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Abstract: The objective of this study is to design a therapeutic method combining a portable
high intensity focused ultrasound (HIFU) design which is suitable for the laboratory environment
and a tailored integrated photo-acoustic imaging (PAI) system for monitoring thermal treatment.
The electrical HIFU design is fabricated with changeable operating frequency and justified output
power for resonating with different kinds of commercial transducers. The system’s control interface
is built based on a touch screen to create a companionable interaction for users. The embedded fuzzy
logic controller using the thermal input from the thermocouple sensor precisely drives the target
temperature during HIFU exposure to achieve the expectedly coagulating results. The PAI system
with 532-nm laser excitation is also integrated to define the affected region before and after HIFU
treatment. The proposed fuzzy controller-integrated HIFU setup compatible with the PAI system is a
feasible instrument in thermal therapy for ex vivo artificial tumors management.
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1. Introduction

Among surgical techniques for treating solid tumors, high intensity focused ultrasound (HIFU)
is a promising noninvasive approach to destroy cancerous cells [1,2]. Unlike conventional radiation
therapy, HIFU can kill diseased tissues without causing collateral damage to normal surroundings [3–6].
The high-power ultrasound waves generated from the HIFU transducer are focused on a specific
region to induce thermal necrosis at the abnormal tissue position. The commercial electrical HIFU
system is used to drive the HIFU transducer output power for the sake of particular applications.

With a typical electric HIFU framework, a low power waveform signal created by the commercial
waveform generator is transmitted to the RF power amplifier which intensifies the waveform before
applying it to the HIFU transducer through an impedance matching network [7–10]. The operation
frequency of the system is modified from 1 to 5 MHz, and it is able to deliver power up to hundreds
of watts. Unfortunately, this kind of arrangement is beyond several laboratories’ budgets [11].
It requires a lot of financial effort of certain lab-based researchers to conduct a small experiment. Thus,
the motivation for this study was to create a compact, feasible system that is more cost-effective than
alternative solutions, thus prompting widespread applications of this technology.
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In thermal therapy, overheating leads to unexpected severe denaturation of tissues, leading to
organ damage; thus, temperature control is critical for HIFU treatment [12–14]. The recommended
temperature of 60 ◦C needs to be maintained at the focal point with sufficient time to coagulate the tumor
and be harmless to the tissue [15]. The thermocouple sensor is a possible solution for thermal monitoring
due to its primary benefit of rapid response time [16–18]. Several prior studies have discussed the
feasibility of fuzzy logic algorithm to weather uncertain objectives like the temperature [19–21].
With feedback from the thermocouple, a fuzzy controller is applied to the system to manipulate the
target temperature in real-time during HIFU treatment.

Additionally, for effective monitoring of the experimental study, a reliable imaging-guided method
is integrated. For clinical applications, there are two common types of image guidance: ultrasound
(US) [9,10,22,23] or magnetic resonance imaging (MRI) [14,24–26]. Guided imaging is useful for
preliminary diagnosis, treatment planning, and real-time response monitoring. However, a large
space required for setup and the costly expense charged for the system are the downsides of these
techniques. On the contrary, in the laboratory environment, another option called photoacoustic
imaging (PAI) is also used to meet the HIFU monitoring requirements. Factors influencing a successful
HIFU cancer therapy are: (i) precise positioning of the tumor region before treatment, (ii) the HIFU
beam is focused with sufficient spatial accuracy and selectivity to the region of interest (ROI), (iii) the
tissue status is monitored during treatment, and (iv) post-treatment evaluation of the tissue ablation’s
size. PAI provides the opportunity to handle all four requirements [27–30]. The vascular increase in
the tumor area leads to photoacoustic (PA) image contrast that can be utilized to locate the tumor.
Once defined, the HIFU beam is required to accurately deliver acoustic power so that it can locally
destroy the tumor without damaging the normal surrounding tissues.

This study proposes the integration of the fuzzy controller supporting the HIFU system with PAI
design. A thermal methodology using the combined structure was constructed to administer treatment for
artificial chicken breast tumors. The process has been described in detail, and the subsequent discussion
is aimed to overcome remaining limitations to be more feasible for clinical applications in the future.

2. Materials and Methods

2.1. Electrical Design of HIFU System

The first feature of this study was designing a compact electrical circuit to drive the high-power
transducer. A single element piezoelectric HIFU transducer (H-148, Sonic Concept, Woodinville,
WA, USA) with the electrical power up to 400 W was chosen for the experiment. Several essentially
designed parameters for the electrical HIFU system were defined depending on the manufacturer’s
specification of the transducer. The output signal frequency was fixed at 2 MHz to resonate with
the chosen transducer, thus resulting in the highest ultrasonic power. The dual-channel MOSFET
switching method was the primary principle to double the acoustic power of the transducer by creating
positive-negative voltage output signals [31–33].

To minimize the overall size of HIFU design, the electrical system was divided into two individual
printed circuit boards (PCB)—a power and control board as shown in Figure 1a. The 3D design
of the HIFU system with the H-148 commercial transducer is also denoted in Figure 1b. There are
several blocks belonging to the control, with the 32-bit microcontroller (PIC32MX795F512L, Microchip
Technology Inc., Austin, TX, USA) acting as the core of the whole system. In order to measure the
temperature at the focused point precisely, the 1.1-mm diameter thermocouple probe along with the
miniature K-Type panel socket (R-FMTC-K-FF, RS Pro, Kwai Chung, Hong Kong, China) was used
with the accuracy of ±1 ◦C. The temperature at the thermocouple tip was converted to the electrical
signal by 24-bit ADC (AD7739, Analog Device, Northwood, MA, USA) before being transmitted to
the microcontroller every 0.5 s through SPI communication. The acquired target temperature was
subsequently transferred to the PC through a COM port using USB UART IC (FT232RL, FTDI Ltd.,
Glasgow, UK) every 1 s, which was set by a registered timer. The waveform generation block included
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a resistor set oscillator (LTC1799, Analog Device, Northwood, MA, USA) used to create the low power
5 V-squared signal with a frequency range from 1 kHz to 33 MHz. This operating frequency could be
modified by a single digital potentiometer (MCP41100 Microchip Technology Inc., Austin, TX, USA)
whose resistance could be programmable by the microcontroller via SPI interface. For setting the
output frequency of the electrical system, the value of the corresponding resistance was calculated by
the following equation:

RSET =
10k× 10MHz

fOUT
, (1)

As mentioned above, the digital potentiometer needed to be changed to the resistance of 50 kΩ to
form the frequency of 2 MHz, and the microcontroller was programmed to transmit an amount of
the bit required. On the power board, a 2-MHz squared wave input signal with the duty cycle 50%,
which coincides with the 5 V TTL standard, was created by waveform generation block, then amplified
by a 5 V MOSFET driver (EL7158ISZ, Renesas Inc., Milpitas, CA, USA) to obtain the high power 5 V
signal. The output signal from the previous stage was then further amplified by the 12-V MOSFET
driver EL7158ISZ to generate the 12 V high power signal which is used to excite the switching event of
the MOSFET.
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Figure 1. HIFU system: (a) schematic diagram (b) 3D design.

The 100V MOSFETs (Si4590DY, Vishay Intertechnology, Malvern, PA, USA) in this model were the
dual-type, including NMOS and PMOS as two switching channels. The 12 V squared waveform signal
that came from the MOSFET driver was the single input for both of them. Fundamentally, if V_gs > 0,
NMOSFET was activated; meanwhile, the PMOSFET was enabled if V_gs < 0. When MOSFET was
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in ON-state, the current from the power supply was supplied to the input pins of MOSFET ICs,
leading to the generation of high-power output drive signal for HIFU transducer. In order to create a
bipolar squared wave (both positive and negative side) from the 12 V 2 MHz input signal to trigger
HIFU transducer to launch the maximum acoustic power (at peak-to-peak voltage), the NMOS and
PMOS channels needed to be used simultaneously. Therefore, the power supply was converted to
both positive and negative voltage to apply on the two sides of MOSFETs. The parallel structure of
MOSFETs’ output pins granting a very low output impedance which allows almost all the energy from
the power source to the HIFU transducer and achieves the maximum acoustic pressure without using
the impedance matching network [34,35].

A 5-inch LCD touch screen (NX8048T050, Nextion, Shenzhen, GD, China) was used to display
a friendly interface (Figure 2) on the surface of the product, where the user could interact with the
system through the built-in UART communication. The operating frequency was set at 2 MHz as a
default value; it could also be changed from 0.1 to 5 MHz, at 0.1-MHz increments. The electrical output
power was divided into six levels depending on the output signals, with the highest one being 50 W.
In the manual mode, when the HIFU system was activated by pressing the button “Start”, the timer
would start counting until the system was forced to stop. The user was able to set the working time in
the auto mode by increasing the timer, with a maximum period of 300 s. The acoustic signals were
continuously generated until the preset time period elapsed. In case of recording the temperature data
during the HIFU experiment, the user could press the “Record” button before the exposure and press
one more time to stop the data flow whenever needed.
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2.2. Characterization of HIFU System

The evaluation of the HIFU system was carried out in terms of electrical output voltage before
applying for the HIFU transducer. An oscilloscope (InfiniiVision MSOX2024A, Keysight Technologies,
Chandler, AZ, USA) was used to pick up the output signals from the HIFU system at a sampling
rate of 2 G/s. The acoustic pressure signals generated from the HIFU transducer were captured by a
hydrophone (0.2-mm needle, Precision Acoustics Ltd., Dorchester, UK) before being displayed on the
oscilloscope (Figure 3a). The acoustic pressure was calculated as the equation below during the HIFU
activation [36]:

I =
P2

ρc
, (2)

where I is the acoustic pressure waveform (W/cm2), P is the measured hydrophone voltage (Pa), ρ is
the water density (997 kg/m3), and c is the sound velocity (1480 m/s) in the water at 20 ◦C. To protect



Appl. Sci. 2020, 10, 7888 5 of 15

the needle hydrophone from high power pressure during the measurements, only a low voltage level
from the HIFU circuit (±9 V) was tested. A manual, three-axis stage with a spatial resolution of 0.1 µm
drives the hydrophone to detect acoustic signals to attain corresponding pressure values.

To illustrate the applicability of a certain HIFU system in the experimental environment, the thermal
effect of this system was also considered, or, in other words, the ability to heat the target sample to
a certain temperature was firmly confirmed. The chicken breast tissues (40 × 40 × 20 mm3) were
used to check the maximum temperature of our HIFU system. Figure 3b indicates how to set up the
HIFU ex vivo experiment. The HIFU transducer was delicately calibrated to focus the beam at the
2 mm away from the top surface of the chicken breast tissue. The HIFU transducer and half of the
chicken breast tissue were laid underwater during the experiment. The thermocouple was attached
under the surface of the tissue and 1 mm away from the treatment axis to avoid potential acoustic
absorption caused by the thermocouple. In addition, to observe the maximum temperature and the
temperature distribution during the experiment with the HIFU system, the IR thermal camera (FLIR i5,
FLIR Systems Inc., Portland, OR, USA) was used to capture the surface (A-A) temperature image every
10 s interval. The HIFU circuit was turned on until the focused area reached the highest temperature,
and thermal data was collected from two different sources.
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2.3. Ex Vivo Experiment with Fuzzy Logic Control

In order to maintain the target sample at a constant temperature during the HIFU treatment to
destroy the tumor, a fuzzy logic controller was applied to the microcontroller. The range of temperature
errors was acceptable at around ±4 ◦C; therefore, a “good enough” solution like the fuzzy controller fit
this requirement. With a classic feedback scheme, the exact temperature provided by the thermocouple
must then be converted into the fuzzy value that comprises the variables of the predecessor in the rule
base [37]. Likewise, the fuzzy values inferred from the rules must be transformed into commands for
use in the voltage regulator. A general fuzzy system was introduced to control the target temperature
as shown in Figure 4; the fuzzy set, fuzzy state, and the fuzzy rule are demonstrated in Table 1.

Following the datasheet of the step-down switching regulator (LT1074, Analog Devices,
Northwood, MA, USA), both positive and negative output voltage could be adjusted by changing the
resistance between switch voltage and feedback pins. By default, the output voltage was set at ±21 V
with the value of resistors at 18.8 kΩ which is connected to a parallel group of fixed potentiometers.
Each individual could be activated to change the total resistance and create the required bipolar output
voltage. The output voltages ±18 V, ±15 V, ±12 V, ±9 V, ±6 V were chosen to be the outputs of the fuzzy
logic controller corresponding to “heat fast”, “heat”, “remain”, “cool”, or “cool fast” the target sample.
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Table 1. Fuzzy set, fuzzy state and fuzzy rule of the proposed control system.

No. Fuzzy Set Fuzzy State Fuzzy Rule

1 57–58 ◦C Very cold IF (temperature is “very cold”) THEN (“heat fast” sample by ±18 V)
2 58–59 ◦C Cold IF (temperature is “cold”) THEN (“heat” sample by ±15 V)
3 59–61 ◦C Warm IF (temperature is “warm”) THEN (“remain” sample by ±12 V)
4 61–62 ◦C Hot IF (temperature is “hot”) THEN (“cool” sample by ±9 V)
5 62–63 ◦C Very hot IF (temperature is “very hot”) THEN (“cool fast” sample by ±6 V)

The chicken breast tissues were also used to check the degree of thermal damage of the proposed
HIFU design. The experimental setup was mostly the same as in the last section but this time, the focal
point of the transducer would be justified on the middle plane of the tissue. The experiment duration
was stretched to various periods of times (60, 120, 180, 240, and 300 s) for evaluating the extent of
thermal coagulation. After the treatment, each sample was removed, and a cross-section was made in
the longitudinal direction at the treated area. Later, every sample was captured by a digital camera,
and the region of treatment was defined and consciously calculated five times (N = 5) in terms of the
area in ImageJ (ImageJ 1.53a, National Institute of the Health, Bethesda, MD, USA).

2.4. Ex Vivo Experiment with PAI System

Before the experiments, bovine hemoglobin (Hb) (H3760, Sigma-Aldrich, MO, USA), and gelatin
(G-2500, Sigma-Aldrich, MO, USA) were used to mimic breast tumors [38]. First, 10 mL saline was
blended with 1 g of Hb powder and stirred at 60 ◦C for 15 min. Then, 2% gelatin was poured into the
completely dissolved Hb powder and stirred again in 10 min to achieve a uniform Hb distribution.
Next, to remove the accumulated bubbles produced in the mixing process, the prepared solution was
placed into a vacuum machine (PVH-PO-27, Labpartners, Cincinnati, OH, USA). Additionally, chicken
breast tissues with the same dimensions as described in the previous section were also prepared. Then,
a cylindrical part in the middle of tissues with an 8-mm circular diameter was removed and placed on
a petri dish. To create the tumor phantom, the Hb solutions were injected into the detached cylindrical
tissues until the sample color turned black. Then, the petri dish was stored in a refrigerator at 0 ◦C for
5 min to freeze the sample. Afterward, the developed artificial tumor was inserted back to the hole
left after rejecting the tissue earlier. Finally, the whole sample was stored again in the refrigerator for
10 min at 0 ◦C to prepare it for the experiment. With this procedure, the tumor and the normal tissue
region are completely separated so that they are visually distinguished by the PAI system and it is
much easier while conducting ex vivo experiments.

For tissue treatment and monitoring, a customized PAI module was constructed and integrated
with the HIFU system. The entire configuration of the ex-vivo experiment, including HIFU and PAI
system, is described in Figure 5a. The laser source used a pumping Q-switched diode (SPOT-10-100-532,
Elforlight, Daventry, UK) operating at 5 kHz repetition rate. The 532-nm laser output wavelength was
generated to scan the artificial tumor including Hb particles [39]. The laser beam was coupled to a 2-m
single-mode fiber (P3-460B-FC-2, Elforlight, Daventry, UK) through a fiber coupler and a half-wave
plate. The output laser of the fiber with the intensity energy under 13.3 mJ/cm2 was led in a PAI probe
before irradiating the tissue sample as demonstrated in Figure 5c. The self-made acrylic PAI probe
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was designed and delicately fabricated by the milling machine. Figure 5b illustrates the structure of
the PAI probe consisting of a focusing lens, an aluminum layer which reflects the laser beam to the
sample. PA signals induced under the laser irradiation were detected using a flat single element 75-MHz
ultrasound transducer (V2025, Olympus, Norfolk, VA, USA). A linear positioning in the z-axis direction
was justified to calibrate the focal beam of the transducer to attain the maximum PA signal amplitude.
A 2D linear stage (x-, y-axis) with 10 µm spatial resolution synchronized with the laser trigger was also
used to scan the sample for constructing a 14 × 14 mm2 2D image. The received PA signals were filtered
and amplified by two serially connected low-noise preamplifiers (ZFL-500LN, Mini-Circuit, Brooklyn,
NY, USA) and finally caught by a high-speed digitizer (NI PXI-5124, National Instruments, Austin,
TX, USA). The raw data were directly processed using Labview (Labview 2014, National Instruments,
Austin, TX, USA) to reconstruct the 2D PA image. The ROI of PA images and 3D structure according to
the color intensity of the treated area was also reconstructed in ImageJ. The photoacoustic amplitudes of
the thermally denatured areas were also measured five times (N = 5) by using ImageJ.
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2.5. Statistical Analysis

The statistical analysis, Kruskal Wallis as a nonparametric method, represents significant p < 0.05.

3. Results

3.1. Characteristic of HIFU System

Figure 6 exhibits the output waveforms created by the HIFU system at the various output voltages.
The maximum output voltage the system could generate was ±21 V while the minimum was ±6 V.
All the output waveforms had the center frequency of 2 MHz and the rising and falling time was
equal to 30 ns. There was a moderate overshoot (20%) at the moment the waveforms changed from
positive to negative and vice versa. The output signals with the symmetric positive and negative
side square waveforms had been set at a 50% duty cycle before applying to the HIFU transducer.
The acoustic pressure generated from the transducer was measured by the hydrophone at the focal
point under the ±9 V voltage level. The peak-peak amplitude of the hydrophone signal was measured
to 211 mV and the acoustic pressure was 105 mV in an electrical unit, which was equal to 2.3 MPa due
to the 45 mV/MPa sensitivity. Using Equation (2) and several physical constants as described above,
the acoustic pressure in this circumstance was 358 W/cm2. It is estimated that with the ±21 V output
waveforms, the attainable acoustic pressure could be 5.4 MPa, and thus, a maximum acoustic intensity
was possibly 1949 W/cm2 [40].
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The thermal ability of the HIFU system in the experiment with the chicken breast tissue was
conducted to discover the maximum temperature at various output voltages. The temperature
distribution at the surface of the tissue is shown in Figure 7a functioning by HIFU transducer at the
biggest output voltage of ±21 V. The transducer beam formed a circular affected region on the surface
of the tissue as the temperature rose with the time of exposure. There was a difference in the energy
transmission between metal and tissue along with the thermocouple. Therefore, the circular treated
region surrounding the thermal wire tip is slightly distorted. The tissue was heated to the highest
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temperature at 65 ◦C after 50 s of the treatment. The temperature data recorded by the thermocouple
were presented in Figure 7b also confirmed this peak. It could be noticed that the temperature at
the focused beam sharply increased in the first 20 s of the exposure time from 20.1 ◦C to 47.8 ◦C,
then enhanced to 64.9 ◦C for the rest of the treatment. There is an insignificant deviation between the
two ways of measuring then the data recorded from the thermocouple were rather reliable for the
next experiment.
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3.2. Ex Vivo Experiment Results Using Fuzzy Logic Control

By the same method as described in the last section, the maximum temperatures obtained by other
voltage outputs were also defined. These numbers are specified in the graph in Figure 8a with the
minimum and maximum values at 55.9 ± 0.3 ◦C and 64.9 ± 0.2 ◦C corresponding to the output voltages
of ±6 V and ±21 V. There are several different temperature peaks observed at 57.6 ± 0.3 ◦C, 59.9 ± 0.3 ◦C,
61.1 ± 0.2 ◦C, 63.0 ± 0.4 ◦C generated by ±9 V, ±12 V, ±15 V, ±18 V, respectively. Depending upon these
peaks and the treatment target temperature, these output voltages acted as the outputs for the fuzzy
logic control. Figure 8b shows the temperature observation graph in the entire 300 s of HIFU exposure
in the ex vivo experiment using the fuzzy control system. The fuzzy controller helped the system to
maintain a constant temperature in the target sample. Thus, the heated region is accurately located at
the tumor model and avoid damaging the surrounding normal tissues during the HIFU treatment.
The desired temperature was set to 60 ◦C and the system would actuate the HIFU transducer at the
highest output voltage ±21 V to attain this value quickly. The tissue at the focal region under acoustic
pressure was heated up to the target temperature within 40 s. Afterward, the target temperature
remained at 60 ◦C with tolerable deviations of 4 ◦C during the exposure.

The thermal coagulation cross-sectional images of chicken breast tissues at various exposure
times are shown in Figure 9b. The opalescent regions representing the treated area were marked
by the half-dash-dot line and visibly had ellipsoidal shapes due to the HIFU transducer focal beam.
The smallest denaturation area was 13.5 ± 1.7 mm2 after 60 s of treatment then linearly increased to
31.7 ± 5.1 mm2, 46.5 ± 8.8 mm2, 70.9 ± 8.0 mm2 for 120 s, 180 s, and 240 s exposure time, respectively.
The largest damaged region was 89.4 ± 9.1 mm2, produced after activating the HIFU system for 300 s,
and it was almost seven times the size of the smallest one, as described in Figure 9a. The fuzzy-assisted
HIFU system shaped a rising trend of the coagulation area as a linear fitting. Thus, the extension of the
thermal denaturation of the tissue could be anticipated.
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3.3. Ex Vivo HIFU Therapy Integrated with PAI System for the Artificial Breast Tumor Treatment

Figure 10 shows the top view of chicken breast tissue samples before and after HIFU treatment.
Due to the artificial tumor preparation process, the region of the tumor could be distinguished from
the normal tissue. The tumor area with its dark circular shape and pink surrounding tissues were
discernible with the naked eyes, as shown in Figure 10a. The pretreatment PA image in Figure 10b also
indicates the red colored area, representing the tumor region with the black background signifying
normal surrounding tissues. Figure 10c shows the tissue sample after HIFU exposure; the tumor
sample became opaque under the effect of hyperthermia. The PAI system was used to scan the
sample one more time to differentiate the thermally treated region from the untreated tissues and
is shown in Figure 10d. Using the ROI manager function of ImageJ software, the treated area was
presented as a 3D image in terms of the color scale, as shown in Figure 10f. The higher the color scale,
the stronger the PA signal resulting in a higher temperature. The HIFU transducer beam was focused
in the center of the sample; therefore, the treated area was originally initiated here and then slowly
spread to the surroundings. Figure 10e presents the significant increase of PA signal amplitude at the
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coagulated regions to 0.405 ± 0.005 while only 0.110 ± 0.001 for untreated tissue and 0.034 ± 0.002 for
the background. Given considerable dissimilarities in image contrast, the acquired PA images were
able to identify the situations of the breast tumor and the damaged tissue after the HIFU treatment.
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4. Discussion

The study demonstrates a feasible thermal treatment for breast tumors with the combination of
noninvasively fuzzy-integrated HIFU and PAI system. Compared to current methods, the proposed
approach presented an affordable HIFU design for biomedical applications and a feasible imaging
modality using laser and ultrasound to minimize the thermal injury during treatment.

The HIFU system consists of the function generator and the power amplifier was organized by
the microcontroller in a compact design. The electrical technique with very low output impedance
was employed to diminish the presence of the impedance matching circuit before applying for HIFU
transducer. The changeable operating frequency and output power were highly suitable for numerous
therapeutic applications. The indigenous control interface was also easily accessible to users.

A slight overshoot in the electrical output signals from the HIFU circuit due to the current surge
during sudden MOSFET switching event (shown in Figure 6), acceptable for functioning fuzzy logic
control. There were six different power levels produced by the HIFU system from 10 W to 50 W
corresponding to the output voltage amplitude from ±6 V to ±21 V. With higher amplitude, the HIFU
transducer generates the higher maximum target temperature. The strongest power delivered the most
energetic acoustic pressure which enables temperature rising to a threshold of 64.9 ± 0.26 ◦C within
50 s (shown in Figure 7).

With temperature feedback from the thermocouple, the closed-loop fuzzy controller was
implemented to maintain the 60 ± 4 ◦C temperature by modulating the output power during
the treatment (Figure 8b). Figure 9 indicates the thermal effect of HIFU treatment in ex vivo chicken
breast tissue, with the coagulation area linearly expanded with the exposure time. After 300 s of the
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HIFU treatment, the tissue coagulation area was 89.38 ± 9.1 mm2, which was substantially greater than
those at 60 s (13.5± 2.5 mm2). The HIFU system with fuzzy logic control was able to maintain a constant
target temperature. Present state-of-the-art studies only apply to a single preset temperature and need
to be upgraded for a set of constant temperatures to tackle the unknown upcoming demands [41,42].

Previous studies have presented that contrast agent-assisted PAI was able to optically mimic
the tumor [38]. The current study suggests a customized high-resolution PAI system guiding for
artificial tumor treatment with the HIFU system. In Figure 10b, the tumor phantoms were sensitive
with 532-mm laser wavelengths, so the PAI system could display a PA image of target regions even if
the amplitude was not so strong. The appearance of the bright regions in Figure 10d, which represents
the stronger PA signals, after the treatment process was probable evidence of the effectiveness of HIFU
therapy in ex vivo experiments with phantom models. Depending on the significant differences among
PA signals from both the untreated and treated regions, they were definitely separated, and the treated
areas were effortlessly defined.

Despite the feasibility of the proposed fuzzy-controlled HIFU-PAI combined system; this study
shows several limitations. Although the current HIFU system could deliver considerable acoustic
intensity to affect target tissues, the electrical output signal should be refined to remove the overshoot
phenomenon. The maximum acoustic intensity of H-148 HIFU transducer (46,161 W/cm2) could be
achieved if the electrical system is capable of generating a high amplitude bi-polar squared output
signal without noise. Another approach using different waveform principles such as harmonic reduced
pulse-width modulation to maximize the output power of the single element transducer [43]. A whole
new electrical design could be introduced to excite HIFU array transducer [44].

Moreover, even if the current temperature monitoring technique using the thermocouple has
a real-time response advantage, this minimally invasive method is likely still restricted by clinical
applications [45]. Additionally, the accuracy of this approach strongly varies from the relative position
of the thermocouple tip and the focal beam of the HIFU transducer [46]. The single-point tracking of
temperature is also a drawback since the observation of temperature in surrounding normal tissues
during treatment is immensely important for clinical translation [47,48]. A noninvasive temperature
monitoring method, such as using an embedded infrared camera, is a possible solution if the sensor’s
thermal feedback speed is rapid enough [49].

For effective HIFU treatment, PAI takes the guiding role as a powerful biomedical imaging
technique that provides the real-time structural information of the tissues. Currently, the potential
of the PA method is extensive in hyperthermia therapy and the proposed PAI system shows the
capacity to define the boundaries of the treated areas before and after HIFU treatment. PA ability
should be typically utilized for real-time therapeutic observations of the treated area [30]. Furthermore,
the temperature of the target sample can be directly measured from the PA amplitude. It is even
possible to create a temperature map from the mathematical model [50]. The HIFU system could able
to scan the surface area along with vertically deep inside tissues depending upon the penetration
capacity of the laser source [30,51]. Our recent study by Nguyen et al., using 650–1064 nm laser
wavelengths shows the ability of the PAI system to detect tumor phantom at 8-mm depth, producing a
3D PA image of the tumor region [52]. Moreover, the PAI technique shows the potential to examine
the tumor microenvironment, which has been increasingly considered as a leading tool for cancer
treatment [53–55]. Lastly, for the translation to clinical applications, besides the HIFU acoustic output
power justification, the PAI-guided system needs to be improved to the 3D real-time PAI guidance and
the target temperature should also be interpolated from the PAI system.

5. Conclusions

The integration of fuzzy-HIFU design with customized PAI system demonstrates a feasible
thermal therapy for ex vivo tumor treatment. The proposed electrical system, using a single DC adapter
power supply independently, works with HIFU transducer to deliver the amount of robust acoustic
pressure. The incorporated fuzzy logic control provides assistance to handle the temperature feedback
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to manage the thermal coagulation. The fabricated PAI system is a feasible noninvasive guiding tool to
monitor the treated region’s growth. Further developments based on improvements of both the HIFU
design for higher power capacity and the PAI system for real-time monitoring will be pursued to meet
the requirements of the clinical therapy.
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