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Abstract: Jet pump efficiency heavily relies on the geometrical parameters of the pump design
and parameter global optimization in the full variable space is still a big challenge. This paper
proposed a global optimization method for annular jet pump design combining computational fluid
dynamics (CFD) simulation, the Kriging approximate model and experimental data. The suction
angle, the flow ratio, the diffusion angle, and the area ratio are selected as the design variables for
optimization. The optimal space filling design (OSF) method is used to generate sampling points
from the design space of the four design variables. The optimization method solves the constrained
optimization problem with a given head ratio by building the functional relationship established
by the Kriging model between efficiency and design parameters, which makes the method more
applicable. The design result shows that the annular jet pump efficiency is predicted well by the
Kriging model; m is a key variable affecting the annular jet pump efficiency. As the area ratio
m decreases, the mixing effect at the suction chamber outlet can be improved, but the frictional
resistance increases.
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1. Introduction

No moving parts is the advantage of the annular jet pump and the second fluid flows along
a straight line to minimize the losses on walls. Therefore, it is particularly suitable for pumping
mixed fluids with large amounts of solid particles (ore, live fish, capsules, industrial waste, etc.) [1–3].
In applied fields such as submarine trenching and dredging, due to the annular jet pump high
vacuum and the self-priming performance, it also has great development prospects. The annular jet
pump structure is shown in Figure 1. This hydraulic equipment works on the base of Venturi effect.
The primary fluid jets into the throat from the annular nozzle with high speed. Due to the viscous
effect between the jet and the air, the air near the nozzle is taken away to form a vacuum. Under the
action of external atmospheric pressure, the secondary fluid along the suction chamber is pumped
up and mixed up with the high velocity primary fluid in the throat. The longer the throat, the better
the mixing effect of the two fluids, but the greater friction head loss. The fluid mixing is basically
implemented as the two fluids have the same velocity at the throat end.
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Figure 1. Structural schematic drawing of annular jet pump. 

A group of researchers studied the flow mechanism, property and structure optimization 
method of annular jet pumps. Shimizu [4] studied the annular jet pump structural parameters and 
its performance with or without swirling working fluid. Kwon [5] studied the effect of the suction 
chamber angle on the annular jet pump property using two-dimensional computational fluid 
dynamics (CFD) simulation. By comparing the simulation data with the experimental data, it could 
be concluded that the simulation accuracy of re-normalization group (RNG) k–ε model is higher than 
that of standard k–ε model. Long [6] used the realizable k–ε model to numerically study the internal 
flow of the annular jet pump and found that the longer the throat was, the better the mixing effect 
was. However, too long a throat would cause considerable friction loss. Yang and Long [7] used 
simulation techniques to study the mixing process of annular nozzles with different structures, and 
improved the jet pump critical back pressure and entrainment rate by adopting specially shaped 
nozzles. Lyu [8] used the design of experiments (DOE) method to analyze two-factor’s reciprocal 
action and single factor effects on its performance and the annular jet pump flow properties. This was 
done in order to obtain the corresponding optimum in structural parameters space and the annular 
jet pump structure performance envelope with different area ratios. Deng [9] conducted a numerical 
study on the internal flow characteristics of conventional and improved annular jet pumps, and 
concluded that the improved annular water pumping performance was improved by about 10%. Xiao 
[10] used numerical methods to study the occurrence and development of cavitation of annular jet 
pumps with different flow ratios q, and verified the results through experiments. The results showed 
that when q > 0.2, the cavitation at the inlet of the throat played an important role in the efficiency of 
the pump. Xu [11] conducted a large eddy simulation of the annular jet pump flow characteristics 
and studied the jet pump internal flow field mechanism by time average and instantaneous analysis. 
The results show that the axial component of turbulence mainly occurs in the near wall area of the 
mixing layer and diffuser. Zou [12] numerically studied the influence of different installation 
methods on the jet pump property and concluded that the jet pump was more efficiently installed 
vertically. 

CFD techniques were used in most of these studies. They supplemented the deficiencies of 
experimental research through effective simulation of real flow, and thereby provided more detailed 
and comprehensive information than experiments, at a lower cost. However, because the CFD model 
was a large and complex computer program, the analysis of complex flow required a lot of time to 
obtain a good numerical solution. This usually led to a heavy computation load, requiring hours or 
even days of calculation. In addition, the traditional method required a continuous trial and error 
process to reach a good result. This is because using CFD technology to enhance the annular jet pump 
hydraulic performance relies on the designer’s engineering experience. Further, the results were 
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A group of researchers studied the flow mechanism, property and structure optimization method of
annular jet pumps. Shimizu [4] studied the annular jet pump structural parameters and its performance
with or without swirling working fluid. Kwon [5] studied the effect of the suction chamber angle on
the annular jet pump property using two-dimensional computational fluid dynamics (CFD) simulation.
By comparing the simulation data with the experimental data, it could be concluded that the simulation
accuracy of re-normalization group (RNG) k–εmodel is higher than that of standard k–εmodel. Long [6]
used the realizable k–εmodel to numerically study the internal flow of the annular jet pump and found
that the longer the throat was, the better the mixing effect was. However, too long a throat would
cause considerable friction loss. Yang and Long [7] used simulation techniques to study the mixing
process of annular nozzles with different structures, and improved the jet pump critical back pressure
and entrainment rate by adopting specially shaped nozzles. Lyu [8] used the design of experiments
(DOE) method to analyze two-factor’s reciprocal action and single factor effects on its performance
and the annular jet pump flow properties. This was done in order to obtain the corresponding
optimum in structural parameters space and the annular jet pump structure performance envelope
with different area ratios. Deng [9] conducted a numerical study on the internal flow characteristics
of conventional and improved annular jet pumps, and concluded that the improved annular water
pumping performance was improved by about 10%. Xiao [10] used numerical methods to study the
occurrence and development of cavitation of annular jet pumps with different flow ratios q, and verified
the results through experiments. The results showed that when q > 0.2, the cavitation at the inlet of
the throat played an important role in the efficiency of the pump. Xu [11] conducted a large eddy
simulation of the annular jet pump flow characteristics and studied the jet pump internal flow field
mechanism by time average and instantaneous analysis. The results show that the axial component of
turbulence mainly occurs in the near wall area of the mixing layer and diffuser. Zou [12] numerically
studied the influence of different installation methods on the jet pump property and concluded that
the jet pump was more efficiently installed vertically.

CFD techniques were used in most of these studies. They supplemented the deficiencies of
experimental research through effective simulation of real flow, and thereby provided more detailed
and comprehensive information than experiments, at a lower cost. However, because the CFD model
was a large and complex computer program, the analysis of complex flow required a lot of time to obtain
a good numerical solution. This usually led to a heavy computation load, requiring hours or even
days of calculation. In addition, the traditional method required a continuous trial and error process to
reach a good result. This is because using CFD technology to enhance the annular jet pump hydraulic
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performance relies on the designer’s engineering experience. Further, the results were scattered
“points” rather than “lines” or “surfaces”, so the design space cannot be comprehensively analyzed.

In recent years, various optimization methods [4,6–8] were proposed with CFD to improve
the performance of hydraulic machinery. Among them, the approximate model was a method of
approximating the mapping function of design parameters and objective parameters by constructing a
metal model. Compared with other optimization methods, the approximate model-based optimization
method took the advantage of low calculation cost and can study properties of the response function
more effectively. Furthermore, the value of head ratio, h, needs to meet the special demand of
the project in the engineering application of jet pump. However, the traditional design means it
is difficult to handle the annular jet pump optimization problem with a given h. Barthelemy [13]
reviewed the application of approximate models in structural optimization. In addition, approximate
models were widely used in multi-objective optimization as well, such as the response surface
method [14,15], artificial neural network [16,17] and radial basis function [18,19]. Zhang [20] proposed
a multi-objective optimization method combining experiment and Kriging model which had both
local and global statistical characteristics and could analyze and predict the trend of the known
information. This method was suitable for the optimization of centrifugal pumps. The optimization
results were basically consistent with the experimental results. Safikhani [21] proposed a multi-objective
optimization method for centrifugal pumps, using a genetic algorithm based on a neural network
to solve Pareto optimal solution. Zhao [22] obtained the pareto optimal front of low specific speed
centrifugal pump efficiency and cavitation safety margin based on the back-propagating neural
network model.

In this paper, the optimization method based on the modified method of feasible directions
(MMFD) is used to obtain the maximum efficiency of 34.15% which is closer to the global optimal
solution based on an approximate model and to solve the constrained optimization problem with a
given head ratio by building the functional relationship between efficiency and design parameters,
which makes the method more applicable.

2. The Performance Function of the Jet Pump

The effect of turbulent mixing is influenced by the jet pump structure parameters which determines
the jet pump performance. Dimensionless parameters, efficiency η and pressure ratio h, are introduced
to study the jet pump performance. Their equations are:
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Qp
(3)

V, z, g, γ, Q, p and q are the sectional average velocity, the sectional average velocity, the positional
water head, the gravitational acceleration, the unit weight, the volume flow rate, the static pressure
and the flow ratio, respectively. Footnotes o, s and p are the mixture fluid at the outlet, the secondary
fluid at the inlet and the primary fluid at the inlet, respectively.

In addition, the area ratio m is also introduced:

m =
As

Ap
(4)

In this equation, A is the nozzle outlet area.
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3. CFD Modeling and Verification

In this section, the CFD model is created and the simulation results are compared with the
experiment results to verify the simulation. On the basis of the simulation method the parameters are
optimized in the next section.

3.1. CFD Model

The annular jet pump calculation domain is shown in Figure 2. According to the existing research
results [4], the initial model parameters are w = 4 mm, r = 21.5 mm, t = 2 mm, r0 = 27.5 mm, rt = 38 mm,
α = 18◦, Lt = 179 mm, β = 5.8◦, m = 2.27. The sum of w, t and r equals r0 in the optimization process.
The wall thickness of suction pipe, t, is constant. Sheha [23] studied the performance over a large
range of design parameters of jet pumps by a 2D simulation model. The result showed that the
two-dimensional model still well simulated the flow field characteristics and jet pump performance
of the actual model, ignoring the velocity in the z direction. Therefore, the 2D axisymmetric model
was adopted in order to reduce the calculation cost. In the analysis and optimization of the jet pump,
the suction angle α, the diffusion angle β and the area ratio m among the structural parameters—as
shown in the Figure 2—plus the flow ratio q, are determined as the design variables.
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The annular jet pump internal flow mechanism is complicated. The assumptions are made in
CFD simulation for studying the jet pump:

(1) the mixing process is considered as a steady and incompressible state;
(2) the heat transfer of the external environment and the fluid medium is ignored;
(3) the solid wall is considered smooth;
(4) the buoyancy effect is ignored.

The continuity and momentum equations are listed as, because of these assumptions:

∂(ρui)

∂xi
= 0 (5)

∂
(
ρu jui

)
∂x j

=
∂
∂x j

[
µ
∂ui
∂x j
− ρuiu j

]
−
∂p
∂xi

(6)

where Reynolds stresses are

− ρuiu j = µt

[
∂ui
∂x j

+
∂u j

∂xi

]
−

2
3
ρkδi j (7)

In these equations, ui is velocity component, xi is space coordinate, δ is boundary layer thickness,
µ is dynamic viscosity, µt is turbulent viscosity, and k is turbulence kinetic energy.

Due to the jet pump internal flow complexity, it is necessary for ensuring the simulation accuracy
to choose the appropriate turbulence model. The existing research [24] shows that standard wall
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function and the realizable k–ε model can accurately simulate annular jet pump flow details and
calculate the performance index.

The realizable k–ε model [25] has advantages in simulating flow field details compared with the
standard k–ε mode, such as vortices, and rotation. The modified transport equations for k and ε in the
realizable k–ε model are:

∂(ρk)
∂t +

∂(ρku j)
∂x j

= ∂
∂x j

[(
µ+ ∂ui

σk

)
∂(k)
∂x j

]
+Gk + Gb − ρε−YM + Sk

(8)
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= ∂
∂x j

[(
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∂ε
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]
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−ρC2
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√
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+ C1ε

ε
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(9)

where
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[
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η
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]
, η = S

k
ε

, S =
√

2Si jSi j (10)

In these equations, S is strain rate magnitude, Gk represents the generation of turbulence kinetic
energy due to the mean velocity gradients. Gb is the generation of turbulence kinetic energy due to
buoyancy. Ym represents the contribution of the fluctuating dilatation in compressible turbulence to
the overall dissipation rate. C2 and Cε are constants. σk and σε are the turbulent Prandtl numbers for k
and ε, respectively. Sk and Sε are user-defined source terms.

The eddy viscosity is:

µt = ρCµ
k2

ε
(11)

Compared with the standard k–ε model, Cµ is no longer a constant in the realizable k–ε model
and its formula is as follows:

Cµ =
1

A0 + AS
kU∗
ε

(12)

and
U∗ ≡

√
Si jSi j + Ω̃i jΩ̃i j

Ω̃i j = Ωi j − 2εi jkωk
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√
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(√
6W

)
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Si jS jkSki

S̃3
, S̃ =

√
Si jSi j, Si j =

1
2

(
∂u j
∂xi

+ ∂ui
∂x j

) (13)

where Ωi j is the mean rate-of-rotation tensor. It can be concluded that Cµ is a function of the mean
strain and rotation rates, the angular velocity of the system rotation, and the turbulence fields.

All fluids in the computational domain are water in this study. The grids of all the models are 2D
unstructured grids and created by MESH. The mesh at the suction chamber inlet is refined. Velocity
inlet boundary conditions are adopted for all fluid inlets. Turbulence specification method is given
by turbulent intensity and hydraulic diameter. The outlet is set as outflow. All annular jet pump
CFD simulations are conducted by the ANSYS Fluent R18.0 (Houston, PA, USA) which uses the finite
volume method as a numerical solution technique. The pressure and velocity coupling method adopted
the semi-implicit method for pressure linked equations (SIMPLE) algorithm with the pressure-based
solver. The spatial discretization of the convection terms selected the second order upwind scheme.

All simulations are performed in parallel on a computer with an Inter Core (TM) i5-9400 CPU
(6 processor, each with a clock speed of 2.9 GHz). The number of complete convergence iterations is
3000, and the computation time is 30 min per case. The contingent conditions in the CFD process are
controlled to achieve strict consistency to ensure the reliability of the computation results. When the
iteration converges, global scaled residuals for continuity and momentum equations drop to 10−6.
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3.2. Verification of CFD Simulation

For verifying the reliability of the selected CFD model and algorithm used for further research
on the annular jet pump, the simulation results are checked by the experiment data [4]. In this
experiment, driving water pumped by a centrifugal pump flows into the chamber via the flow
measuring orifice. The suction pipe included an electronic flowmeter. Pp, Ps and Po are measured by
mercury manometers. The performance of many pumps with different configurations is investigated
for different jet quantities, while the suction height is kept constant. The model parameters are shown in
the initial model. The comparison is as shown in Figure 3. It can be seen in Figure 3 that the numerical
calculation results in this paper are in good agreement with the experimental data. The model selected
in this paper accurately and reliably calculates the performance of the annular jet pump.
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4. Hybrid Algorithm and Optimization Process

4.1. Optimization Algorithm Design

This paper proposes a hybrid algorithm for solving the global optimal solution. The algorithm
selects the optimal space filling design (OSF) [26] experimental design method to obtain the global
optimal point in the nonlinear optimization space, and adopts MMFD [27] to search and optimize
the local in detail based on the Kriging approximate model [28]. Figure 4 is the hybrid algorithm
optimization flow chart. The primary flow can be summarized as follows:

1. In the design space, the space-filling sample points are generated by OSF.
2. According to the sampling point, the CFD software Fluent is used to simulate the model with

different structural parameters. Based on numerical simulation, the annular jet pump efficiency
is evaluated.

3. The Kriging approximate model is constructed by determining the type and parameters of the
regression model. The structural parameters of the annular jet pump obtained at the sampling
point in step one are input variables, and the efficiency η of the jet pump obtained in step two is
the output variable.

4. The Kriging approximate model constructed in step three is checked by analyzing the errors of
the simulated values and the predicted values: if the error meets the requirements, transfer to
step five; otherwise, transfer to step three and continue to update the Kriging model.

5. Based on the Kriging approximate model, the MMFD is used to obtain the structural parameters
optimal solution in the annular jet pump;

6. According to the design parameters of the optimal solution, a physical prototype is generated.
Then the CFD simulation and optimization results of the physical prototype are verified with
each other.
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4.2. Sampling Method

OSF is improved from Latin hypercube sampling algorithm (LHS). OSF improves the randomness
of LHS so that all test points in the design space are distributed as uniformly as possible to assure a
good space-filling and uniformity. Therefore, OSF is better to reflect the mapping information between
the factors and the response, which makes the fitting more accurate with the minimum trials.

Figure 5a shows the sampling points distribution randomly obtained by Latin hypercube,
and Figure 5b shows that the sampling points distribution uniformly generated by OSF. It can be seen
that LHS lacks sample points in the upper right corner and cannot reflect the relationship between the
factor and the response in this area. The use of OSF makes the sample points more uniform in the
entire design space.

Rather than traditional algorithms, such as response surface methodology (RSM), central composite
design (CCD), and factorial design, OSF is more suitable for computer-based deterministic meta models
because of this advantage. This study generated sample points by OSF in the design space, ensuring
the accuracy of the approximate model.
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4.3. Approximate Model

The Kriging model is widely used in predicting spatially and temporally related data. It was
originally used in geostatistics which is an interdisciplinary field of statistics, mathematics, geology,
engineering and mining. Due to its stochastic assumption, the Kriging approximation is superior to
traditional RSM in high dimensional nonlinear problems and high precision prediction [29]. The Kriging
model is described by:

y(x) = f (x) + Z(x) (14)

where y(x) is the unknown response function, f (x) is a known polynomial function of x called the trend,
and Z(x) is a stochastic process with nonzero covariance, variance σ2, and mean zero. The term of
f (x) in the equation is similar to the polynomial model in a response surface, serving as a “global”
model of the design space. In many cases, f (x) is taken to be a constant term β0. When f (x) “globally”
approximates the design space, Z(x) localized deviation, so the Kriging approximate model interpolates
the sampling data points. The covariance matrix of Z(x) that represents the local deviations is:

Cov
[
Z(xi), Z

(
x j

)]
= σ2R

([
R
(
xi, x j

)])
(15)

where R is the correlation matrix, and R(xi, xj) is the correlation function between any two of the ns

sampled data points xi and xj. R is a [ns × ns] symmetric, positive definite matrix with ones along the
diagonal. Many different correlation functions are available for the Kriging model, such as the linear
correlation function, exponential correlation function and Matern Cubic correlation function. However,
the Gauss correlation function is more popular in Kriging metamodels. The Gaussian correlation
model is used in this paper, defined as:

R(θ,ω, x) = exp

− n∑
j=1

θ j
(
ω j − x j

)2
 (16)

where ωj and xj represent the jth component of sample points ω and x, respectively, θj is the unknown
correlation parameters used to fit the model and n is the dimension of the design variable.
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Once the correlation function has been selected and the best θj estimated, the Kriging model can
be used to predict the response y (x) at an untried location x using:

ŷ(x) = β̂+ rT(x)R−1
(
Y − f β̂

)
(17)

where, ŷ(x) is the vector of estimated response values at each sample point, β̂ is a constant, rT(x) is the
vector of correlation values between the untried location x and the sample data points, and f is the
vector with values of the trend function evaluated at each sample point.

β̂ can be calculated as

β̂ =
(

f TR−1 f
)−1

f TR−1Y (18)

The estimate of the variance is

σ̂2 =
1
ns

(
Y − f β̂

)T
R−1

(
Y − f β̂

)
(19)

After selecting the form of the regression model and the correlation function, the correlation
matrix R, the unknown parameter β0, and σ2 depend on the correlation parameter θ. Therefore,
the Kriging metamodel can only be fully established after determining the value of θ. Maximum
likelihood estimation (MLE) is a commonly used method for calculating related parameter values.
This optimization can be translated into an unconstrained global optimization, as follows: Minimize

{
ψ(θ) = σ

(
θ2

)
|Rθ|

1
ns

}
Subjectto θ > 0

(20)

4.4. Objectives and Constraints

The optimization of the jet pump in this study is a single objective optimization. In this paper,
the limits applied to the optimization problem are based on reference [4]. The objective function is
defined as:

Maximize η = f (α, β, m, q) (21)

Subject to: 
1.68 ≤ m ≤ 7.18
0.35 ≤ q ≤ 0.8
18◦ ≤ α ≤ 60◦

4◦ ≤ β ≤ 10◦

(22)

MMFD is a gradient optimization method which can solve optimizations with real variables.
This method can quickly obtain the local optimal solution around the initial design point. It is very
suitable for highly nonlinear design spaces. Therefore, the MMFD method is used in the study.

5. Results and Discussion

5.1. Results of Experimental Design

The structural parameters of 80 sample points are listed in Table 1. Figure 6 shows the distribution
of 80 samples. The best sample point is No. 52 (α = 27.74◦, β = 4.76◦, q = 0.4354, m = 1.84),
and the corresponding jet pump efficiency is 0.332047. This sample point serves as the initial value
of optimization.
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Table 1. Design parameters and efficiency of DOE sample points.

q m α (◦) β (◦)

0.5835 4.256 20.22 9.164
0.7259 1.789 30.54 7.646
0.538 2.454 18.84 8.178

0.4013 4.078 20.5 8.936
0.3899 4.876 20.22 9.164

. . . . . . . . . . . .
0.8 3.616 39.44 4.912

0.7146 5.675 18 5.518
0.4525 2.779 35.26 6.43
0.6405 2.347 39.72 6.354
0.4924 2.417 21.06 4.456
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5.2. Approximate Model and Verification

The design variables of 80 sample points generated by the OSF and the corresponding CFD
simulation results are used as inputs and outputs to establish a Kriging approximate model. Specifically,
the parameters α, β, m and q of the jet pump are design parameters, and the corresponding efficiency η
is the output variable. Table 2 lists the parameters of the Kriging model. The model parameters are
composed of β0, σ and θ, where β is the regression model parameter and the others are the correlation
model parameters. Figure 7 shows the degree of fitting between the predicted value of the objective
function and the simulated value of CFD. On the diagonal, the predicted value is equal to the CFD
value. It can be seen that all the points distribute about the diagonal.

Table 2. The Kriging model parameters.

Parameter Value

β0 −0.0747
σ 0.06742
θ (1.2707 1.201 0.5417 0.2051)
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5.3. Response Surface Analysis 

Kriging response surfaces are shown in Figure 8 to visualize the relationship between efficiency 
and various factors, where the efficiency η can reach a maximum of 33.89%. By comparing Figure 8a–
c it can be seen that with the increase in the suction angle α, the efficiency curve of the jet pump is 
similar to a parabola; the efficiency reaches the maximum value with α = 26.6°, and the minimum 
values at boundaries (limits) of α. Comparing Figure 8a,d,e with the increase in the diffusion angle β, 
the jet pump efficiency curve approximates parabola as well; the efficiency reaches the maximum 
value with β = 4.12°, and the minimum value at the boundaries of β. Comparing Figure 8b,d,f it can 
be found that when the area ratio, m, increases, the efficiency of the jet pump increases first and then 
decreases by an S-curve trend; the efficiency reaches the maximum value with m = 2.11, and the 
minimum at the boundaries of m. Comparing Figure 8c,e,f when the flow ratio increases, the jet pump 
efficiency curve approximates a parabola and fluctuates (Figure 8e); the efficiency reaches the 
maximum with q = 0.6, and the minimum value at the boundaries of q, Figure 8c,e or at medium value 
of q, Figure 8f. 

Figure 7. Error analysis of Kriging model.

For the sake of further verifying the Kriging modeling accuracy, a statistical measure of objective
function, correlation coefficient is introduced for evaluating the approximate degree. The correlation
coefficient R2 is defined as follows:

R2 = 1−

n∑
i=1

(yi −Y)2

n∑
i=1

(yi − y)2
(23)

The closer R2 is to one, the better the fitting is. After calculation, R2 is 0.9459.

5.3. Response Surface Analysis

Kriging response surfaces are shown in Figure 8 to visualize the relationship between efficiency
and various factors, where the efficiency η can reach a maximum of 33.89%. By comparing Figure 8a–c
it can be seen that with the increase in the suction angle α, the efficiency curve of the jet pump is similar
to a parabola; the efficiency reaches the maximum value with α = 26.6◦, and the minimum values at
boundaries (limits) of α. Comparing Figure 8a,d,e with the increase in the diffusion angle β, the jet
pump efficiency curve approximates parabola as well; the efficiency reaches the maximum value with
β = 4.12◦, and the minimum value at the boundaries of β. Comparing Figure 8b,d,f it can be found that
when the area ratio, m, increases, the efficiency of the jet pump increases first and then decreases by
an S-curve trend; the efficiency reaches the maximum value with m = 2.11, and the minimum at the
boundaries of m. Comparing Figure 8c,e,f when the flow ratio increases, the jet pump efficiency curve
approximates a parabola and fluctuates (Figure 8e); the efficiency reaches the maximum with q = 0.6,
and the minimum value at the boundaries of q, Figure 8c,e or at medium value of q, Figure 8f.

The peak efficiency does exist in the combination of parameters predicted by the approximate
model. The optimal combination is: α = 26.6◦, β = 4.12◦, m = 2.11, q = 0.6. The efficiency calculated
by CFD under this condition is 34.15%. The predicted value of the optimization algorithm is in good
agreement with the value calculated by CFD.
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5.4. The Effect of m on Jet Pump

It can be concluded from the response surface analysis that m is very important for improving the
efficiency of jet pumps. There have been many studies on other parameters rather than m. Figure 9
shows streamlines from the suction chamber to the inlet of the throat with different area ratios m = 1.15,
2.11, 4, 7.18 with α = 26.6◦, β = 4.12◦, and q = 0.6. A symmetrical vortex structure appears near the axis
from the end of suction chamber to the inlet of throat at m = 7.18. This pair of vortices leads to the
increase in friction resistance. Figure 10 shows the axial velocity profile of the throat inlet in order to
further study this phenomenon.

As shown in Figure 10, the jet expands towards the center in the suction chamber. As m decreases,
the jet expands deeper into the suction chamber. When the area ratio is 7.18, the jet fails to extend to
the center and forms a back flow zone at the center. The smaller the area ratio is, the better the mixing
effect of the jet at the outlet of the suction chamber is.

Figure 11 shows the annular jet pump velocity distribution with the above four area ratios.
The velocity gradient of the high-speed jet and the sucked second fluid in the suction chamber is
relatively big, and the degree of mixing of the two fluids is low. Because the jet expands unilaterally,
the jet velocity is high in the suction chamber near the side wall of the throat, and the velocity gradient
is big. As the area ratio decreases, the energy loss of the jet increases in the suction chamber and the
throat. Therefore, a low area ratio leads to a small inlet of primary fluid and high friction resistance
and reduces the efficiency of the annular jet pump.
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6. Conclusions

In this paper, an optimization method based on the Kriging model and MMFD is used to obtain
the maximum efficiency which is closer to the global optimal solution and to solve the constrained
optimization problem with a given head ratio by building the functional relationship between efficiency
and design parameters, which makes the method more applicable. The CFD simulation scheme is
created and verified with experiment data, which ensures the reliability of the simulation results.
Based on the sampling points generated by the OSF method, a Kriging approximate model is established,
and the accuracy of the Kriging approximate model is verified by CFD simulation results. To the end,
the parameters of the annular jet pump are optimized with the MMFD algorithm.
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According to the results above, the following conclusions can be drawn:

(1) The R2 of the Kriging approximate model constructed based on OSF sampling method is more
than 0.9, so the proposed modeling method meets the accuracy requirements.

(2) The optimal efficiency of the annular jet pump is 33.89% predicted in optimization and 34.15% by
simulation with the combination of pump parameters: α = 26.6◦, β = 4.12◦, m = 2.11, q = 0.6.

(3) The area ratio m is a key parameter affecting the efficiency of the jet pump, and an analysis of
the flow field and performance with different m was performed. By decreasing the area ratio,
m, the jet mixing effect at the outlet of the suction chamber can be improved, but leads to the
frictional resistance increase. In this case the optimal value of m is 2.11.
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