2.721 2.682 3.024
Standard dev. 0.040 0.0606 0.040 0.063 0.113
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A second experiment was carried out, where the number of tests performed on each of the
algorithms was increased. Likewise, the MAIS algorithm was modified to improve the mutation of
the clones, because there were cases where very high values were assigned to the modification in the
times of the traffic lights. There are two operators (for the algorithm section that will affect the clones)
that allow exploring the search space by performing modification steps of different sizes during the
mutation process. The choice of which of the operators to apply to the solution vector is made with a
probability of 0.5.

4.1. The Kolmogorov–Smirnov test

Once the executions were carried out, the Kolmogorov–Smirnov test was applied to define
whether there was a significant difference in the results obtained by the best two algorithms (MAIS
and PSO), see Table 4. For this test, a positive hypothesis and a negative hypothesis are defined, with
α = 0.05.

• H0: The results of the fitness function in both algorithms are the same.
• H1: The results of the fitness function in both algorithms are unequal.

Table 4. Two sample Kolmogorov–Smirnov test.

Frequency Algorithm N

Fitness 1 30
2 30

Total 60

Because the asymptotic significance is less than 0.05, H1 is proven, meaning that there are
significant differences between the results of both algorithms. Since the H1 hypothesis is accepted,
the Z-value is 2.711 concluding that the differences are large, see Table 5, so it is concluded that both
algorithms have significantly different behaviors.

Table 5. Two independent sample Kolmogorov–Smirnov test. Statistics Grouping variable: Algorithm.

Fitness

Absolute 0.700
Extreme Max. Differences Positive 0.000

Negative −0.700

Kolmogorov—Smirnov Z 2.711
Next Bilateral Asymptotic 0.000

4.2. ANOVA Single Factor Test

An analysis of variance (ANOVA) will help to verify the hypothesis that the population means are
equal. For this, the homogeneity test of variances is performed. Because the significance is greater than
0.05 (see Table 6) the assumption of variance homogeneity is met (see Table 6). The above means that
the samples used have no significant differences, so no algorithm has an advantage in the test. Once
the homogeneity assumption was validated, the single-factor ANOVA test was performed, see Table 7.
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Table 6. Homogeneity test of variances.

Levene
Based on the Statistics gl1 gl2 Sig.

Average 1.579 1 58.00 0.214
Median 1.433 1 58.00 0.236

Fitness Median and fit gl 1.433 1 57.49 0.236
Cropped average 1.577 1 58.00 0.214

Table 7. ANOVA single factor test.

Sum of Quadratic
Squares gl Mean F Sig.

Between groups 0.201 1 0.210 61.672 0.000
Within groups 0.197 58 0.003

Total 0.407 59

5. Discussion

An ANOVA will help to verify the hypothesis that the population means are equal. For this,
the homogeneity test of variances was performed. Because the significance was greater than 0.05,
the assumption of variance homogeneity was met. Once the homogeneity assumption was validated,
the single-factor ANOVA test was performed. The unifactorial ANOVA indicates that there are
differences in the results of the fitness function of the algorithms, because the value of significance is
less than 0.05.

This means that although both algorithms have seemingly similar performances, they are in
fact algorithms with statistically different behaviors and therefore can be used with different results,
see Tables 8 and 9. In this case, the proposed algorithm (MAIS) demonstrates effective behavior,
is efficient and robust, and can be used in the optimization of vehicular flow through the control of
lights, and with a slightly smaller standard deviation than the PSO algorithm.

Table 8. Average fitness value obtained by the algorithms.

Number of Traffic Logics (NTL)
Number of Vehicles

100

SA GA MAIS PSO DE

66 2.899 2.943 2.564 2.579 3.024

Table 9. Average fitness obtained in minutes.

Number of Traffic Logics (NTL)
Number of Vehicles

100

SA GA MAIS PSO DE

66 56.87 123.56 73.86 110.53 112.14

6. Conclusions

This work experimentally studied the performance of a reduced population artificial immune
system algorithm.

The simulation of a network of roads in Mexico City has been presented, where routes were added
randomly, defining the behavior of 100 vehicles, obtaining results on the average waiting and journey
times, the average distance traveled, and the average speed of the vehicles within the road network.

The optimal control of traffic lights is beneficial for minimizing travel times, thus reducing fuel
consumption and pollution emissions. Many studies have been carried out using different techniques
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for the control of traffic lights, such as meta-heuristic algorithms in conjunction with fuzzy logic,
obtaining good results for different cities (see [1,12,14,16,26]). As future research, we seek to implement
a bio-inspired meta-heuristic for a medium-size city, in order to reduce pollution rates for a specific
region through vehicle flow optimization.

The main conclusions are as follows.

1. Our proposal, MAIS, has a better global performance than the other tested algorithms,
namely simulated annealing (SA), the genetic algorithm (GA), particle swarm optimization
(PSO), and differential evolution (DE), for this particular problem.

2. By using the Kolmogorov–Smirnov test, we can say that MAIS is significantly different from the
other tested algorithms.

3. The results show that MAIS gets good results in the traffic light synchronization problem, so it
can be used, just as the other tested algorithms, and can achieve competitive results.

Our future research will test MAIS on a larger urban area. We will also test MAIS on real-life
problem applications, where its low computational cost could be a key advantage over other techniques.
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