
applied
sciences

Article

Abstracting Strings for Model Checking of
C Programs

Henrich Lauko 1,*, Martina Olliaro 1,2,*, Agostino Cortesi 2 and Petr Roc̆kai 1

1 Faculty of Informatics, Masaryk University, Botanickà 68A, 60200 Brno, Czech Republic; xrockai@fi.muni.cz
2 Scientific Campus, Ca’ Foscari University of Venice, Via Torino 155, Mestre, 30172 Venice, Italy;

cortesi@unive.it
* Correspondence: xlauko@mail.muni.cz (H.L.); martina.olliaro@unive.it (M.O.)

Received: 30 September 2020; Accepted: 2 November 2020; Published: 5 November 2020 ����������
�������

Abstract: Data type abstraction plays a crucial role in software verification. In this paper, we introduce
a domain for abstracting strings in the C programming language, where strings are managed as
null-terminated arrays of characters. The new domain M-String is parametrized on an index (bound)
domain and a character domain. By means of these different constituent domains, M-Strings captures
shape information on the array structure as well as value information on the characters occurring in
the string. By tuning these two parameters, M-String can be easily tailored for specific verification
tasks, balancing precision against complexity. The concrete and the abstract semantics of basic
operations on strings are carefully formalized, and soundness proofs are fully detailed. Moreover,
for a selection of functions contained in the standard C library, we provide the semantics for character
access and update, enabling an automatic lifting of arbitrary string-manipulating code into our new
domain. An implementation of abstract operations is provided within a tool that automatically lifts
existing programs into the M-String domain along with an explicit-state model checker. The accuracy
of the proposed domain is experimentally evaluated on real-case test programs, showing that M-String
can efficiently detect real-world bugs as well as to prove that program does not contain them after
they are fixed.

Keywords: string analysis; model checking; abstract interpretation; abstract domain

1. Introduction

C is still one of the mainly used programming languages [1], and a large portion of systems of
critical relevance are written in this language, such as server-side software and embedded systems.
Unfortunately, C programs suffer of bugs, due to the way they are laid out in memory, which malicious
parties may exploit to drive security attacks. Ensuring the correctness of such software is of great
concern. Our main interest is guaranteeing the correctness of C programs that manage strings,
because the incorrect string manipulation may lead to several catastrophic events, ranging from
loss or exposure of sensitive data to crashes in critical software components.

Strings in C are not a basic data type. As a matter of facts, strings in C are represented by
zero-terminated arrays of characters and there are libraries that provide functions which allow
operating on them [2]. C programs that manipulate strings can suffer from buffer overflows and
related issues due to the possible discrepancy between the size of the string and the size of the array
(buffer). A buffer overflow is a bug that affects C code when a buffer is accessed out of its bounds.
In particular, an out-of-bounds write is a particular (and very dangerous) case of buffer overflow.
Out-of-bounds read is less critical as a bug. It is important to design methods supporting the automatic
correctness verification of string management in C programs for the previously mentioned reasons and
also because buffer overflows are usually exploitable and can easily lead to arbitrary code execution [3].

Appl. Sci. 2020, 10, 7853; doi:10.3390/app10217853 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5422-5884
http://dx.doi.org/10.3390/app10217853
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7853?type=check_update&version=2

Appl. Sci. 2020, 10, 7853 2 of 33

Existing bugs can be identified by enhancing tools for code analysis, which can also reduce the risk of
introducing new bugs and limit the occurrence of costly security incidents.

1.1. Paper Contribution

This paper is a revised and extended version of [4,5]. We introduce M-String, a new abstract
domain tailored for the analysis of strings in C, whose elements:

• approximate sets of C character arrays;
• allow the abstraction of both shape information on the array structure and value information on

the contained characters;
• highlight the presence of well-formed strings in the approximated character arrays.

M-String refines the segmentation approach to array representation introduced in [6]. M-String’s
goal is to detect the presence of common string management errors that may lead to undefined
behaviours or, more specifically, which may result in buffer overflows. Moreover, keeping track of the
content of the characters occurring after the first null character allows us to reduce the number
of false positives. In fact, rewriting the first null character in the array is not always an error,
as further occurrences of the null character may follow. M-String, such as the array segmentation-based
representation introduced in [6], is parametric in two ways: both with respect to the representation of
the indices of the array and with respect to the abstraction of the element values.

To provide evidence of the effectiveness of M-String, we extend LART [7], a tool which performs
automatic abstraction on programs, making it supporting also sophisticated (non-scalar) domains such
as M-String.

We extend LART along with DIVINE 4 [8], an explicit state model checker based on LLVM. This way,
we can verify the correctness of operations on strings in C programs automatically. The experimental
evaluation is performed by analyzing several C programs, ranging from quite simple to moderately
complex, including parsers generated by bison, a tool which translates context-free grammars into
C parsers. The results show the actual impact of an ad-hoc segmentation-based abstract domain on
model checking of C programs.

1.2. Paper Structure

In the following Section 2 we give basics in abstract interpretation and we introduce the array
segmentation abstract domain [6] on which M-String is based. Furthermore, Section 3 introduces
the syntax of some operations of interest. Section 4 defines the concrete domain and semantics.
Section 5 presents the M-String abstract domain for C character arrays and its semantics, whose
soundness is formally proved. In the Section 6, we present a general approach to abstraction as a
program transformation and extend it to abstraction of program strings. Sections 7 and 8 present
implementation and evaluation details of M-String abstraction. In Section 9 we discuss related work.
Finally, Section 10 concludes.

2. Prerequisites

We assume the reader is familiar with order theory.

2.1. Abstract Interpretation

Abstract Interpretation [9,10] is a theory about sound approximation or abstraction of semantics of
computer programs, focusing on some run-time properties of interest. Formally, the concrete semantics
is based on a concrete domain D. Likewise, the abstract semantics is based on an abstract domain D.
Both the concrete and the abstract domains form a complete lattice, such that: (D,≤D,⊥D,>D,tD,uD)
and (D,≤D ⊥D,>D,tD,uD). Please note that we use the same notation interchangeably to denote a
domain and its set of elements. The concrete and the abstract domains are related by a pair of monotonic

Appl. Sci. 2020, 10, 7853 3 of 33

functions: the concretization γD : D→ D and the abstraction αD : D→ D functions. In order to obtain
a sound analysis, αD and γD have to form a Galois Connection (GC) [11]. (αD,γD) is a GC if and only
if for every d ∈ D and d ∈ D we have that d ≤D γD(d) ⇔ αD(d) ≤D d. Notice that, one function
univocally identifies the other. Consequently, we can infer a Galois Connection by proving that γD

is a complete meet morphism (resp. αD is a complete join morphism) (Proposition 7 of [12]). Please
note that these conditions can be relaxed, performing abstract interpretation over non-lattice abstract
domains [12]. Abstract domains that do not respect the Ascending Chain Condition (ACC) need to be
equipped with a widening ∇D and a narrowing D operator, in order to get fast convergence and to
improve the accuracy of the resulting analysis, respectively [13]. An abstract domain functor D is a
function from the parameter abstract domains D1, D2, ..., Dn to a new abstract domain D(D1, D2, ..., Dn).
The abstract domain functor D(D1, D2, ..., Dn) composes abstract domain properties of the parameter
abstract domains to build a new class of abstract properties and operations [6].

2.2. Fun Array

In the following we recall the array segmentation analysis presented in [6]. Notice that we slightly
modified the notation to be consistent with the whole work. For more details, we invite the reader to
refer directly to the original paper.

2.2.1. Array Concrete Semantics

Let Ra be the set of concrete array environments. A concrete array environment θ ∈ Ra maps
array variables a ∈ A to their values θ(a) ∈ A, such that:

• θ(a) = (ρ, lowa, higha, Aa) and,
• θ(a) ∈ A = Rv ×E×E× (Z→ (Z×V))

where

1. Rv is the set of concrete variable environments. A concrete variable environment ρ ∈ Rv maps
variables (of basic types) x ∈ X to their values ρ(x) ∈ V.

2. E is the set of program expressions made up of constants, variables, mathematical unary
and binary operators. In the following, for simplicity, expressions are evaluated to integers.
lowa, higha ∈ E are expressions whose value, given by [[lowa]]ρ and [[higha]]ρ, respectively
represents the lower bound and the upper bound of an array a, i.e., the lower and the upper
bound of its indexes range. According to the denotational semantics approach, in [6] the value of
an arithmetic expression e is denoted by [[e]]ρ, where: (1) the double square brackets notation
denotes the semantic evaluation function and, (2) ρ is an environment mapping program variables
(which also may appear in e) to their value. Typically, [[x]]ρ is equivalent to ρ(x), with x ∈ X,
and [[n]]ρ, where n is a constant, is equivalent to n itself. Thus, for example, if e is the expression
x – 1, its semantics [[x – 1]]ρ is defined as [[x]]ρ – [[1]]ρ, which corresponds to ρ(x) – 1. Notice that the
value of an upper bound of an array concrete value corresponds to the index immediately after
the one that points to the last memory block allocated to the array when it has been initialized.
As usual, array indexes are 0-based.

3. Z is the set of integer numbers and V is the set of values. Let Ia be the set of indexes i of an array
a, i.e., Ia = {i | i ∈ [[[lowa]]ρ, [[higha]]ρ)} ⊆ Z and, let Pa be the set of pairs (i, v) such that v is the
value of the element indexed by i in an array a, i.e., Pa = {(i, v) | i ∈ Ia ∧ [[a[i]]]ρ = v ∈ V} ⊆ Z×V.
Thus, Aa : Ia → Pa is a function mapping the indexes of an array a to their corresponding pairs
(index, indexed array value).

Example 1. Let a be a C integer array initialized as follows: a[5] = {5,7,9,11,13}. The concrete value of a
is given by the tuple θ(a) = (ρ, 0, 5, Aa), where the value of the lower and the upper bound of a are clear from the
context and the codomain of the function Aa is the set Pa = {(0, 5), (1, 7), (2, 9), (3, 11), (4, 13)}. Moreover, let b

Appl. Sci. 2020, 10, 7853 4 of 33

denote the sub-array of a from position 2 to 3 included, its concrete value is given by θ(b) = (ρ, 2, 4, Ab) such
that Pb = {(2, 9), (3, 11)}.

Observe that this array representation allows reasoning about the correspondence between shape
components of an array and actual values of the array elements.

2.2.2. Array Segmentation Abstract Domain Functor

According to [6], the FunArray abstract domain S (shortcut for S(B, A, R)) allows representing
a sequence of consecutive, non-overlapping and possibly empty segments that over-approximate
a set of concrete array values in P(A), i.e., the powerset of A. Each segment represents a sub-array
whose elements share the same property (e.g., being positive integer values) and is surrounded by the
so-called segment bounds, i.e., abstractions on its lower and upper bound.

Example 2. Consider the integer array a[5] = {5,7,9,10,12}. As an abstraction of a we may consider
{0} odd {3} even {5} saying that the array contains odd numbers in the first three elements (indexed from 0 to
2) and two even elements (indexed from 3 to 4).

The elements of FunArray belong to the set S = {(B×A)× (B×A× { ,?})k × (B× { ,?}) | k >
0}∪ {⊥S}, which have the form b1p1b2[?2]p2...pn–1bn[?n] where

1. B is the segment bound abstract domain, approximating array indexes, with abstract properties
bi ∈ B such that i ∈ [1, n] and n > 1.

We denote by E the set of expressions of canonical form x+ k, where x ∈ X and k ∈ Z. The segment
bounds bi are sets of expressions {e1

i , ..., em
i }, such that ej

i ∈ E. The variable abstract domain
X encodes program variables, i.e., X = X ∪ {v0}, where v0 is a special variable whose value is
assumed to be zero. Moreover, bi = ∅ denotes unreachability; if bi 6= ∅, the expressions appearing
in a segment bound are all equivalent symbolic denotations of some concrete value (generally
unknown in the abstract representation except when one of the ej

i is a constant). Thus, B depends
on the expression abstract domain E which, in turn, depends on the variable abstract domain X.

2. A is the array element abstract domain, with abstract properties pi ∈ A. It denotes possible
values of pairs (index, indexed array element) in a segment, for relational abstractions,
array elements otherwise.

3. R is the variable environment abstract domain, which depends on the variable abstract domain
X, with abstract properties ρ ∈ R.

4. the question mark, if present, expresses the possibility that the segment that precedes it may
be empty. The question mark can never precede b1. The space symbol in { , ?} represents a
non-empty segment.

Example 3. Let A be the classical sign abstraction of numerical values. The segmentation abstract predicate
{0} + {3}? – {5} represents arrays of length 5, with either 0 or 3 positive elements followed by either 5 or 2 negative
elements, respectively. For instance, it represents: [7, 9, 10, –11, –9], [6, 8, 5, –4, –2] and [–2, –6, –3, –1, –4, –8].
Please note that in the last case, the lack of positive values is justified by the presence of the question mark that
says that the first segment is optional.

Two segmentations, b1
1...b1

n[?1
n] and b2

1...b2
n[?2

n], are compatible if b1
1 ∩ b2

1 6= ∅ and b1
n ∩ b2

n 6= ∅.
The unification algorithm, in [6], modifies two compatible segmentations in order to align them with
respect to the same list of bounds. The unification algorithm does not guarantee the maximality of
the result, but it is always well-defined, it does terminates and it is deterministic. The partial order
vS over S is defined over unified segmentations as well as the join tS and the meet uS operators.
Please note that S is not necessarily a lattice [14]. Moreover, S does not respect the Ascending Chain

Appl. Sci. 2020, 10, 7853 5 of 33

Condition, therefore, in order to ensure the convergence of the analysis, it is equipped with a widening
operator ∇S. A narrowing operator which improves the precision of the widening result, is also
defined. Widening and narrowing operators are applied on unified segmentations.

Such an abstract array representation is effective for analyzing the content of arrays, but in the
case of the C programming language where a string is defined as a null-terminating character array,
it is not powerful enough to detect common string manipulation errors.

3. Syntax

Strings in the programming language C are arrays of characters, whose length is determined by a
terminating null character '\0'. Thus, for example, the string literal ''bee'' has four characters: 'b', 'e', 'e',
'\0'. Moreover, C supports several string handling functions defined in the standard library string.h.

We focus on the most significant functions in the string.h header (see Table 1), manipulating
null-terminated sequences of characters, plus the array elements access and update operations. Recall
that char, int and size_t are data types in C, const is a qualifier applied to the declaration of any
variable which specifies the immutability of its value, and *str denotes that str is a pointer variable.

Table 1. String functions syntax in C.

char *strcat(char *str1, const char *str2)

char *strchr(char *str, int c)

int strcmp(const char *str1, const char *str2)

char *strcpy(char *str1, const char *str2)

size_t strlen(const char *str)

• strcat appends the null-terminated string pointed to by str2 to the null-terminated string
pointed to by str1. The first character of str2 overwrites the null-terminator of str1 and str2
should not overlap str1. The string concatenation returns the pointer str1.

• strchr locates the first occurrence of c (converted to a char) in the string pointed to by str.
The terminating null character is considered to be part of the string. The string character function
returns a pointer to the located character, or a null pointer if the character does not occur in
the string.

• strcmp lexicographically compares the string pointed to by str1 to the string pointed to by str2.
The string compare function returns an integer greater than, equal to, or less than zero, accordingly
as the string pointed to by str1 is greater than, equal to, or less than the string pointed to by str2.

• strcpy copies the null-terminated string pointed to by str2 to the memory pointed to by str1.
str2 should not overlap str1. The string copy function returns the pointer str1.

• strlen computes the number of bytes in the string to which str points, not including the
terminating null byte. The string length function returns the length of str.

Accessing an array element is possible indexing the array name. Let i be an index, the i-th
element of the character array str is accessed by str[i]. On the other hand, a character array element
is updated (or an assignment is performed to a character array element) by str[i] = 'x', where 'x'
denotes a character literal.

As mentioned in Section 1, C does not guarantee bounds checking on array accesses and, in case
of strings, the language does not ensure that the latter are null-terminated. As a consequence,
improper string manipulation leads to several vulnerabilities and exploits [15]. For instance, if non
null-terminated strings are passed to the functions above, the latter may return misleading results
or read out of the array bound. Moreover, since strcat and strcpy do not allow the size of the
destination array str1 to be specified, they are frequent sources of buffer overflows.

Appl. Sci. 2020, 10, 7853 6 of 33

4. Concrete Domain and Semantics

Our aim is to capture the presence of well-formed strings in C character arrays, to avoid undesired
execution behaviours that may be security relevant. To reach our goal, we propose a character array
concrete value which highlights the occurrence of null characters in it and we introduce the notion of
string of interest of an array of chars. The concrete semantics relative to the operations presented in
Section 3 is also given.

4.1. Character Array Concrete Semantics

Let C be a finite set of characters representable by the character encoding in use equipped with
a top element >C representing an unknown value and let M be the set of character array variables,
such that M ⊆ A (with A being the set of array variables - of any type - presented in Section 2.2).
Then, the operational semantics of character array variables are concrete array environments µ ∈ Rm
mapping character arrays m ∈M to their values µ(m). Precisely:

• µ(m) = (ρ, lowm, highm,Mm, Nm) and,
• µ(m) ∈M = Rv ×E×E× (Z→ (Z×C))×Z

so that Rm is a map from M to M, where Rv and E are the concrete variable environment and the
expression domain defined in Section 2.2 respectively, Z is the integer domain and C is the character
set introduced above. Notice that with respect to the concrete array environment θ introduced in
Section 2.2, the function µ returns as a last component the set of indexes which map to the string
terminating characters Nm = {i | i ∈ Im ∧Mm(i) = (i,'\0')}, with Im being the domain of the function Mm.
On the other hand, Mm behaves exactly as Aa in θ(a), mapping each index i of the considered array to
the pair of the index i and the indexed array element v.

Thus, M extends A (c.f., Section 2.2) by adding a parameter that takes into account the presence of
null characters in a character array. For well-formed strings, Nm cannot be empty. Moreover, character
array elements which have not been initialized are mapped to the top value >C as they may be values
already present in the memory assigned to the locations array itself.

Example 4. Let m be a C character array initialized as follows: m[6] = {'b','e','e','\0','b'}.
The concrete value of m is given by the tuple µ(m) = (ρ, 0, 6,Mm, Nm), where the codomain of the function
Mm is the set Pm = {(0,'b'), (1,'e'), (2,'e'), (3,'\0'),(4,'b'), (5,>C)} and Nm is the singleton {3}, being the array cell
of index 3 the only one certainly containing a null character.

4.1.1. String of Interest

We formally define the string of interest of a character array as the sequence of its elements up to
the first terminating one (included).

Definition 1 (string of interest). Let m ∈ M be an array of characters with concrete value µ(m) = (ρ,
lowm, highm,Mm, Nm) and let z be the minimum element of Nm (if it is non-empty). The string of interest of the
character array described by µ(m) is defined as follows:

string(µ(m)) =

〈vi : i ∈ [[[lowm]]ρ, z]∧Mm(i) = (i, v)〉 if Nm 6= ∅

undef otherwise

with vi denoting the character value which occurs in the pair (i, v).

Example 5. Consider the concrete character array value of Example 4. Its string of interest is the sequence of
characters ''bee\0''.

Appl. Sci. 2020, 10, 7853 7 of 33

Our definition of string of interest of character arrays allows us to distinguish well-formed strings
and avoid bad usage of arrays of characters. If the null character appears at the first index of a character
array, then we refer to its string of interest as null (null). In general, we refer to character arrays which
contain a well-defined or null string of interest as character arrays which contain a well-formed string.

Moreover, when allocated memory capacity is not sufficient for a declared character array,
the system writes a null character outside the array, occupying memory that is not destined for it and
causing a buffer overflow. We do not represent this system behaviour, since it leads to an undefined
one, so we simply consider the string of interest of such character arrays as undefined (undef).

4.2. Concrete Domain

As a concrete domain for array of characters we refer to the complete lattice P(M) defined as
(P(M),⊆P(M),⊥P(M),>P(M),∪P(M),∩P(M)) where: P(M) is the powerset of concrete character array values,
the set inclusion ⊆P(M) corresponds to the partial order, the bottom element ⊥P(M) is the emptyset ∅,
the top element >P(M) is the superset of any subset of M (i.e., M itself), the set union ∪P(M) denotes the
least upper bound and, the set intersection ∩P(M) denotes the greatest lower bound.

We stress the fact that the concrete domain we introduce is used as a framework that helps us in
creating the abstract representation, and it is not how the (concrete) character array values are actually
represented in C programs.

4.3. Concrete Semantics

To formalize the concrete semantics of the C standard library functions from string.h introduced
in Section 3, the following auxiliary functions embedding, extraction, comparison and substitution over
single concrete character array values need to be introduced.

Definition 2 (embedding). Let µ(m1),µ(m2) ∈ M be two concrete character array values and [l1, u1] ⊆
[[[lowm1]]ρ, [[highm1

]]ρ), [l2, u2] ⊆ [[[lowm2]]ρ, [[highm2
]]ρ) be two indexes ranges of the same length.

The function embedding(µ(m1), [l1, u1],µ(m2), [l2, u2]) embeds the sequence of characters of µ(m2) which
occurs from the index l2 to the index u2 into µ(m1) from the index l1 to the index u1. Formally,
embedding(µ(m1), [l1, u1],µ(m2), [l2, u2]) = µ(m1)′ such that:

• [[lowm′1
]]ρ = [[lowm1]]ρ and [[highm′1]]ρ = [[highm1

]]ρ
• Mm′1

:

∗ ∀i ∈ [[[lowm′1
]]ρ, l1): Mm′1

(i) = (i, v) s.t. k = i and Mm1 (k) = (k, v)
∗ ∀i ∈ [l1, u1]: Mm′1

(i) = (i, v) s.t. k = l2 + (i – l1) and Mm2 (k) = (k, v)
∗ ∀i ∈ (l1, [[highm′1]]ρ): Mm′1

(i) = (i, v) s.t. k = i and Mm1 (k) = (k, v)

• Nm′1
= (Nm1 \ {i | i ∈ [l1, u1]}) ∪ {i | i ∈ [l1, u1]∧ k = l2 + (i – l1)∧Mm2 (k) = (k,'\0')}

Example 6. Let µ(m1) = (ρ, 0, 7,Mm1 , Nm1) and µ(m2) = (ρ, 0, 6,Mm2 , Nm2) be two concrete character array
values such that:

• Pm1 = {(0,'a'), (1,'a'), (2,'a'), (3,'\0'), (4,'a'), (5,'a'), (6,'a')}
• Pm2 = {(0,'b'), (1,'b'), (2,'b'), (3,'b'), (4,'b'), (5,'\0')}

Moreover, consider the intervals of equal length:

• [2, 4]m1 ⊆ [[[lowm1]]ρ, [[highm1
]]ρ)

• [3, 5]m2 ⊆ [[[lowm2]]ρ, [[highm2
]]ρ)

The function embedding(µ(m1), [2, 4]m1 ,µ(m2), [3, 5]m2) = µ(m1)′ where:

• [[lowm′1
]]ρ = [[lowm1]]ρ = 0 and [[highm′1]]ρ = [[highm1

]]ρ = 7

Appl. Sci. 2020, 10, 7853 8 of 33

Algorithm 1 Lexicographic comparison of concrete character array values.

Function: comparison(µ(m1),µ(m2))

Input: two concrete character array values µ(m1),µ(m2) ∈M such that:

• both Nm1 and Nm2 are different from the emptyset and,

• for i1 ∈ [[[lowm1]]ρ, min(Nm1)), i2 ∈ [[[lowm2]]ρ, min(Nm2)): M(i1) 6= (i1,>C) and M(i2) 6= (i2,>C)

Output: an integer value n.

1: n = 0, i1 = [[lowm1]]ρ, i2 = [[lowm2]]ρ
2: while i1 ∈ [[[lowm1]]ρ, min(Nm1)] and i2 ∈ [[[lowm2]]ρ, min(Nm2)] do
3: n = vi1 –C vi2

4: if n 6= 0 then
5: return n
6: else
7: i1 = i1 + 1
8: i2 = i2 + 1
9: return n

• Pm′1
= {(0,'a'), (1,'a'), (2,'b'), (3,'b'), (4,'\0'), (5,'a'), (6,'a')}

• Nm′1
= {4}

Definition 3 (extraction). Let µ(m) ∈M be a concrete character array value and [l, u] ⊆ [[[lowm]]ρ, [[highm]]ρ)
be an indexes range. The function extraction(µ(m), [l, u]) extracts the sequence of characters which occurs in
µ(m) from the index l to the index u. Formally, extraction(µ(m), [l, u]) = µ(m)′ such that:

• [[lowm′]]ρ = l and [[highm′]]ρ = u + 1
• Mm′ : ∀i ∈ [[[lowm′]]ρ, [[highm′]]ρ): Mm′ (i) = (i, v) s.t. k = i and Mm(k) = (k, v)
• Nm′ = Nm \ {i | i 6∈ [l, u]}

Example 7. Let µ(m1) be the character array concrete value of Example 6 and [1, 3]m1 ⊆ [[[lowm1]]ρ, [[highm1
]]ρ)

be an indexes range of µ(m1). The function extraction(µ(m1), [1, 3]m1) = µ(m1)′ such that:

• [[lowm′1
]]ρ = 1 and [[highm′1]]ρ = 4

• Pm′1
= {(1,'a'), (2,'a'), (3,'\0')}

• Nm′1
= {3}

Definition 4 (comparison). Let µ(m1), µ(m2) ∈ M be two concrete character array values which contain
a fully initialized well-formed string of interest, i.e., no >C occurs. The function comparison(µ(m1),µ(m2))
(c.f. Algorithm 1) lexicographically compares the strings of interest of µ(m1) and µ(m2) and it returns an integer
value n which denotes the lexicographic distance between them.

Notice that n will be strictly smaller than zero if string(µ(m1)) precedes string(µ(m2)) in lexicographic
order, equal to zero if string(µ(m1)) and string(µ(m2)) are lexicographically equivalent, and strictly greater than
zero if string(µ(m1)) follows string(µ(m2)) in lexicographic order.

Example 8. Let µ(m1) and µ(m2) be the character array concrete values of Example 6. Both of them contain a fully
initialized well-formed string of interest and the function comparison(µ(m1),µ(m2)) computes the lexicographic
distance between them. Precisely, the procedure stops after the first iteration of the for loop (c.f. Algorithm 1)
and, assuming ASCII as the character encoding set, it returns the value –1, i.e., n = 97 – 98, which means that
string(µ(m1)) lexicographically precedes string(µ(m2)).

Appl. Sci. 2020, 10, 7853 9 of 33

Definition 5 (substitution). Let µ(m) ∈M be a concrete character array value, z ∈ [[[lowm]]ρ, [[highm]]ρ) be
an index and c ∈ C be a character. The function substitution(µ(m), z, c) substitutes the character which appears
in µ(m) at the index z with the character c. Formally, substitution(µ(m), z, c) = µ(m)′ such that:

• [[lowm′]]ρ = [[lowm]]ρ and [[highm′]]ρ = [[highm]]ρ
• Mm′ :

∗ ∀i ∈ [[[lowm′]]ρ, z): Mm′ (i) = (i, v) s.t. k = i and Mm(k) = (k, v)
∗ for i = z: Mm′ (z) = (z, c)
∗ ∀i ∈ (z, [[highm′]]ρ): Mm′ (i) = (i, v) s.t. k = i and Mm(k) = (k, v)

• Nm′ =


Nm if (z ∈ Nm ∧ c is null) ∨ (z 6∈ Nm ∧ c is not null)

Nm \ {z} if z ∈ Nm ∧ c is not null

Nm ∪ {z} otherwise

Example 9. Let µ(m1) be the character array concrete value of Example 6, the index z be equal to 4 and the
character c be the null termination '\0'. The function sub(µ(m1), 4,'\0') = µ(m1)′ such that:

• [[lowm′1
]]ρ = 0 and [[highm′1]]ρ = 7

• Pm1 = {(0,'a'), (1,'a'), (2,'a'), (3,'\0'), (4,'\0'), (5,'a'), (6,'a')}
• Nm′1

= {3, 4}

4.3.1. Array Access

The semantics operator A, given the statement accessj and a set of concrete character array
values M in P(M) as parameter, returns a value in C. In particular, accessj(M) returns the character v
which occurs at position j if all the character array values in M contain v at index j and the latter is
well-defined (i.e., it ranges in the array bounds) for all the character array values in M; otherwise it
returns >C. Formally,

A[[accessj]](M) =

v if ∀µ(m) ∈ M : j ∈ [[[lowm]]ρ, [[highm]]ρ) and Mm(j) = (j, v)

>C otherwise

4.3.2. String Concatenation

The semantics operator M, given a statement and some sets of concrete character array values in
P(M) as parameters, returns a set of concrete character array values. When applied to strcat(M1, M2),
it returns all the possible embeddings in M1 of a string of interest taken from M2 if all the character array
values (which belong to both M1 and M2) contain a well-formed string and the condition on the size
of the destination character array values is fulfilled; otherwise it returns >P(M). Please note that the
size condition ensures to perform the string concatenation only if the destination character array value
is big enough to contain the string of interest of the source character array value, thus preventing
undefined behaviours. Formally,

M[[strcat]](M1, M2) =


M′1 if ∀µ(m1) ∈ M1 : ∀µ(m2) ∈ M2 : string(µ(m1)) 6= undef 6= string(µ(m2))

∧ size.condition is true

>P(M) otherwise

The size.condition is true if:

([[highm1
]]ρ – [[lowm1]]ρ) > [(min(Nm1) – [[lowm1]]ρ – 1) + (min(Nm2) – [[lowm2]]ρ)]

Moreover, M′1 is the set of embedding(µ(m1), [l1, u1],µ(m2), [l2, u2]) (c.f. Definition 2), such that:

Appl. Sci. 2020, 10, 7853 10 of 33

• µ(m1) ∈ M1, l1 = min(Nm1) and u1 = l1 + (min(Nm2) – [[lowm2]]ρ)
• µ(m2) ∈ M2, l2 = [[lowm2]]ρ and u2 = min(Nm2)

4.3.3. String Character

The semantics operator M, when applied to strchrv(M), returns the set of string of interest suffixes
in M from the index corresponding to the first occurrence of the character v if all the character array
values in M contain a well-formed string containing v. Otherwise, if all the character array values
in M contain a well-formed string in which does not occur the character v, it returns the emptyset
(denoted by ⊥P(M)); otherwise it returns >P(M). Formally,

M[[strchrv]](M) =


S if ∀µ(m) ∈ M : string(µ(m)) 6= undef and v ∈ string(µ(m))

⊥P(M) if ∀µ(m) ∈ M : string(µ(m)) 6= undef and v 6∈ string(µ(m))

>P(M) otherwise

In particular, S is the set of extraction(µ(m), [l, u]) (c.f. Definition 3), such that:

• µ(m) ∈ M, l = min({i : i ∈ [[[lowm]]ρ, min(Nm)]∧Mm(i) = (i, v)}) and u = min(Nm)

4.3.4. String Compare

The semantics operator P, given the statement strcmp and two sets of concrete character array
values M1, M2 in P(M) as parameters, returns a value in the set of integers equipped with a top element,
i.e., Z∪>Z. In particular, strcmp(M1, M2) returns an integer value n which denotes the lexicographic
distance between strings of interest in M1 and M2 if for all µ(m1) ∈ M1 and µ(m2) ∈ M2 the procedure
comparison(µ(m1),µ(m2)) (c.f. Definition 4) returns n; otherwise it returns>Z. Formally,

P[[strcmp]](M1, M2) =

n if ∀µ(m1) ∈ M1 : ∀µ(m2) ∈ M2 : comparison(µ(m1),µ(m2)) = n

>Z otherwise

4.3.5. String Copy

The semantics operator M, when applied to strcpy(M1, M2), behaves similarly to the string
concatenation function above. Formally,

M[[strcpy]](M1, M2) =


M′1 if ∀µ(m1) ∈ M1 : ∀µ(m2) ∈ M2 : string(µ(m1)) 6= undef 6= string(µ(m2))

∧ size.condition is true

>P(M) otherwise

The size.condition is true if:

([[highm1
]]ρ – [[lowm1]]ρ) > (min(Nm2) – [[lowm2]]ρ)

Moreover, M′1 is the set of embedding(µ(m1), [l1, u1],µ(m2), [l2, u2]), such that:

• µ(m1) ∈ M1, l1 = [[lowm1]]ρ and u1 = l1 + (min(Nm2) – [[lowm2]]ρ)
• µ(m2) ∈ M2, l2 = [[lowm2]]ρ and u2 = min(Nm2)

4.3.6. String Length

The semantics operator L, given the statement strlen and a set of concrete character array values
M in P(M) as parameter, returns a value in the set of integers equipped with a top element, i.e., Z∪>Z.
In particular, strlen(M) returns an integer value n which corresponds to the length of the sequence of
characters before the first null one of the character arrays values in M if all the character array values in
M contain a well-formed string of the same length; otherwise it returns >Z. Formally,

Appl. Sci. 2020, 10, 7853 11 of 33

L[[strlen]](M) =

n if ∀µ(m) ∈ M : string(µ(m)) 6= undef∧ (min(Nm) – [[lowm]]ρ) = n

>Z otherwise

4.3.7. Array Update

The semantics operator M, when applied to updatej,v(M), returns the set of character array values
in M where the character that occurs at position j has been substituted with the character v if the index j
is well-defined for all the character array values in M; otherwise it returns >P(M). Formally,

M[[updatej,v]](M) =

M′ if ∀µ(m) ∈ M : j ∈ [[[lowm]]ρ, [[highm)]]ρ)

>P(M) otherwise

In particular, M′ is the set of substitution(µ(m), j, v) (c.f. Definition 2).

5. M-String

In the previous section we defined the concrete value of a character array, which highlights
the presence of a well-formed string in it. Moreover, we presented our concrete domain P(M), made of
sets of character array values, and its concrete semantics of some operations of interest. In the following
we formalize the M-String abstract domain, which approximates elements in P(M), and its semantics
for which soundness is proved.

5.1. Character Array Abstract Domain

The M-String (M) abstract domain approximates sets of concrete character array values with a pair
of segmentations that highlights the nature of their strings of interest. The elements of the domain are
split segmentation abstract predicates. As for FunArray (recalled in Section 2.2), segments represent
sequences of characters which share the same property and are delimited by the so-called segment
bounds. More precisely, the M-String abstract domain is a functor given by M(B, C, R) where

1. B denotes the abstraction of segment bounds, equipped with the addition (+B) and subtraction
(–B) operations.

2. C is the abstraction of the character array elements, it is signed, it contains the value 0, and it is
equipped with is_null, a special monotonic function lifting abstract elements in C to a value in
the set {true, false, maybe} and with subtraction (–C).

3. R denotes the abstraction of scalar variable environments (cf. Section 2.2). Namely, the constant
propagation domain on the set of variables X.

Elements of M-String belong to the set M , (Ms, Mns)∪ {⊥M,>M} such that:

• Ms corresponds to {{B×C}× {B×C× { , ?}}k × {B× { , ?}} | k > 0}∪ {B}∪ {∅} and it represents
the segmentation of the strings of interest of a set of character arrays.

• Mns corresponds to {{B× C}× {B× C× { , ?}}k × {B× { , ?}} | k > 0} ∪ {∅} and it represents
the segmentation of the content of character arrays after their string of interests, or character
arrays that do not contain the null terminating character.

• ⊥M, >M are special elements denoting the bottom/top element of M.

The elements in M are split segmentation abstract predicates of the form m = (s, ns). For instance,
when m is equal to (b1, ∅), it abstracts concrete character array values of length 1 and containing a null
string of interest (c.f. Section 4.1.1). On the other hand, when m is equal to (b1, b2p2b3[?3]...bn[?n]),
it approximates concrete character array values of length greater than or equal to 1 containing a null
string of interest. In particular:

Appl. Sci. 2020, 10, 7853 12 of 33

1. bi ∈ B denotes the segment bounds, chosen in abstract domain B, such that i ∈ [1, n] and n > 1.
A segment bound approximates a set of indexes (i.e., positive integers Z+), but contrary to what
defined for the FunArray abstraction, the choice of B is let free.
For the sake of readability, we apply arithmetic operators on bi directly. For instance, b +B 1
should be read as αB({i + 1 | i ∈ γB(b)}) or b1 +B b2 as αB({i1 + i2 | i1 ∈ γB(b1) ∧ i2 ∈ γB(b2)}),
where αB and γB are respectively the abstraction and concretization functions over the bounds
abstract domain.
Please note that b1 and bn respectively represent the segmentation lower and upper bound and in
the case in which m corresponds to the split segmentation (b1p1b2[?2]p2b3[?3] . . . bn–1[?n–1], ∅)
the segmentation upper bound is hidden, due to a representative choice, and equal to bn–1 +B 1.
Moreover, in a segmentation . . . bi[?i]pi+1bi+1[?i+1] . . . we always assume that min(γB(bi+1)) >
max(γB(bi)).

2. pi ∈ C are abstract predicates, chosen in an abstract domain C, denoting possible values of pairs
(index, character array element value) in a segment, for relational abstraction, character array
elements otherwise.

3. the question mark ?, if present, indicates that the preceding segment might be empty, while
indicates a non-empty segment and, as for [6], non-empty segments are not marked.

Example 10. Consider the split segmentation abstract predicate m = ([0, 0] 'a' [2, 5], ∅) where C is the constant
propagation domain for characters and B the interval domain. m approximates character arrays certainly
containing a string of interest which is actually a sequence of 'a', whose length goes from 2 to 5, followed by a
null character, e.g., "aa\0" and "aaaaa\0".

In the rest of the paper we will refer to the s and to the ns parameters of a given split segmentation
abstract predicate m by m.s and m.ns respectively.

M-String, like FunArray, is equipped with join tM, meet uM, widening ∇M and narrowing M

operators (c.f. Section 2.2.2). We highlight the fact that the choice of B is let free, so the segmentation
unification algorithm presented in [6] needs to be modified accordingly, while preserving its original
requirements. The unify procedure behaves as follows: given m1, m2 ∈M, unify(m1, m2) results into
the pair unify(m1.s, m2.s) and unify(m1.ns, m2.ns), where m1.s and m2.s (resp. m1.ns and m2.ns) are
compatible, leading to two abstract predicates (m′1.s, m′1.ns) and (m′2.s, m′2.ns), respectively. Given two
split segmentations m1 and m2, let lowm1.s and highm1.s (resp. lowm2.s and highm2.s) denote the lower
and upper bounds of m1.s (resp. m2.s). m1.s and m2.s are compatible if lowm1.s uB lowm2.s 6= ⊥B and
highm1.s uB highm2.s 6= ⊥B. The same apply to m1.ns and m2.ns. Definitions 6 and 7 present how the
join and the meet operators over M are computed. The widening and narrowing can be easily derived.

Example 11. Consider the following split segmentations: m1 = ([0, 0] odd [2, 4] even [7, 7], ∅) and
m2 = ([0, 0] odd [1, 2] >parity [3, 6] even [7, 7], ∅). Their unification leads to the abstract elements
m′1 = ([0, 0] odd [2, 4] even [7, 7], ∅) and m′2 = ([0, 0] odd [2, 2] >parity [7, 7], ∅). Observe that the
unify yields to a pair of segmentations with the same number of segments and that is not always optimal.

Definition 6 (M-String join). tM represents the join operator that defines a minimal upper bound between two
abstract elements. Let unify(m1, m2) = m′1, m′2, then m′1 tM m′2 = (m′1.s tM m′2.s, m′1.ns tM m′2.ns) such
that:

• m′1.stM m′2.s = b1
1 tB b2

1 p1
1 tC p2

1 b1
2 tB b2

2 [?1
2] g [?2

2] . . . b1
k tB b2

k [?1
k] g [?2

k]

• m′1.nstM m′2.ns = b1
k+1 tB b2

k+1 p1
k+1 tC p2

k+1 b1
k+2 tB b2

k+2 [?1
k+2] g [?2

k+2] . . . b1
n tB b2

n [?1
n] g [?2

n]

if m′1.s and m′2.s (resp. m′1.ns and m′2.ns) are compatible; >M otherwise.

Appl. Sci. 2020, 10, 7853 13 of 33

Please note that tB, tC and g denote the join operator of B, C and { , ?}, respectively. In particular,
g = and g? =? g =?g? =?.

Definition 7 (M-String meet). uM represents the meet operator that defines a maximal lower bound between
abstract elements.
Let unify(m1, m2) = m′1, m′2, then m′1 uM m′2 = (m′1.suM m′2.s, m′1.nsuM m′2.ns) such that:

• m′1.suM m′2.s = b1
1 uB b2

1 p1
1 uC p2

1 b1
2 uB b2

2 [?1
2] f [?2

2] . . . b1
k uB b2

k [?1
k] f [?2

k]

• m′1.nsuM m′2.ns = b1
k+1 uB b2

k+1p1
k+1 uC p2

k+1b1
k+2 uB b2

k+2[?1
k+2] f [?2

k+2]...b1
n uB b2

n[?1
n] f [?2

n]

if m′1.s and m′2.s (resp. m′1.ns and m′2.ns) are compatible; ⊥M otherwise.
Please note that uB, uC and f denote the meet operator of B, C and { , ?}, respectively. In particular,

f = f? =? f = and ?f? =?.

5.1.1. Abstraction

Let M be a set of concrete character array values. The abstraction function on the M-String abstract
domain αM maps M to ⊥M in the case in which M is empty, otherwise to the pair of segmentations that
optimally over-approximates values in M.

5.1.2. Concretization

The concretization function on the M-String abstract domain γM maps an abstract element to a set
of concrete character array values as follows: γM(⊥M) = ∅, otherwise γM(m) is the set of all possible
character array values represented by a split segmentation abstract predicate m.

Formally, we firstly define the concretization function of a generic segment (bpb′[?]) (regardless
of what part of the split it is part of) γ∗M, following [6], which corresponds to the set of character array
values whose elements in the segment [b, b′[?]) satisfy the predicate p.

γ∗M(bpb′[?])ρ , {(ρ, low, high,M, N) | ρ ∈ γR(ρ)∧ ∀b, b′ : b ∈ γB(b), b′ ∈ γB(b′) ∧
[[low]]ρ 6 b 6 b′ 6 [[high]]ρ∧ ∀i ∈ [b, b′) : M(i) ∈ γC(p)∧N = {i | M(i) = (i, '\0')}}

where γR ∈ R→ P(Rv) is the concretization function for the variable environment abstract domain,
γB ∈ B→ P(Z+) is the concretization function for the segment bounds abstract domain, and γC ∈ C→
P(Z×C) is the concretization function for the array characters abstract domain.

We remind that the upper bound of m.s is not followed by a segment abstract predicate. Let b
be the upper bound of m.s (which may coincide with the lower bound of m.s in the case in which m
approximates characters arrays containing null strings of interest). b is equivalent to the segment bpb′

such that b′ = b +B 1 and p is null.
An abstract element in the M-String domain is a pair of segmentations. Thus, we define

the concretization function of the possible m.s and m.ns belonging to a character array abstract
predicate m, i.e., γ?M ∈M→ R→ P(M). Let +M denote the concatenation of several concrete values.

γ?M(m.s)ρ

, {(ρ, low, high,M, N) ∈
k

+M
i=1

γ∗M(bipibi+1[?i+1])ρ | ∀b1,bk : b1 ∈ γB(b1),

bk ∈ γB(bk)∧ b1 = [[low]]ρ∧ bk + 1 6 [[high]]ρ}
if m.s = b1p1b2[?2]...bk–1[?k–1]pk–1bk[?k]
, γ∗M(b1)ρ
if m.s = b1
, ∅
otherwise

γ?M(m.ns)ρ

Appl. Sci. 2020, 10, 7853 14 of 33

, {(ρ, low, high,M, N) ∈
n–1

+M
i=1

γ∗M(bipibi+1[?i+1])ρ | ∀b1,bn : b1 ∈ γB(b1), bn ∈ γB(bn) ∧
b1 = [[low]]ρ∧ bn = [[high]]ρ}

if m.ns = b1p1b2[?2]...bn[?n]

, {(ρ, low, high,M, N) ∈
n–1

+M
i=k+1

γ∗M(bipibi+1[?i+1])ρ | ∀bk+1,bn : bk+1 ∈ γB(bk+1),

bn ∈ γB(bn)∧ [[low]]ρ < bk+1 ∧ bn = [[high]]ρ}
if m.ns = bk+1pk+1bk+2[?k+2]...bn[?n]
, ∅
otherwise

Finally, the concretization function of a split segmentation abstract predicate m is as follows:

γM(m)ρ , {(ρ, low, high,M, N) ∈ γ?M(m.s)ρ +M γ?M(m.ns)ρ | ∀b1,bn : b1 ∈ γB(b1),
bn ∈ γB(bn) ∧ b1 = [[low]]ρ ∧ bn = [[high]]ρ}

where +M returns all the possible concatenations between a concrete array value taken from γ?M(m.s),
and a concrete array value taken from γ?M(m.ns).

Definition 8 (invalid segment). Given a generic segment bpb′[?], it is considered invalid if its segment
abstract predicate p is equal to ⊥C and its upper bound b′ is not followed by a question mark.

Theorem 1. Let X ⊆ M such that all elements in X are compatible and their meet does not result in split
segmentation abstract predicates which contain invalid abstract elements. The following inference chain holds:

γM

(
⊔M

m∈X
m

)
= γM(m′) where m′ is the result of the meet operation over X as defined in Definition 7

= {(ρ, low, high,M, N) ∈ γ?M(m′.s)ρ +M γ?M(m′.ns)ρ | ∀b1,bn : b1 ∈ γB(b1), bn ∈ γB(bn)∧
b1 = [[low]]ρ∧ bn = [[high]]ρ} by definition of γM

=
⋂

M
m∈X

{(ρ, low, high,M, N) ∈ γ?M(m.s)ρ +M γ?M(m.ns)ρ | ∀b1,bn : b1 ∈ γB(b1), bn ∈ γB(bn)∧

b1 = [[low]]ρ∧ bn = [[high]]ρ}

=
⋂

M
m∈X

γM(m) by definition of γM

Observe that if the hypotheses of Theorem 1 are not satisfied, i.e., if either the abstract predicates

in X are not compatible or their meet leads to invalid segmentations, then γM

(

⊔M
m∈X

m

)
= γM(⊥M) = ∅,

and
⋂

M
m∈X

γM(m) = ∅.

In the implementation we will make use of two functions lift and lower that relate single strings to
their abstraction in M-String.

Definition 9 (lift). Let M ⊆ P(M) be a set of concrete character array values. Given the abstraction function
αM on M-String, we define the lift operation of M as follows:

lift(M) = αM(M).

Definition 10 (lower). Let m denote lift(M) (c.f. Definition 9). Given the concretization function γM on
M-String, we define the lower operation of m as follows:

lower(m) = γM(m).

Appl. Sci. 2020, 10, 7853 15 of 33

5.2. Abstract Semantics

Let us now formalize the abstract semantics of the concrete operations defined in Section 4.3,
over the M-String domain. In doing so, we will take advantage of the auxiliary function minlen which
computes the minimum length of an element m ∈M, as the upper bound of a split segmentation is
possibly followed by a question mark.

Definition 11 (m minimum length). Let m ∈ M different from ⊥M and let lowm, highm ∈ B denote the
lower and the upper bound of m, respectively. We define the minimum length of a split segmentation abstract
predicate m, denoted by minlen(m), as follows:

minlen(m) =


bk –B lowm if m.ns 6= ∅ ∧ highm is followed by ? ∧

∃k ∈ m.ns : k = max{i ∈ m.ns|bi is not followed by ?}

highm –B lowm otherwise

Please note that in the second case of Definition 11, the minimum length of a split segmentation
corresponds to its length, denoted by len(m). The len operation can be also applied over the parameters
of m themselves, when they are different from the emptyset and their upper bound is not question
marked, which is always the case with m.s.

Example 12. Consider the split segmentation abstract predicate m = ([0, 0] 'a' [2, 5], [3, 6] 'b' [7, 7] 'c' [8, 8]?)
where C is the constant propagation domain for characters and B the interval domain. The minimum length of
m is given by minlen(m) = [7, 7] –B [0, 0] = [7, 7] as its upper bound is followed by a question mark. Logically
speaking, the maximum length of m is [8, 8] –B [0, 0] = [8, 8]. The length of m.s is given by len(m.s) =
[2, 5] –B [0, 0] = [2, 5].

5.2.1. Abstract Array Access

The semantics operator AM is the abstract counterpart of A (c.f. Section 4.3.1). In particular,
accessj(m) returns, if j is valid for m (i.e., there exist, and it is unique, a segment bounds interval

[bi[?i], bi+1) in m to which j belongs), the segment abstract predicate pi; otherwise it returns
>C. Formally,

AM[[accessj]](m) =

pi if ∃!i ∈ m : j ∈ [bi[?i], bi+1)

>C otherwise

where j ∈ [bi[?i], bi+1) iff ∀j ∈ γB(j) : ∀[l, u) ∈ {[l, u) | l ∈ γB(bi)∧ u ∈ γB(bi+1)} : j ∈ [l, u).

5.2.2. Abstract String Concatenation

The semantics operator MM is the abstract counterpart of M. When applied to strcat(m1, m2),
it returns m′1 that is m1 into which m2.s has been embedded starting from the upper bound of m.s,
if both the input split segmentations approximate character arrays which contain a well-formed string
and the condition on the size of the destination split segmentation is fulfilled; otherwise it returns
>M. Formally,

MM[[strcat]](m1, m2) =

m′1 if m1.s 6= ∅ 6= m2.s ∧ size.condition is true

>M otherwise

The size.condition is true if minlen(m1) >B (len(m1.s) +B len(m2.s) +B 1). Let:

• m1 = (b1
1p1

1b1
2[?1

2] . . . p1
k–1b1

k[?1
k], b1

k+1p1
k+1b1

k+2[?1
k+2]...b1

n[?1
n])

• m2 = (b2
1p2

1b2
2[?2

2]...p2
k–1b2

k[?2
k], ns)

Appl. Sci. 2020, 10, 7853 16 of 33

Then, m′1.s = b1
1p1

1b1
2[?1

2]...p1
k–1b1

k[?1
k]p2

1(b1
k +B (b2

2 –B b2
1))[?2

2]...p2
k–1(b′ +B (b2

k –B b2
k–1))[?2

2] such that

b′ denotes the immediately preceding adapted segment bound. On the other hand, m′1.ns is the result
of removing from m1.ns the sub-segmentation that goes from the lower bound of m1.ns to the upper
bound of m′1.s included.

Example 13. Let ([0, 0] a∗ [5, 7], [6, 8] br∗ [13, 14]) and ([0, 0] a∗ [3, 3], ∅) be two abstract elements in M,
such that B is the interval domain over array indexes and C is the prefix domain over string values. Precisely,
([0, 0] a∗ [5, 7], [6, 8] br∗ [13, 14]) approximates all the characters arrays with as string of interest any string
starting with the character 'a' whose length goes from 5 to 7, followed by the null character and any string
starting with ''br'' whose length goes from 5 to 8. On the other hand, ([0, 0] a∗ [3, 3], ∅) abstracts all the array
of chars with string of interest equal to a string, of length 3, starting with a . Consider now the concatenation
between them,

MM[[strcat]](([0, 0] a∗ [5, 7], [6, 8] br∗ [13, 14]), ([0, 0] a∗ [3, 3], ∅))

The size condition is satisfied: the minimum length of the destination split segmentation is equal to 13,
which is strictly greater than 7 + 3 + 1, i.e., the maximum length of the destination abstract array plus the
maximum length of the source segmentation plus one (the null character). Their concatenation results in the
following abstract element:

([0, 0] a∗ [5, 7] a∗ [8, 10], [9, 11] br∗ [13, 14])

which is equivalent to ([0, 0] a∗ [8, 10], [9, 11] br∗ [13, 14]).

5.2.3. Abstract String Character

The semantics operator MM, when applied to strchrv(m), returns a split segmentation abstract
predicate s with the left hand side parameter equal to the suffix segmentation of the input m.s from
the first segment in which v certainly occurs and the right hand side parameter equal to the emptyset,
if m approximates character arrays which contain a well-formed string and the character v appears in
at least one segment whose bounds are not question marked. Otherwise, if m approximates character
arrays which contain a well-formed string of interest and the abstract character v does not occur in
m.s, it returns ⊥M; otherwise it returns >M. Formally,

MM[[strchrv]](m) =


s if m.s 6= ∅ ∧ ∃i ∈ m.s : pi = v∧ bi, bi+1 are not followed by ?

⊥M if m.s 6= ∅∧ 6 ∃i ∈ m.s : pi = v

>M otherwise

where s = (bjpjbj+1 . . . bk[?k], ∅) such that j = min{i ∈ m.s | pi = v∧ bi, bi+1 are not question marked}.

5.2.4. Abstract String Compare

The semantics PM is the abstract counterpart of P. In particular, strcmp(m1, m2) returns a value
n denoting the lexicographic distance between m1.s and m2.s if both the input split segmentations
approximate character arrays which contain a well-formed string and they can be unified; otherwise it
returns >Z.

Notice that if n is negative, this means that the strings of interest approximated by m1 precede
those represented by m2 in lexicographic order. Conversely, if n is positive, this means that the strings
of interest approximated by m1 follows those represented by m2 in lexicographic order, and if n is
equal to zero they are lexicographically equal. Formally,

PM[[strcmp]](m1, m2) =

n if m1.s 6= ∅ 6= m2.s∧

>Z otherwise

where n = comparisonM(m1, m2) (c.f. Algorithm 2).

Appl. Sci. 2020, 10, 7853 17 of 33

Algorithm 2 Lexicographic comparison of split segmentation abstract predicates.

Function: comparisonM(m1, m2)

Input: two compatible split segmentation abstract predicates m1, m2 ∈M.

Output: an integer value n.
1: n = 0, i = 1
2: unify(m1, m2) = m′1, m′2
3: if m′1.s = b1

1 ∧m′2.s = b2
1 then

4: return n
5: else if m′1.s = b1

1 ∧m′2.s 6= b2
1 then

6: n = n –C p2
1

7: return n
8: else if m′1.s 6= b1

1 ∧m′2.s = b2
1 then

9: n = p1
1 –C n

10: return n
11: else
12: while i ∈ m′1.s∧ i ∈ m′2.s do
13: n = p1

i –C p2
i

14: if n 6= 0 then
15: return n
16: else
17: i = i + 1
18: return n

5.2.5. Abstract String Copy

The semantics MM, when applied to strcpy(m1, m2), it returns m′1 that is m1 into which m2.s has
been embedded starting from the lower bound of m, if both the input split segmentations approximate
character arrays which contain a well-formed string and the condition on the size of the destination
split segmentation is fulfilled; otherwise it returns >M. Formally,

MM[[strcpy]](m1, m2) =

m′1 if m1.s 6= ∅ 6= m2.s ∧ size.condition is true

>M otherwise

The size.condition is true if minlen(m1) >B len(m2.s) +B 1. Let:

• m1 = (b1
1p1

1b1
2[?1

2]...p1
k–1b1

k[?1
k], b1

k+1p1
k+1b1

k+2[?1
k+2]...b1

n[?1
n])

• m2 = (b2
1p2

1b2
2[?2

2]...p2
k–1b2

k[?2
k], ns)

Then, m′1.s = b1
1p2

1(b1
1 +B (b2

2 –B b2
1))[?2

2]...p2
k–1(b′ +B (b2

k –B b2
k–1))[?2

k] such that b′ denotes the
immediately preceding adapted segment bound. On the other hand m′1.ns is the sub-segmentation of
m1 that goes from the upper bound of m′1.s plus one to the upper bound of m1.

5.2.6. Abstract String Length

The semantics LM is the abstract counterpart of L. In particular, strlen returns a value n, if m
approximates character arrays which contain a well-formed string, the upper bound of m.s is not
followed by a question mark and in m.s do not occur possibly null segment abstract predicates;
otherwise it returns >B. Formally,

LM[[strlen]](m) =

n if m.s = b1p1b2[?2] . . . bk ∧ 6 ∃i ∈ m.s : is_null(pi) = maybe

>B otherwise

Appl. Sci. 2020, 10, 7853 18 of 33

where n = bk –B b1.

5.2.7. Abstract Array Update

The semantics MM, when applied to updatej,v(m), returns, if γB(j) corresponds to the singleton {j}

and j is valid for m (i.e., there exists - and it is unique - a segment bounds interval [bi[?i], bi+1) in m
to which j belongs), m′ that is m where the segment bi[?i]pibi+1 is split so that the segment abstract
predicate at position j is substituted with v; otherwise it returns >M. Formally,

MM[[updatej,v]](m) =

m′ if γB(j) = {j}∧ ∃!i ∈ m : j ∈ [bi[?i], bi+1)

>M otherwise

5.3. Soundness

Theorem 2. AM is a sound over-approximation of A. Formally,

γC(AM[[stm]](m)) ⊇ {A[[stm]](µ(m)) : µ(m) ∈ γM(m)}

Proof. Consider the unary operator accessj and let m be a split segmentation abstract predicate.
We have to prove that:

γC(AM[[accessj]](m)) ⊇ {A[[accessj]](µ(m)) : µ(m) ∈ γM(m)}

accessj of µ(m) returns, by definition of A, the character array value v that occurs at position j, if j
belongs to [[[lowm]]ρ, [[highm]]ρ); >C otherwise. Let αB(j) = j. Then, v belongs to γC(AM[[accessj]](m))
because accessj of m, by definition of AM, is equal to the segment abstract predicate pi, if there exists -

and it unique - a segment bounds interval [bi[?i], bi+1) to which j belongs; >C otherwise.

Theorem 3. MM is is a sound over-approximation of M. Formally,

γM(MM[[stm]](m)) ⊇ {M[[stm]](µ(m)) : µ(m) ∈ γM(m)}

Proof.

• Consider the binary operator strcat and let m1 and m2 be two split segmentation abstract
predicates. We have to prove that:

γM(MM[[strcat]](m1, m2))⊇ {M[[strcat]](µ(m1),µ(m2)) : µ(m1)∈γM(m1)∧ µ(m2)∈γM(m2)}

strcat of µ(m1) and µ(m2) returns, by definition of M, µ(m1)′ where the first null-terminating
memory block of µ(m2) (including the null terminator), i.e., its string of interest, is embedded into
µ(m1) starting from the index to which occurs the first null character in µ(m1), if both µ(m1) and
µ(m2) contain a well-formed string and the size condition on the destination character array value
is fulfilled; >M otherwise. Then, µ(m1)′ belongs to γM(MM[[strcat]](m1, m2)) because strcat of
m1 and m2, by definition of MM, is equal to m′1 that is m1 into which m2.s has been embedded
starting from the upper bound of m1.s, if both m1 and m2 approximate character arrays which
contain a well-formed string and the size condition on the destination segmentation abstract
predicate is fulfilled; >M otherwise.

• Consider the unary operator strchrv, and let m be a split segmentation abstract predicate.
We have to prove that:

γM(MM[[strchrv]](m)) ⊇ {M[[strchrv]](µ(m)) : µ(m) ∈ γM(m)}

Appl. Sci. 2020, 10, 7853 19 of 33

strchrv of µ(m) returns, by definition of M, µ(s) that corresponds to the suffix of the string
of interest of µ(m) starting from the index to which appears the first occurrence of v, if µ(m)
contains a well-formed string and v occurs in m; the emptyset (i.e., ⊥M), if µ(m) contains a
well-formed string and v does not occur in µ(m); >M otherwise. Let αC(v) = v. Then, µ(s) belongs
to γM(MM[[strchrv]](m)) because strchrv of m, by definition of MM, is equal to s that is the split
segmentation abstract predicate with s.s equal to the sub-segmentation of m.s starting from
the first segment to which v certainly occurs and s.ns equal to the emptyset if m approximates
character arrays which contain a well-defined string and v appears in at least one segment
whose bounds are not question marked; ⊥M if m approximates character arrays which contain a
well-formed string and v does not appear in m.s; >M otherwise.

• Consider the binary operator strcpy and let m1 and m2 be two split segmentation abstract
predicates. We have to prove that:

γM(MM[[strcpy]](m1, m2))⊇ {M[[strcpy]](µ(m1),µ(m2)) : µ(m1)∈γM(m1)∧ µ(m2)∈γM(m2)}

strcpy of µ(m1) and µ(m2) returns, by definition of M, µ(m1)′ where the first null-terminating
memory block of µ(m2) (including the null terminator), i.e., its string of interest, is embedded into
µ(m1) starting from the lower bound of µ(m1), if both µ(m1) and µ(m2) contain a well-formed string
and the size condition on the destination character array value is fulfilled, >M otherwise. Then,
µ(m1)′ belongs to γM(MM[[strcpy]](m1, m2)) because strcpy of m1 and m2, by definition of MM,
is equal to m′1 that is m1 into which m2.s has been embedded starting from the lower bound of m,
if both m1 and m2 approximate character arrays which contain a well-formed string and the size
condition on the destination segmentation abstract predicate is fulfilled; >M otherwise.

• Consider the unary operator updatej,v and let m be a split segmentation abstract predicate.
We have to prove that:

γM(MM[[updatej,v]](m)) ⊇ {M[[updatej,v]](µ(m)) : µ(m)) ∈ γM(m)}

updatej,v of µ(m) returns, by definition of M, µ(m)′ that is µ(m) where the character at position j has
been substituted with the character v, if j is a valid index for µ(m); >M otherwise. Let αB(j) = j and
αC(v) = v. Then, µ(m)′ belongs to γM(MM[[updatej,v]](m)) because updatej,v of m, by definition

of MM, is equal to m′ that is m where the segment that is valid for j is split so that the segment
abstract predicate which occurs at position j is substituted with v, if γB(j) is equal to the singleton
{j} and j is valid for m; >M otherwise.

Theorem 4. PM is a sound over-approximation of P. Formally,

γB(PM[[stm]](m)) ⊇ {P[[stm]](µ(m)) : µ(m) ∈ γM(m)}

Proof. Consider the binary operator strcmp and let m1 and m2 be two split segmentation abstract
predicates. We have to prove that:

γC(PM[[strcmp]](m1, m2)) ⊇ {P[[strcmp]](µ(m1),µ(m2)) : µ(m1) ∈ γM(m1) ∧ µ(m2) ∈ γM(m2)}

strcmp of µ(m1) and µ(m2) returns an integer value n, resulting from the difference between
corresponding character array elements, denoting the lexicographic distance between the strings of
interest of µ(m1) and µ(m2), if both contain a well-formed string, >Z otherwise, by definition of P. Then
n belongs to γC(PM[[strcmp]](m1, m2)) because strcmp of m1 and m2, by definition of PM, is equal to
n that is the difference between corresponding segment abstract predicates, denoting the lexicographic

Appl. Sci. 2020, 10, 7853 20 of 33

distance between m1.s and m2.s, if m1 and m2 are comparable, both approximate character arrays
which contain a well-formed string where >C does not occur; >Z otherwise.

Theorem 5. LM is a sound over-approximation of L. Formally,

γB(LM[[stm]](m)) ⊇ {L[[stm]](µ(m)) : µ(m) ∈ γM(m)}

Proof. Consider the unary operator strlen and let m be a split segmentation abstract predicate.
We have to prove that:

γB(LM[[strlen]](m))⊇ {L[[strlen]](µ(m)) : µ(m)∈γM(m)}

strlen of µ(m) returns, by definition of L, an integer value n which denotes the length of the sequence
of character before the first null one in µ(m), if µ(m) contains a well-formed string; >Z otherwise. Then n
belongs to γB(LM[[strlen]](m)) because strlen of (m), by definition of LM is equal to the difference
between the lower and the upper bound of m.s if m approximates character arrays which contain a
well-formed string of interest; >B otherwise.

6. Program Abstraction

Adapting M-String to the analysis of real-world C programs requires, first of all, a procedure that
identifies string operations automatically. A subset of such operations then has to be performed
using abstract operations, carried out on a suitable abstract representation. The technique that
captures this approach is known as abstract interpretation. A typical implementation is based on
an interpreter in the programming language sense: it executes the program by directly performing
the operations written down in the source code. However, rather than using concrete values and
concrete operations on those values, part (or the entirety) of the computation is performed in an abstract
domain, which over-approximates the semantics of the concrete program.

In this paper, we mainly focus on string abstraction. Therefore we will interpret the portions
of the program that do not make use of strings without abstracting values. We only apply
abstraction to strings that within the program are manipulated by string operations: when the
program deals with string variables that exhibit minimal variation, e.g., string literals, the M-String
representation would provide no benefit, and instead it could either hurt performance or it may
introduce spurious counterexamples.

Based on the considerations above, it is clear that it is beneficial to reuse and refactor existing
tools that implement abstract verification in a modular way on explicit programs. A compilation-based
abstraction design that follows this approach was introduced and implemented in [7]. However, such
a tool is designed to abstract scalar values only. This is why we need to extend it to operate with more
sophisticated domains that represent more complex objects, such as strings.

In the rest of this section, we will first summarize the general approach to abstraction as a program
transformation. In Section 6.3, we explore the implications of aggregate (as opposed to scalar) domains
within this framework. Sections 6.4 and 6.5 then go on to discuss the semantic (run-time) aspects of
the abstraction and which operations we consider as primitives of the abstraction.

6.1. Compilation-Based Approach

Instead of (re-)interpreting instructions abstractly, in a compilation-based approach, abstract
instructions are transformed into an equivalent explicit code that implements the abstract computation.
The transformation takes place before the analysis of the program (e.g., model checking) during the
compilation process.

Consequently, the analysis processes the program without needing special knowledge of the
abstract domains in use, as the abstraction is encoded directly in the program. Figure 1 depicts a

Appl. Sci. 2020, 10, 7853 21 of 33

comparison of the compilation-based approach with respect the interpretation-based approach adopted
by more conventional abstract interpreters.

Interpretation-based Compilation-based

bitcode

linked bc.

C program

libs

libs
programLLVM

STATIC DYNAMIC

VMVM

MC
transitions

ex
tr

ac
t

bitcode

instrumentedinstrumented
bitcodebitcode

linked bc.

C program

libsABSABS

ABSABS libs

programLLVM

VM

ABSABS MC

STATIC DYNAMIC

instrum.

ex
tr

ac
t

transitions

Figure 1. In the figure, we compare an abstract interpretation with a compilation-based approach.
In the interpretation-based approach, the whole abstract interpretation is performed at runtime.
The bitecode operations are interpreted abstractely by a virtual machine (VM) which maintains an
abstract state. In this way, an abstract state-space is generated for a model-checking algorithm (MC).
The compilation-based approach is different. The abstract operations are instrumented into the
compiled program and their implementation is provided as a library. Then, the virtual machine
executes the instrumented program as a regular bitcode [7].

In a compilation-based approach, two different abstraction perspectives are considered:

1. static, referencing to the syntax and the type system,
2. dynamic, or semantic, referencing to execution and values.

The LART tool performs syntactic (static) abstraction on LLVM bitcode [16]. Syntactic abstraction
replaces some of the LLVM instructions that occur in the program with their abstract counterparts,
as depicted in Figure 2.

1 char *a = input_string ();
2 char *b = string ();
3 char *c = strcat(a, b);
4 int l = strlen(c);

1 abstract a = abstract_string ();
2 char *b = string ();
3 abstract c = abstract_strcat(a, lift(b));
4 abstract l = abstract_strlen(c);

Figure 2. Syntactic abstraction.

6.2. Syntactic Abstraction

The first step of program abstraction performed by LART is a syntactic abstraction. Syntactic
abstraction replaces LLVM instructions or whole functions with their abstract counterparts. Since we
do not want to perform all operations abstractly, we need to classify only those operations that might
obtain abstract values as their arguments. The abstract values emerge in the program as input values.
From these values, LART computes all operations that might come into contact with abstract values
using a combination of data flow and alias analyses. Finally, as a result of analyses, LART obtains a
set of possibly abstract operations that are replaced by their abstract equivalents, e.g., strcat, strlen
are replaced by abstract_strcat and abstract_strlen. Abstract operations then implement the
manipulation with abstract values, in our case with M-Strings as described in Section 4, in other words
the specific meaning of abstract instructions and abstract values then defines the semantic abstraction.

For the precise formulation of syntactic abstraction, we take advantage of the static type system
of LLVM. We leverage the fact that we can assign to each variable its type, which is either concrete or
abstract. In this way, we can precisely set a boundary between concrete and abstract values.

Appl. Sci. 2020, 10, 7853 22 of 33

Let us consider a simplified version of LLVM. It defines a set of concrete scalar types S. The set of all
possible types is given by a map Γ that inductively defines all finite (non-recursive) algebraic types
over the set of given scalars. To be precise, the set of all possible types Γ(T) derived from a set of scalars
T is defined as follows:

1. T ⊆ Γ(T), meaning each scalar type is included in Γ(T),
2. if t1, . . . , tn ∈ Γ(T) then also the product type is in Γ(T): (t1, . . . , tn) ∈ Γ(T), n ∈ N,
3. if t1, . . . , tn ∈ Γ(T) then also disjoint union is in Γ(T): t1 | t2 | · · · | tn ∈ Γ(T), n ∈ N,
4. if t ∈ Γ(T) then t∗ ∈ Γ(T), where t∗ denotes pointer type.

In a concrete LLVM program, the set of admissible types comprise those derived from concrete
scalars S, i.e., Γ(S). In syntactic abstraction, we need to extend admissible types by abstract types.
From these, we generate all possible types using Γ. Depending on the type of abstraction, we use
a different set of basic abstract types. In the case of scalar abstraction, a set of basic abstract types
contains abstract scalar types S. Correspondence between abstract and concrete scalars is given by
a bijective map Λ : S→ S. Finally, each value, which exists in the abstracted program, has an assigned
type of Γ(S∪ S). Specifically, this implies that the abstraction works with mixed types—products and
unions might contain both concrete and abstract fields. Moreover, it is possible to create pointers to
both abstract or mixed values.

6.3. Aggregate Domains

In addition to scalar values that cannot be further decomposed, programs typically operate
with more complex data which can be seen as compositions—aggregates—of multiple scalar values.
Depending on aggregates’ nature, we can classify them as aggregates which contain a variable number
of items (arrays), records that contain a fixed number of items in a fixed layout, where each of these
can be of a different type. The items in such aggregates can be (and often are) scalars. However,
more complex aggregates are also possible: arrays of records, records which in turn contain other
records, and so on.

While scalar domains only dealt with simple values, in aggregate abstraction, we consider
composite data in the spirit of the above definition. Similarly to scalar domains, abstract aggregate
domains approximate concrete aggregate values by describing a particular set of aggregate properties.
For example, we can describe a set of aggregates by their length or a set of values that appear in
the aggregate. In the M-String, the kept properties are in the form of segmentation, where segments
are further abstracted by bounds and characters. Values in an aggregate domain then keep the
representation of chosen properties and operations updates them. For instance, consider an array
length property domain—the domain operations in such a case operate only with lengths of arrays,
e.g., abstract concat of arrays adds together lengths of its arguments (abstract arrays).

In general, aggregate domains can provide arbitrary operations. However, two operations are,
in some sense, universal, being elementary memory manipulation operations, namely: byte-wise
access and update of the aggregate. The universality of these operations originates from the fact that
all aggregate operations can be represented as accesses and updates. In a low-level representation of
a program (assembly), they usually are presented in this form. LLVM allows a slightly higher level
of manipulation to access and update individual scalars present in the aggregates (as opposed to
bytes). For M-String, though, this distinction is not essential because the scalars stored in C strings are
individual bytes (characters). All other operations are present in the form of sequences of elementary
instructions—possibly encapsulated in functions. Moreover, as in concrete programs, the access
and update represents an interface between scalars and memory, in the abstraction, they form an
interface between scalar and aggregate domains (even in the case of byte-oriented access since bytes
are also scalars). We refer the reader to the Section 4.3.1 for abstract semantics of access, respectively
to the Section 4.3.7 for the abstract semantics of update.

Appl. Sci. 2020, 10, 7853 23 of 33

In comparison to scalar abstraction, the syntactic abstraction of aggregates does not operate
directly with aggregate types. In LLVM, aggregate values are usually represented by a pointer to the
underlying aggregate type. Therefore all the accesses and updates are made through the pointers
to the aggregates. For instance, strings are represented as a pointer to a character array. We need to
take this fact into account when we perform the syntactic abstraction. In the analysis, we consider
the pointers to aggregates as base types for the abstraction. In the case of arrays, the base types are
concrete pointers to those arrays: let us call them P∗, where P∗ ⊆ Γ(S). A set of abstract pointers
types P∗ then describes types of abstracted aggregates (arrays). As for scalar domains, we define
a natural correspondence between pointers to concrete values and abstract aggregates as a bijective
map Λ : P∗ → P∗. For instance, in the case of M-String abstraction, the map Λ assigns to char* a
type of M-String value. Finally, we allow all the mixed types generated from scalars and abstract
aggregates: Γ(S∪ P∗).

Observe that pointers, in general, also in LLVM maintain two pieces of information about
memory location: they represent both the memory object and an offset into that object. In particular,
our implementation treats the first 32-bits of the pointer as an object identifier and the last 32-bits as its
offset. This distinction is not very relevant in explicit programs because those two components are
represented in a uniform way in a single value and often they cannot be distinguished at all. However,
the distinction becomes relevant when dealing with abstract aggregate values. In fact, in this case,
the object component of the pointer is concrete as it determines a single specific abstract object. On the
other side, the offset component may or may not be concrete. The choice depends on the specific
abstract aggregate domain: it may be more advantageous representing the offset in an abstract way,
i.e., by a 32-bit abstract scalar value. Observe that a memory access through such a pointer needs to be
treated in both cases as an abstract access or update operation.

In LLVM, two basic memory access operations are defined—load and store, corresponding to
the access and update operations. It is important to notice that memory access is always explicit:
memory is never used in a computation directly. This observation is used in the design of aggregate
abstraction, where we can assume that the access to the content of an aggregate will always go through
a pointer associated with the abstract object.

6.4. Semantic Abstraction

In syntactic abstraction, we dealt with operations’ syntax, their types, and the types of values and
variables. It described how LART performs a source-to-source transformation. In contrast, semantic
abstraction concerns with the values computed at runtime by a program. It defines how abstract
operations modify values and how to transfer between concrete and abstract values. Therefore,
similarly to syntactic abstraction that defined the maps Λ and Λ–1 to transfer between concrete
and abstract types, the semantic abstraction makes use of lift and lower (cf. Definitions 9 and 10):
operations (instructions) converting values between their concrete and abstract representations.
They realize a runtime implementation of domain functions: abstraction (αM in the case of M-String)
and concretization (γM).

The lift operation implements abstraction of concrete values by a single over-approximating
abstract value. For example, in Figure 2 on line 3 of the abstracted program, a concrete string b is lifted
to the abstract domain. This allows performing abstract_strcat in a single abstract domain. In other
words, operations do not need to consider concrete values because all their arguments are lifted to
the abstract domain. This simplifies the implementation of a domain and reduces the number of
possible domain interactions. In comparison to Λ, which was a purely syntactic construct, lift and lower
accomplish actual conversion of values between domains during program runtime. During program
execution, lowering an abstract value into multiple concrete values can be seen as nondeterministic
branching in the program and the lower operator is indeed based on a non-deterministic choice operator.
In a model checker, the non-deterministic choice would be typically implemented as branching in the
state space and the consequences of all possible outcomes would be explored. In a testing context,

Appl. Sci. 2020, 10, 7853 24 of 33

however, the choice might implemented as random, by choosing one particular path. For further
details of the program transformation performed by LART, we kindly refer the reader to [7].

6.5. Abstract Operations

As a result of syntactic abstraction, we obtain a program that temporarily contains abstract
operations. These operations take abstract values as operands and return abstract values as a result.
Though, after the program transformation, the resulting program is required to be a semantically valid
LLVM bitcode. Therefore, we demand that each abstract operation can be realized as a sequence of
concrete instructions. This allows us to obtain an abstract program that does not contain any abstract
operations and executes it using standard (concrete, explicit) methods.

Thoroughly, syntactic abstraction substitutes concrete operations with their abstract counterparts:
an operation with type (t1, . . . , tn) → tr is substituted by an abstract operation of type
(Λ(t1), . . . , Λ(tn)) → Λ(tr). Furthermore, transformation inserts lift and lower operations as needed,
e.g., in places where concrete values are operands of abstract operations. The implementation is free to
select the operations to be abstracted and where value lifting and lowering be inserted, so long type
constraints are satisfied. However, it tends to minimize the number of abstracted operations.

In addition to LLVM instructions, the M-String abstraction requires the transformation to abstract
function calls to standard library functions such as strcmp, strcat. From the perspective of syntactic
abstraction, we can treat function calls as single atomic operations that take abstract values and produce
abstract results. Hence, the transformation substitutes them in the same way as instructions: for
instance strcmp operation of type (m, m)→ s is replaced by abstract_strcmp of type (Λ(m), Λ(m))→
Λ(s) where m is a concrete character array and s is a concrete scalar result of the string comparison.
Afterwards, all abstract operations are implemented by using concrete subroutines (implementation of
abstract semantics). For details, see [7].

Observe that, as an alternative approach, the standard library functions strcat, strcmp, etc. could
have been transformed instruction by instruction, by using abstract access and update of a content only.
However, the price to pay would have been loosing a certain degree of accuracy in the abstraction,
the exact amount depending on the single operation.

7. Instantiating M-String

As an aggregate domain, M-String is a parametrizable by scalar domains of characters and
indices (bounds). This allows us to tailor the abstraction to the needs of the analysis of string values.
Depending on the precision of chosen domains, the instance of the M-String domain will inherit
their properties. With more precise domains, the M-String values will maintain higher granularity of
segmentation. On the other hand, simpler character representation will decrease the segmentation
granularity for the cost of a higher rate of false alarms.

A particular instance of M-String is automatically derived from a parametric description given in
Section 5, provided a suitable scalar domain C for characters and scalar domain B to represent segment
bounds. The instantiation demands that both scalar domains C and B are equipped with operations that
appear in the operations with the segmentation. These are mainly elementary arithmetic and relational
operations. In the implementation, we provide an M-String domain template that automatically
derives all the operations from provided scalar domains.

7.1. Symbolic Scalar Values

In program verification, it is common practice to represent certain values symbolically
(for instance, inputs from the environment). The symbolic representation allows the verifier to
consider all admissible values with a reasonably small overhead. In DIVINE, symbolic verification
is implemented using a similar abstraction to one described in the previous section: symbolic scalar
values represent their content by SMT formula expressions (terms) in form of abstract syntax trees.
The input values are represented as unconstrained variables in the bit vector logic. Operations then

Appl. Sci. 2020, 10, 7853 25 of 33

build formulae trees from their arguments. In addition to these so-called data definitions, symbolic
representation also maintains one global formula of constraints (path-condition), which is derived
from the control flow of the program. A more detailed description of this symbolic representation is
presented in [7].

The domain of symbolic values (we call it a term domain) requires DIVINE to be augmented
with an SMT solver form a suitable theory. For scalars in C programs, we use the bitvector theory.
DIVINE uses the solver to detect computations that have reached the bottom of the term domain (those
are the infeasible paths through the program). Furthermore, as a model checker, it needs to identify
equal states or whether the state subsumes another one. This is achieved by the equivalence check
of corresponding formulae. With these prerequisites, the symbolic representation in joint with the
bit-vector theory is a precise abstraction (i.e., it is not an approximation but models the program
state faithfully).

7.2. Concrete Characters, Symbolic Bounds

In the evaluation, we instantiate the M-String domain in two ways. The first simpler instantiation
sets the domain of characters C to be the concrete domain (i.e., we let the characters be represented by
themselves). We let the domain of segment bounds B to be a symbolic 32b integers. This instantiation
balances between simplicity on the one hand (both domains we used for parameters were already
present in DIVINE) and the ability to describe strings with undetermined length and structure.

At the implementation level (as described in more detail in the following section), the domain
remains generic: the particular domains we picked can be easily substituted by other domains.
Compared to the theoretical description of M-String, the implementation uses a slightly simplified
representation of segmentation by a pair of arrays (cf. Figure 3). The elements of these arrays are
characters and bounds, whose type is derived from parametrization, i.e., from the scalar domains C
and B. The modification of the representation is just optimization for the implementation and does not
affect the operations’ semantics. The analysis with this representation is presented in Example 14.

a . . . a c . . . c \0 a . . . \0 . . .

segment

b1 b2 b3 b4 b5 b6 Characters:

a c \0 a \0

Bounds:

b1 b2 b3 b4 b5 b6

Figure 3. M-String value with symbolic bounds, where string of interest is from b1 to b3.

This instantiation of M-String is particularly suitable for representing strings with sequences of
a single character of variable length, i.e., the strings of the form akblcm . . . where relationships between
k, l, m, . . . can be specified using standard arithmetic and relational operators and each of a, b, c is
a concrete letter. This, in turn, allows M-String to be used for the analysis of program behavior on
broad classes of input strings described this way. A more detailed description of this approach can be
found in Section 8.

Example 14. Simple program analysis with symbolic bounds and concrete characters:

1 mstring str = abstract_string(x,b1 ,\0,b2,y,b3 ,\0,b4);
2 symbolic idx = abstract_int ();
3 if (idx < b4) {
4 str[idx] = 'y';
5 symbolic len = abstract_strlen(str);
6 }

Imagine we are given symbolic bounds b1 < b2 < b3 < b4, then the first line of the transformed program
creates mstring value with characters [x, \0, y, \0] and bounds [0, b1, b2, b3, b4]. In the following, we describe
mstring values as pairs of these two arrays. The second line creates a symbolic index of arbitrary value. On line
3, the program constraints the index to be smaller than mstring maximal length. Otherwise, the update on

Appl. Sci. 2020, 10, 7853 26 of 33

the next line would yield an error. Next the program assigns to the position of abstract index a character y.
The assignment is implemented as update operation on mstring value. Depending on the value of the idx,
the operations results in the following strings strx, as result we join all possibilities:

1. if idx < b1 : idx falls to the first segment: str1 = ([x, y, x, \0, y, \0], [0, idx, idx + 1, b1, b2, b3, b4])
and creates a new segment between idx and idx + 1 containing character y. Notice that if idx = 0 the
first segment is empty, similarly the third segment for idx + 1 = b1. The string of interest for str1 is of
form xidxy1xb1–idx–1.

2. if b1 ≤ idx < b2 : than str2 = ([x, \0, y, \0, y, \0], [0, b1, idx, idx + 1, b2, b3, b4]), with string of
interest as join of following forms:

• if the update is performed right after the first segment, i.e., idx = b1:

– if and
∣∣∣b1 – b2

∣∣∣ > 1, i.e., the segment of zeros contains more elements, then the string has form

xb1y,
– otherwise the update overwrites the single zero character, hence extends the string of interest by

segment of y characters: xb1yb3–b1 .

• otherwise between first segment and idx is a terminating zero, hence the string of interest remains
unchanged: xb1 .

3. if b2 ≤ idx < b3 : than str3 = str, because update stores the same character as is already present in the
segment.

4. if b3 ≤ idx < b4 : than update creates a new segment inside of sequence of last zeros: str4 =
([x, \0, y, \0, y, \0], [0, b1, b2, b3, idx, idx + 1, b4]).

Consequently, the abstract_strlen operation on the last line of the program computes the join of all
possible lengths of strings of interest, i.e., b1 ∪ b3.

7.3. Symbolic Characters, Symbolic Bounds

The second instantiation is used in benchmarks, where the computation with M-String values
encountered abstract scalars (characters). This occurs when the program obtains some character as
input from the environment and tries to store it into the M-String value. Therefore, we instantiated
the M-String domain with an abstract representation of characters by setting the domain C to be
the term domain, which keeps track of symbolic 8b bitvectors (characters in C language). In this way,
we do not need to lower abstract characters before storing them to the M-Strings, what was needed for
the concrete domain used in the previous instantiation. However, we pay the price for more expensive
computation with symbolic characters.

7.4. Implementation

Finally, we implemented the M-String abstraction as a LART domain. The implementation,
with examples and documentation of domain usage, can be found online on the supplementary
page https://divine.fi.muni.cz/2020/mstring. The LART domain is a C++ library that implements
abstract semantics of M-String operations presented in Section 5. Such a library is then linked to the
transformed program allowing the program to perform abstract analysis with model-checker DIVINE.
An abstract domain definition in LART consists of a C++ class that describes both the representation
(in terms of data) and the operations (in terms of code) of the abstract domain.

In the case of M-String domain, this class contains 2 attributes: an array of bounds and an array
of characters, as outlined in Section 7.2 and depicted in Figure 3. The class has two type parameters:
the domain to use for representing segment bounds and the domain to represent individual characters
(i.e., the content of segments). A specific instantiation is then automatically derived by the C++ compiler
from the classes which represent the type parameters and the parametric class which represents
M-String values.

https://divine.fi.muni.cz/2020/mstring/

Appl. Sci. 2020, 10, 7853 27 of 33

As a minimal set of operations, the M-String domain implements all requisite aggregate operations:
these are lift, update and access. Furthermore, the implementation provides an optimized version
of string operations described in Sections 5: strlen, strcpy, strcat, strcmp and strchr. These
operations reduce the loss of abstraction precision that would arise if only the abstraction of accesses
and updates from strings were used.

Since C strings are stored, in fact, as shared, mutable character arrays, the implementation of
the M-String domain needs to reflect the sharing semantics of such arrays. If multiple pointers exist into
the same abstract string, modifications through one such pointer must be also visible when the string
is accessed through another pointer. Moreover, the pointers do not have to be equal: they may point to
different suffixes of the same string. Therefore, the representation of pointers to abstract strings must
treat the object and the offset components separately (see also Section 6.3), and the representation of
the offset component must be compatible with the bound domain B.

8. Experimental Evaluation

In the evaluation, we chose a few scenarios to demonstrate the properties of the abstraction.
In the first scenario, we show that using abstract versions of standard functions is more efficient than
if concrete versions were transformed using only abstract string accesses and updates. The second
scenario investigates several implementations of standard library functions: we transform them
automatically in the means of accesses and updates, and we show that their results agree with results
generated by M-String library operations. In the third scenario, we evaluate M-String instantiation
with symbolic characters on the set of benchmarks from real software that contain buffer-overflow
errors. Here we show that M-String can efficiently detect real-world bugs as well as to prove that
program does not contain them after they are fixed. The last benchmark shows the use of abstractions
on more complex C programs. As an example, we analyze automatically generated parsers from bison
and flex tools on abstract (M-String) inputs. The resource limits for all scenarios were the same: each
verification run was limited to 4 processing units (cores), 80 GB of memory, and 1 hour of CPU time.
The processor used to run benchmarks was AMD EPYC 7371 clocked at 2.60GHz.

8.1. M-String Operations

The first group of benchmarks focuses on the use of resources by abstraction. Benchmarks compare
the effectiveness of abstract domain operations with the automatically abstracted implementation of
standard library functions from PDCLib, a public-domain libc implementation, using only essential
abstract operations: lift, update and access. The results depicted in Table 2 were measured with
parametrized M-String inputs of two kinds (l is a parametric length of the input):

• Word w is a string of the form: w = ci1
1 · c

i2
2 · . . . · cil

l where ∑l
k=1 ik ≤ l and cx is an arbitrary

character from domain C.
• Sequence w is a string of the form w = ci, where i ≤ l and c is a character from domain C.

For each standard library function and input type, we created an isolated benchmark in two
variants: one using an abstract semantics of M-String operations (see Table 2) and the other variant
(Table 3) only with an automatic abstraction of essential aggregate operations.

The first notable difference between automatically abstracted implementations of library functions
and M-String operations is that the analysis of the former timeouts for input strings longer than 64
characters. The main cause of the lifted implementation’s inefficiency is that it has to iterate over all
characters, while M-String operations leverage iteration over larger segments. This difference also
causes a blow-up of the model checker’s state space for the lifted implementations while the state
space size does not change for M-String operations. The reason for this is the fact that the number of
segments does not change with the length of the input. Therefore M-String operations always perform
the same computation independently of the M-String length.

Appl. Sci. 2020, 10, 7853 28 of 33

Table 2. Measurements of M-String operations on two types of inputs: Word and Sequence described in
Section 8.1. Each benchmark measures a size of state space and verification time for input M-Strings of
a given length. Lastly, the table shows an average transformation time (LART). All measurements of
time are in seconds. The size of state space does not change for different lengths of input—for more
details, see discussion in Section 8.1.

Word Sequence
Verification(s) Verification(s)

States 8 64 1024 4096 LART(s) States 8 64 1024 4096 LART(s)

strcmp 3562 480 498 472 481 1.70 70 0.26 0.24 0.21 0.25 1.76
strcpy 368 9.8 9.1 9.3 9.4 1.70 48 0.20 0.20 0.21 0.20 1.71
strcat 7398 898 873 865 843 1.72 105 0.51 0.52 0.53 0.51 1.72
strchr 49 0.3 0.4 0.3 0.3 1.71 15 0.04 0.04 0.03 0.04 1.70
strlen 78 1.1 1.2 1.0 1.3 1.70 16 0.05 0.04 0.05 0.06 1.81

Table 3. Benchmark of standard library functions abstracted using only the M-String definitions of
access and update operations for Sequence inputs of size 8, 64 and 1024 characters. Verification for Word
strings times out in most of the instances.

8 64 1024

Time(s) States Time(s) States Time(s) States

strcmp 1.24 197 260 1597 T –
strcpy 0.7 122 61.5 962 T –
strcat 15.8 1102 T – T –
strchr 0.04 16 0.05 16 0.05 16
strlen 0.19 46 9.57 326 T –

8.2. C Standard Libraries

In the second set of benchmarks (see Table 4), we investigate whether the implementation from
several standard libraries matches the expected results of abstract implementation. In other words,
we perform an equivalence check of results obtained from M-String operations with the results of the
automatically abstracted (originally concrete) standard library functions. We expect that both give
the same results. For the evaluation, we picked three open-source libraries: PDClib, musl-libc and
µCLibc. Since results for the libraries are rather similar, we present here only an evaluation of PDClib
functions. The remaining results are provided in the Supplementary Material. All benchmarks showed
that our implementation matches the standard one.

Table 4. Verification results of functions from PDCLib with timeout of 1 h. Measurements show the size
of state space and verification time for the parametric length of the input.

Word Sequence
4 8 16 4 8 16

Time(s) States Time(s) States Time(s) States Time(s) States Time(s) States Time(s) States

strcmp 14.3 1005 105 2989 1350 9741 2.17 204 5.09 376 16.5 720
strcpy 5.15 515 57.4 1823 912 6935 0.83 183 2.49 347 9.14 675
strcat 468 5748 T – T – 8.56 751 113 2535 1940 9463
strchr 0.08 22 0.08 22 0.08 22 0.3 17 0.3 17 0.4 17
strlen 0.66 91 4.13 259 68.8 883 0.15 34 0.28 54 0.65 94

Similarly, as in the previous case, these benchmarks suffer from the state space blow up caused
by an exponential number of possible character combinations. For this reason, we decreased the size

Appl. Sci. 2020, 10, 7853 29 of 33

of the input strings. In addition to large state space, many string accesses and updates of concrete
implementations result in a large SMT formulae, causing a long time spent in solvers.

Furthermore, notice that the computation analysis with Word input, which has more segments,
results in longer execution times than the analysis with Sequence. The reason is that the more segments
naturally also causes overhead for the analyses. For example, The M-String needs to consider cases
when some segments have zero length: this causes a hard SMT queries because, in the worst case,
it needs to check all possible strings for given segment bounds and characters.

8.3. Veriabs Overflow Benchmarks

In this scenario (see Table 5), we show that the domain is capable of efficient overflow bug finding.
Veriabs benchmarks exhibit overflow errors and fixed variants of real-world software. To soundly
prove correctness of these benchmarks, we instantiate M-string with term domain also for characters.
Hence we can reason about arbitrary strings of a symbolic length. However, as a drawback of this
instantiation is that whenever the length of the string bounds a loop, we might have to unroll the loop
infinitely in the analysis—these cases timeouts in the correct benchmarks.

Table 5. Veriabs overflow benchmarks depict a few categories of programs exhibiting an overflow error
and their fixed variants. The table shows the number of solved benchmarks (tests) and accumulated
time for each category. For each category, the table depicts correctly verified benchmarks, benchmarks
where the verifier was able to find an error and number of timeouts.

Correct Error Found

Tests Time(s) Tests Time(s) Timeout

apache 0 – 26 384.26 24
openser 43 234.13 45 105.93 6
wu-ftpd 8 35.78 14 2461.27 19

libgd 4 9.01 4 1.85 0
madwifi 5 0.51 5 0.55 0

gxine 1 0.53 1 0.25 0

8.4. Parsers

Lastly, we evaluate our implementation on more complex programs: automatically generated
parsers. For the generation, we use a tool Bison. It reads a language specification in the form
of context-free grammar and produces a C parser that accepts the language. In the benchmarks,
we generate two such parsers. The first one accepts a language of numerical expressions (mathematical
expressions that consist of numbers and binary operators). The second parser is of a simple
programming language with variables and branching. We present a evaluation for both parsers in
Table 6. As with the previous benchmark sets, the M-String inputs with a smaller number of segments
outperformed other analyses. In these benchmarks, we use specifically hand-crafted M-String inputs
for parsers. For parsing of mathematical expressions, it was: addition input had a form of two
arbitrary numbers with a plus sign between them, ones was a simple input of a single digit sequence,
and lastly, alternation was input that produced complicated M-Strings by alternating digits inside of
expressions. The other parser of simple programming language was evaluated on: value was in input
that created a variable and assigned a constant to it, loop was a short program with some control flow
and wrong was a program that contained a syntax error.

Appl. Sci. 2020, 10, 7853 30 of 33

Table 6. Measurements of time and size of state space for analyses of automatically generated parsers.

Numeric Expressions Grammar
10 20 35

Time(s) States Time(s) States Time(s) States

add 40.2 416 319 3548 T –
ones 5.54 62 8.12 196 189 2186

alter 708 105 1582 11k T –
value 6.58 38 90.4 488 1100 4988
loop 1.53 23 4.88 23 33.3 23

wrong 7.34 82 67.7 892 311 8992

9. Related Work

Static methods tailored to automatically identify buffer overflows have been extensively studied
in the literature and several inference techniques were proposed and implemented: tainted data-flow
analysis, constraint solvers for various theories (including string theories) and techniques based
on them (e.g., symbolic execution), annotation analysis or string pattern matching analysis [17].
Furthermore, the above mentioned techniques and a large number of bug hunting tools based on static
analysis have been implemented [18–23].

For instance, in [24] authors introduced a backward compatible method of bounds checking of C
programs, which leaves the representation of pointers unchanged, allowing inter-operation between
checked and unchecked code, with recompilation confined to the modules where problems might occur.
The just mentioned feature differentiates the proposed schema from previously existing techniques.
In [20] the static verifier of C strings CSSV is introduced. Contracts are supplied to the tool, which acts
in 4 stages, reducing the problem of checking code that manipulates string to checking code that
manipulates integers. Finally, Splat, described in [25], is a tool that automatically generates test inputs,
symbolically reasoning about lengths of input buffers.

Static code analysis aims at approximating possible behaviours of a program without examining
all of its (possibly infinite) actual executions. By a proper abstraction of data and operations, static
analysis results into an over-approximation of all the possible runs of a program, and its effectiveness
heavily depends on degree of precision of such an abstraction. In particular, the framework of abstract
interpretation [9] can be adopted also to approximate semantics of string operations. The basic,
well-known domain is a string set domain, which simply keeps track of a set of strings and it
is a specific instance of the general (bounded) set domain. Others are the prefix-suffix domain
(which captures the first and the last letter of a string) and the character inclusion domain (which only
tracks the characters that surely or maybe appear in a string). Another general-purpose string domain
is the string hash domain proposed in [26], based on a distributive hash function. More complete
reviews of general-purpose string domains can be found in [11,27].

Most general-purpose domains focus on the generic aspects of strings, without accounting for the
specifics of string handling by the different programming languages. However, it is often beneficial
to consider specific aspects of string representation when designing abstract domains for program
analysis. Referring to the C programming language, [28] has proposed an abstract domain for C
strings which tracks both their length and the buffer allocated size into which they are contained.
Combining it with the cell abstraction [29], such domain is able to describe relations between length of
variables and offsets of pointers. Amadini et al. [27] have evaluated several abstract string domains
(and their combinations) for analysis of JavaScript programs. In [30] was defined the simplified regular
expression domain for JavaScript analysis too. In addition to theoretical work, a number of tools
based on the above mentioned abstract domains and their combinations have been designed and
implemented [30–33]. While dynamic languages heavily rely on strings and their analysis benefits
greatly from tailored abstract domains, the specifics of the C approach to strings also earns attention.

Appl. Sci. 2020, 10, 7853 31 of 33

10. Conclusions

A new segmentation-based abstract domain for approximating C strings has been introduced,
whose main novelty lies in abstracting both index bounds and substrings while managing strings as a
pair of two string buffers: the string of interest itself, and a tail of allocated and possibly initialized but
unused memory.

The presented approach enables a more precise modelling of the functions in the standard C
library for strings, considering also the known weaknesses for the management of terminating null
characters and buffer bounds. The M-string domain results effective for identifying security leaks
caused by string manipulation errors, e.g., buffer overflows.

After theoretically describing the domain and the basic operations on strings, we implemented
(using C++ language) the abstract semantics combining them with a tool that starting from
string-manipulating C codes lifts them to the M-String domain. Our experimental results also focused
on tuning the parameters of M-String (the domains for both segment content and segment bounds) by
instantiating them by both concrete and symbolic characters and by symbolic (bitvector) bounds.

As a future work, we plan to further enhance the effectiveness of the M-String domains by
combining it by reduced product with other either numerical or symbolic domains.

Supplementary Materials: The supplementary materials at https://divine.fi.muni.cz/2020/mstring contain
binary distribution and sources of extended model-checker DIVINE, which is open source software distributed
under the ISC license.

Author Contributions: All authors contributed substantially to the work reported. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been partially supported by the Czech Science Foundation grant No. 18-02177S.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cass, S. The Top Programming Languages 2019. IEEE Spectr. Mag. 2019. Available online: https://spectrum.
ieee.org/computing/software/the-top-programming-languages-2019 (accessed on 10 February 2020).

2. Bultan, T.; Yu, F.; Alkhalaf, M.; Aydin, A. String Analysis for Software Verification and Security; Springer:
Berlin/Heidelberg, Germany, 2017.

3. One, A. Smashing the Stack for Fun and Profit. Phrack Magazine, 8 November 1996.
4. Cortesi, A.; Olliaro, M. M-String Segmentation: A Refined Abstract Domain for String Analysis in

C Programs. In Proceedings of the Theoretical Aspects of Software Engineering—12th International
Symposium (TASE 2018), Guangzhou, China, 29–31 August 2018. [CrossRef]

5. Cortesi, A.; Lauko, H.; Olliaro, M.; Rockai, P. String Abstraction for Model Checking of C Programs.
In Proceedings of the Model Checking Software—26th International Symposium (SPIN 2019), Beijing, China,
15–16 July 2019; pp. 74–93. [CrossRef]

6. Cousot, P.; Cousot, R.; Logozzo, F. A Parametric Segmentation Functor for Fully Automatic and Scalable
Array Content Analysis. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2011), Austin, TX, USA, 26–28 January 2011; pp. 105–118. [CrossRef]

7. Lauko, H.; Rockai, P.; Barnat, J. Symbolic Computation via Program Transformation. In Proceedings of the
Theoretical Aspects of Computing—15th International Colloquium (ICTAC 2018), Stellenbosch, South Africa,
16–19 October 2018; pp. 313–332. [CrossRef]

8. Baranová, Z.; Barnat, J.; Kejstová, K.; Kucera, T.; Lauko, H.; Mrázek, J.; Rockai, P.; Still, V. Model Checking of
C and C++ with DIVINE 4. In Proceedings of the Automated Technology for Verification and Analysis–15th
International Symposium (ATVA 2017), Pune, India, 3–6 October 2017; pp. 201–207. [CrossRef]

9. Cousot, P.; Cousot, R. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Proceedings of the Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles, CA, USA, 17–19 January 1977;
pp. 238–252. [CrossRef]

https://divine.fi.muni.cz/2020/mstring
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
http://dx.doi.org/10.1109/TASE.2018.00009
http://dx.doi.org/10.1007/978-3-030-30923-7_5
http://dx.doi.org/10.1145/1926385.1926399
http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-319-68167-2_14
http://dx.doi.org/10.1145/512950.512973

Appl. Sci. 2020, 10, 7853 32 of 33

10. Cousot, P.; Cousot, R. Systematic Design of Program Analysis Frameworks. In Proceedings of the Conference
Record of the Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, TX,
USA, 29–31 January 1979; pp. 269–282. [CrossRef]

11. Costantini, G.; Ferrara, P.; Cortesi, A. A Suite of Abstract Domains for Static Analysis of String Values.
Softw. Pract. Exper. 2015, 45, 245–287. [CrossRef]

12. Cousot, P.; Cousot, R. Abstract Interpretation Frameworks. J. Log. Comput. 1992, 2, 511–547, [CrossRef]
13. Cortesi, A.; Zanioli, M. Widening and Narrowing Operators for Abstract Interpretation. Comput. Lang.

Syst. Struct. 2011, 37, 24–42. [CrossRef]
14. Gange, G.; Navas, J.A.; Schachte, P.; Søndergaard, H.; Stuckey, P.J. Abstract Interpretation over Non-lattice

Abstract Domains. In Proceedings of the Static Analysis—20th International Symposium (SAS 2013),
Seattle, WA, USA, 20–22 June 2013; Logozzo, F., Fähndrich, M., Eds; Springer: Berlin/Heidelberg, Germany,
2013; Volume 7935, pp. 6–24. [CrossRef]

15. Seacord, R.C. Secure Coding in C and C++, 2nd ed.; Addison-Wesley Professional: Boston, MA, USA, 2013.
16. Lattner, C.; Adve, V. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In Proceedings of the International Symposium on Code Generation and Optimization (CGO’04),
San Jose, CA, USA, USA, 20–24 March 2004. [CrossRef]

17. Shahriar, H.; Zulkernine, M. Classification of Static Analysis-Based Buffer Overflow Detectors.
In Proceedings of the Fourth International Conference on Secure Software Integration and Reliability
Improvement (SSIRI 2010), Singapore, 9–11 June 2010; pp. 94–101. [CrossRef]

18. Xie, Y.; Chou, A.; Engler, D.R. ARCHER: Using symbolic, path-sensitive analysis to detect memory access
errors. In Proceedings of the 11th ACM SIGSOFT Symposium on Foundations of Software Engineering 2003
Held Jointly with 9th European Software Engineering Conference, Helsinki, Finland, 1–5 September 2003;
pp. 327–336. [CrossRef]

19. Wagner, D.A.; Foster, J.S.; Brewer, E.A.; Aiken, A. A First Step Towards Automated Detection of Buffer
Overrun Vulnerabilities. In Proceedings of the Network and Distributed System Security Symposium,
San Diego, CA, USA, 23–26 February 2020.

20. Dor, N.; Rodeh, M.; Sagiv, S. CSSV: Towards a Realistic Tool for Statically Detecting All Buffer Overflows
in C. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation 2003, San Diego, CA, USA, 9–11 June 2003; pp. 155–167. [CrossRef]

21. Evans, D.; Larochelle, D. Improving Security Using Extensible Lightweight Static Analysis. IEEE Softw.
2002, 19, 42–51. [CrossRef]

22. Holzmann, G.J. UNO: Static Source Code Checking for UserDefined Properties. In Proceedings of
the 6th World Conference on Integrated Design and Process Technology, IDPT’02, Pasadena, CA, USA,
23–28 June 2002.

23. MathWorks. Polyspace. 2001. Available online: https://www.mathworks.com/products/polyspace.html
(accessed on 10 February 2020).

24. Jones, R.W.M.; Kelly, P.H.J. Backwards-Compatible Bounds Checking for Arrays and Pointers in C Programs.
Presented at AADEBUG, Linkoping, Sweden, 26–27 May 1997; pp. 13–26.

25. Xu, R.; Godefroid, P.; Majumdar, R. Testing for Buffer Overflows with Length Abstraction. In Proceedings
of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, USA,
20–24 July 2008; pp. 27–38. [CrossRef]

26. Madsen, M.; Andreasen, E. String Analysis for Dynamic Field Access. In Proceedings of the Compiler
Construction—23rd International Conference, CC 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, Grenoble, France, 5–13 April 2014; pp. 197–217. [CrossRef]

27. Amadini, R.; Jordan, A.; Gange, G.; Gauthier, F.; Schachte, P.; Søndergaard, H.; Stuckey, P.J.; Zhang, C.
Combining String Abstract Domains for JavaScript Analysis: An Evaluation. In Proceedings of the European
Joint Conferences on Theory and Practice of Software, Uppsala, Sweden, 22–29 April 2017; pp. 41–57.
[CrossRef]

28. Journault, M.; Miné, A.; Ouadjaout, A. Modular Static Analysis of String Manipulations in C Programs.
In Proceedings of the Static Analysis—25th International Symposium, Freiburg, Germany, 29–31 August
2018; pp. 243–262. [CrossRef]

http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1002/spe.2218
http://dx.doi.org/10.1093/logcom/2.4.511
http://dx.doi.org/10.1016/j.cl.2010.09.001
http://dx.doi.org/10.1007/978-3-642-38856-9_3
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/SSIRI-C.2010.28
http://dx.doi.org/10.1145/940071.940115
http://dx.doi.org/10.1145/781131.781149
http://dx.doi.org/10.1109/52.976940
https://www.mathworks.com/products/polyspace.html
http://dx.doi.org/10.1145/1390630.1390636
http://dx.doi.org/10.1007/978-3-642-54807-9_12
http://dx.doi.org/10.1007/978-3-662-54577-5_3
http://dx.doi.org/10.1007/978-3-319-99725-4_16

Appl. Sci. 2020, 10, 7853 33 of 33

29. Miné, A. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics.
In Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’06), Ottawa, ON, Canada, 14–16 June 2006; pp. 54–63. [CrossRef]

30. Park, C.; Im, H.; Ryu, S. Precise and Scalable Static Analysis of jQuery Using a Regular Expression
Domain. In Proceedings of the 12th Symposium on Dynamic Languages, Amsterdam, The Netherlands,
1 November 2016; pp. 25–36. [CrossRef]

31. Spoto, F. The Julia Static Analyzer for Java. In Proceedings of the Static Analysis—23rd International
Symposium, Edinburgh, UK, 8–10 September 2016; pp. 39–57. [CrossRef]

32. Jensen, S.H.; Møller, A.; Thiemann, P. Type Analysis for JavaScript. In Proceedings of the 16th International
Static Analysis Symposium, Los Angeles, CA, USA, 9–11 August 2009; pp. 238–255. [CrossRef]

33. Kashyap, V.; Dewey, K.; Kuefner, E.A.; Wagner, J.; Gibbons, K.; Sarracino, J.; Wiedermann, B.; Hardekopf, B.
JSAI: A Static Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China, 16–22 November 2014;
pp. 121–132. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1134650.1134659
http://dx.doi.org/10.1145/2989225.2989228
http://dx.doi.org/10.1007/978-3-662-53413-7_3
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1145/2635868.2635904
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Paper Contribution
	Paper Structure

	Prerequisites
	Abstract Interpretation
	Fun Array
	Array Concrete Semantics
	Array Segmentation Abstract Domain Functor

	Syntax
	Concrete Domain and Semantics
	Character Array Concrete Semantics
	String of Interest

	Concrete Domain
	Concrete Semantics
	Array Access
	String Concatenation
	String Character
	String Compare
	String Copy
	String Length
	Array Update

	M-String
	Character Array Abstract Domain
	Abstraction
	Concretization

	Abstract Semantics
	Abstract Array Access
	Abstract String Concatenation
	Abstract String Character
	Abstract String Compare
	Abstract String Copy
	Abstract String Length
	Abstract Array Update

	Soundness

	Program Abstraction
	Compilation-Based Approach
	Syntactic Abstraction
	Aggregate Domains
	Semantic Abstraction
	Abstract Operations

	Instantiating M-String
	Symbolic Scalar Values
	Concrete Characters, Symbolic Bounds
	Symbolic Characters, Symbolic Bounds
	Implementation

	Experimental Evaluation
	M-String Operations
	C Standard Libraries
	Veriabs Overflow Benchmarks
	Parsers

	Related Work
	Conclusions
	References

