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Abstract: Although there are well established object detection methods based on static images,
their application to video data on a frame by frame basis faces two shortcomings: (i) lack of
computational efficiency due to redundancy across image frames or by not using a temporal and
spatial correlation of features across image frames, and (ii) lack of robustness to real-world conditions
such as motion blur and occlusion. Since the introduction of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2015, a growing number of methods have appeared in the
literature on video object detection, many of which have utilized deep learning models. The aim
of this paper is to provide a review of these papers on video object detection. An overview of the
existing datasets for video object detection together with commonly used evaluation metrics is first
presented. Video object detection methods are then categorized and a description of each of them
is stated. Two comparison tables are provided to see their differences in terms of both accuracy
and computational efficiency. Finally, some future trends in video object detection to address the
challenges involved are noted.

Keywords: video object detection; review of video object detection; deep learning-based video
object detection

1. Introduction

Video object detection involves detecting objects using video data as compared to conventional
object detection using static images. Two applications that have played a major role in the growth of
video object detection are autonomous driving [1,2] and video surveillance [3,4]. In 2015, video object
detection became a new task of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC2015) [5].
With the help of ILSVRC2015, studies in video object detection have further increased.

Earlier attempts in video object detection involved performing object detection on each image
frame. In general, object detection approaches can be grouped into two major categories: (1) one-stage
detectors and (2) two-stage detectors. One-stage detectors (e.g., [6–12]) are often more computationally
efficient than two-stage detectors (e.g., [13–21]). However, two-stage detectors are shown to produce
higher accuracies compared to one-stage detectors.

However, using object detection on each image frame does not take into consideration the
following attributes in video data: (1) Since there exist both spatial and temporal correlations between
image frames, there are feature extraction redundancies between adjacent frames. Detecting features in
each frame leads to computational inefficiency. (2) In a long video stream, some frames may have poor
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quality due to motion blur, video defocus, occlusion, and pose changes [22]. Detecting objects from
poor quality frames leads to low accuracies. Video object detection approaches attempt to address the
above challenges. Some approaches make use of the spatial-temporal information to improve accuracy,
such as fusing features on different levels, e.g., [22–25]. Some other approaches focus on reducing
information redundancy and improving detection efficiency, e.g., [26–28].

Initially, video object detection approaches have relied on handcrafted features, e.g., [29–42].
With the rapid development of deep learning and convolutional neural networks, deep learning models
have been shown to be more effective than conventional approaches for various tasks in computer
vision [43–50], speech processing [51–55], and multi-modality signal processing [56–61]. A number
of deep learning-based video object detection approaches were developed after the ILSVRC2015
challenge. The training is normally done offline. The testing phase on modern GPUs even of complex
networks has been shown to meet the 30 frames per sec rate of video, e.g., [26], allowing the real-time
deployment of networks.

The great value of video object detection approaches is further presented in some specific
applications. For example, hand segmentation [62,63] is well realized with the help of the optical flow
to enhance the feature maps as per the video object detection method [28]. Human pose estimation in
videos [64] is another successful application, which draws lessons from [22,28] to solve the motion
blur, occlusion and other specific challenges occurring in videos. Furthermore, instance-level human
parsing [65] starts from the similar approaches. Mutual assistance of tracking and detection [26] is well
employed in multiple people tracking [66].

Deep learning-based video object detection approaches can be divided into flow
based [22,27,28,67–69], LSTM (Long Short Term Memory)-based [70–73], attention-based [25,74–77],
tracking-based [26,78–82] and other methods [36,83–90]. A review of these approaches is provided in
this paper.

Section 2 covers the existing datasets and evaluation metrics for video object detection. Then,
in Section 3, the existing video object detection approaches are described. The accuracy and processing
time of these approaches are compared in Section 4. Section 5 mentions the future trends or needs
relating to video object detection. Finally, the conclusion is stated in Section 6.

2. Datasets and Evaluation Metrics

2.1. Datasets

Many datasets have been provided for specific applications [91–93]. For video object detection,
the most commonly used dataset is the ImageNet VID dataset [5], which is a prevalent benchmark
for video object detection. The dataset is split into a training set and a validation set, containing
3862 video snippets and 555 video snippets, respectively. The video streams are annotated on each
frame at the frame rate of 25 or 30 fps. In addition, this dataset contains 30 object categories, which are
a subset of the categories in the ImageNet DET dataset [93].

In the ImageNet VID dataset, the number of objects in each frame is small compared with
the datasets used for static image object detection such as COCO [92]. Though the ImageNet VID
dataset is widely used, it has limitations in fully reflecting the effect of various video object detection
methods. In [94], a large-scale dataset named YouTube-BoundingBoxes (YT-BB) was provided, which is
human-annotated at one frame per s on video snippets from YouTube with high accuracy classification
labels and tight bounding boxes. YT-BB contains approximately 380,000 video segments with 5.6 million
bounding boxes of 23 object categories, which is a subset of the COCO label set. However, the dataset
contains only 23 object categories and the image quality is relatively low due to its collection by
hand-held mobile phones.

In 2018, a dataset named EPIC KITCHENS was provided in [95], which consists of 32 different
kitchens in 4 cities with 11,500,000 frames containing 454,158 bounding boxes spanning 290 classes.
However, its kitchen scenario poses limitations on performing generic video object detection. Moreover,
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there exist the following other datasets that reflect specific applications: the DAVIS dataset [96] for
object segmentation, CDnet2014 [97] for moving object detection, VOT [98] and MOT [99] for object
tracking, Sports-1M data set [100] with segment-level annotations, HMDB-51 data set [101] with
segment-level annotations for various human action categories, TRECVID [102] for video retrieval and
indexing, the Caltech Pedestrian Detection data set [103] for pedestrian detection, and the PASCAL
VOC dataset [104,105] for object detection. In addition, some works based on semi-supervised or
unsupervised methods have been considered in [106–109].

For video object detection with classification labels and tight bounding boxes annotation,
currently there exists no public domain dataset offering dense annotations for various complex
scenes. To enable the advancement of video object detection, more effort is thus needed to establish
comprehensive datasets.

2.2. Evaluation Metrics

The metric mean Average Precision (mAP) is extensively used in conventional object detection,
which provides a performance evaluation in terms of regression and classification accuracies [9–15,17].
The evaluation metric mAP represents the mean Average Precision. The definition is the mean of
the Average Precision of each category. As per the PASCAL Visual Object Classes Challenge 2012
(VOC2012) Development Kit, it is computed as follows:

(1) The Precision/Recall curve is obtained first. For the Recall (r), the Precision is set to the maximum
Precision achieved for any Recall r′ ≥ r.

(2) The area under the Precision/Recall curve is considered to be the Average Precision (AP). The mean
of AP in each category is mAP.

Prior to 2010, AP used to be computed by sampling the curve at a set of uniformly spaced
Recall (0, 0.1, 0.2, . . . , 1) and then computing the average of the corresponding Precision value.
More specifically, Recall = TP

TP+FN and Precison = TP
TP+FP , where the definitions of TP, FP and FN

appear in Table 1.

Table 1. Definitions of TP, FP, TN and FN.

Label is True. Label is False.

Prediction is true. True positive (TP) False positive (FP)
Prediction is false. False negative (FN) True negative (TN)

When the IoU is larger than a set threshold, the prediction is true. That is, IoU =
area(Bgt∩Bp)
area(Bgt∪Bp)

,

where Bgt and Bp indicate the ground truth and prediction box, respectively. More details are stated in
the following example.

The detection results of one category are presented in Table 2, and the number of the objects is 3,
which means that TP + FN = 3. Confidence represents the confidence level of the prediction boxes.
The definition of confidence score is stated in Equation (1) with Pr denoting precision and IoUtruth

pred the
confidence level of the box surrounding the entire object,

confidence score = Pr(object) × IoUtruth
pred ,

Pr(object) ∈ [0, 1].
(1)
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Table 2. Example detection results of one category.

Image Detection Confidence Score TP or FP

1 0.92 TP
2 0.83 TP
3 0.85 FP
4 0.75 TP
5 0.72 FP

The detection results are ranked according to the confidence score, which are shown in Table 3.
The Precision and Recall are computed by the Equation noted above. The Precision/Recall curve of this category
is shown in Figure 1. As a result, AP = A1+A2+A3 =

(
1
3 × 1
)
+
(

2
3 −

1
3

)
×

3
4 +
(
1− 2

3

)
×

3
4 = 83.33% and

mAP is the mean of the AP in each category.

Table 3. Ranked detection results of one category according to the confidence score.

Image Detection Confidence Score TP or FP Precision Recall Maximum Precision for any Recall r
′

≥r

1 0.92 TP 1/1 1/3
13 0.85 FP 1/2 1/3

2 0.83 TP 2/3 2/3 3/4
4 0.75 TP 3/4 3/3 3/45 0.72 FP 3/5 3/3
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For video object detection, mAP is also directly used as an evaluation metric in [22,25,28,72,74].
Based on the object speed, it is labeled as mAP (slow), mAP (medium) and mAP (fast) [22]. This is
done using the average score of IoU (Intersection over Union) of a current frame and 10 frames ahead
and past as follows: slow (score > 0.9), medium (score ∈ [0.7, 0.9]) and fast (score < 0.7).

In [110], it was pointed out that performance cannot be sufficiently evaluated using only Average
Precision (AP), since the temporal nature of video snippets do not get captured by it. In the same
paper, a new metric named Average Delay (AD) was introduced based on the number of frames taken
to detect an object starting from the frame it first appears in. A subset of the ImageNet VID dataset,
named ImageNet VIDT, was considered to verify the effectiveness of AD. It has been reported that
most methods with higher ADs still had good APs or good average detection accuracies. However,
higher ADs also mean that the detection delay is large. In other words, the number of frames from
the frame that the object first appears in is large. If only using AP as the metric to evaluate the
performance of different methods, it becomes challenging to reflect the AD (the number of frames taken
to detect an object starting from the frame it first appears). As a result, AP is not sufficient to reflect
the temporal characteristics of video object detectors and the metric AD provides a complementary
performance indicator.
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3. Video Object Detection Methods

For video object detection, in order to make full use of the video characteristics, different
methods are considered to capture the temporal–spatial relationship. Some papers have considered
the traditional methods [29–42]. These papers heavily rely on the manual design leading to the
shortcomings of low accuracy and the lack of robustness to noise sources. More recently, deep
learning solutions have attempted to overcome these shortcomings. As shown in Figure 2, based
on the utilization of the temporal information and the aggregation of features extracted from video
snippets, video object detectors can be divided into flow-based [22,27,28,67–69], LSTM-based [70–73],
attention-based [25,74–77], tracking-based [26,78–82] and other methods [36,83–90]. These methods
are described in more detail below.
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3.1. Flow-Based

Flow-based methods use optical flow in two ways. In order to save computation, in the first way
as discussed in [28] (DFF (DFF is the acronym standing for Deep Feature Flow for Video Recognition
in reference [28]. Similarly, other acronyms appear in the references indicated)), optical flow is used
to propagate features from key frames to non-key frames. In the second way, as discussed in [22]
(FGFA), optical flow is used to make use of the temporal–spatial information between adjacent frames
to enhance the features of each frame. In the second way, higher detection accuracies but lower speeds
are reported. As a result, attempts were made to combine both of these ways in [68] (Impression
Network), [69] (THP) and [27] (THPM). To obtain the difference between adjacent frames and utilize
the temporal–spatial information at the pixel level, an optical flow algorithm was proposed in [29].
In [111], the optical flow estimation was achieved by using the deep learning model of FlowNet.

For video object detection, it is challenging to apply the state-of-the-art object detection approaches
for still images directly to each image frame in video data for the reasons stated earlier. Therefore, based
on FlowNet, the DFF method was proposed in [28] to address these shortcomings: (i) computation time
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of feature map extraction for each frame in video, (ii) similarity of features obtained on two adjacent
frames, (iii) propagation of feature maps from one frame to another. In [28], a convolutional neural
sub-network, ResNet-101, was employed to extract the feature map on sparse key frames. Features on
non-key frames were obtained by warping the feature map on key frames with the flow field generated
by FlowNet [111] instead of getting extracted by ResNet-101. The framework is shown in Figure 3.
This method accelerates the object detection on non-key frames. On the ImageNet VID dataset [5], DFF
achieved an accuracy of 73.1% mAP with 20 fps, while the baseline accuracy on a single frame was
73.9% with 4 fps. This method significantly advanced the practical aspect of video object detection.
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In [22], a flow-guided feature aggregation (FGFA) method was proposed to improve the detection
accuracy due to motion blur, rare poses, video defocus, etc. Feature maps were extracted on each
frame in video using ResNet-101 [112]. In order to enhance the feature maps of a current frame,
the feature maps of its nearby frames were warped to the current frame according to the motion
information obtained by the optical flow network. The warped feature maps and extracted feature
maps on the current frame were then inputted into a small sub-network to obtain a new embedding
feature, which was used for a similarity measure based on the cosine similarity metric [113] to compute
the weights. Next, the features were aggregated according to the weights. Finally, the aggregated
feature maps were inputted into a shallow detection-specific sub-network to obtain the final detection
outcome on the current frame. The framework of FGFA is shown in Figure 4. Based on the ImageNet
VID dataset, FGFA achieved an accuracy of 76.3% mAP with 1.36 fps, which was higher than DFF.

Although the feature fusion method of FGFA improved the detection accuracy, it considerably
increased the computation time. On the other hand, feature propagation methods showed improved
computational efficiency but at the expense of reduced detection accuracy. In 2017, a so-called
Impression Network [68] was developed to improve the performance in terms of both accuracy and
computational speed simultaneously. Inspired by the idea that humans do not forget the previous
frames when a new frame is observed, sparse key-frame features were aggregated with other key
frames to improve the detection accuracy. Feature maps of non-key frames were also obtained by a
feature propagation method similar to that in [28] with the assistant of a flow field. As a result, feature
propagation to obtain the features of the non-key frames improved the inference computation speed.
The feature aggregation method on the key frames used a small fully convolutional network to obtain
the weight maps on each localization, which was different from the method in [22]. The Impression
Network achieved 75.5% mAP accuracy at 20 fps on the ImageNet VID dataset.
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Besides Impression Network, in [69], another combination method (THP) was introduced. Noting
that all of the above methods utilized fixed interval key frames, this method introduced a temporally
adaptive key frame scheduling to further improve the trade-off between speed and accuracy. Fixed
interval key frames pose a difficulty to control the quality of key frames. With temporally adaptive key
frame scheduling, the fixed interval key frames were adjusted in a dynamic manner according to the
proportion of points with poor optical flow quality. If it was greater than a prescribed threshold T,
it would indicate that a current frame had changed too much compared with the previous key frame.
The current frame was then chosen as the new key frame and the feature maps were obtained from it.

According to the results reported in [69], the mAP accuracy was 78.6% with a runtime of 13.0
and 8.6 fps on the GPUs NVIDIA Titan X and K40 (NVIDIA, California, USA) respectively. With a
different T, the mAP slightly decreased to 77.8% at faster speeds (22.9 and 15.2 fps on Titan X and K40,
respectively). Compared with the winning entry [114] of the ImageNet VID challenge 2017, which was
based on feature propagation [28] and aggregation [22], an mAP of 76.8% at 15.4 fps was achieved on
Titan X, and a better performance in terms of both the detection accuracy and speed was obtained
in [69].

Similarly, THPM [27] provided a light weight network architecture for video object detection.
A light image object detector is utilized on key frames. The state-of-the-art lightweight Mobilenet [115]
is utilized as the backbone network. Feature maps from key frames are propagated to non-key
frame for detection by a light flow network. A flow-guided gated recurrent unit (GRU) module is
provided to aggregate features effectively between key frames. On the ImageNet VID dataset, THPM
achieves 60.2% mAP at speed of 25.6 fps on mobiles (e.g., HuaWei Mate 8 produced by HUAWEI
TECHNOLOGIES CO., LTD, China).

3.2. LSTM-Based

In order to make full use of the temporal–spatial information, convolutional long short term
memory (LSTM [116]) was employed to process sequential data in [117] and select important information
for a long duration. The methods reported in [70] and [71] are offline LSTM-based solutions,
which utilize all the frames in the video. While the method in [72] is an online solution, it only uses the
current and previous frames.

In [71], a light model was proposed, which was designed to work on mobile phones and embedded
devices. This method integrated SSD [9] (an efficient object detector network) with the convolutional
LSTM by applying an image-based object detector to video object detection via a convolutional LSTM.



Appl. Sci. 2020, 10, 7834 8 of 24

The convolutional LSTM was a modified version of the traditional LSTM encoding the temporal and
spatial information.

Considering a video snippet as video frames V = {I0, I1, I2, . . . It}, the model is viewed as a
function F(It, St−1) = (Dt, St), where Dt denotes the detection outcome of the video object detector
and St represents a vector of feature maps up to the video frame t. Each feature map of St−1 is the
state input to the LSTM and St is the state output. The state unit St of LSTM contains the temporal
information. LSTM can combine the state unit with input features, adaptively adding the temporal
information to the input features, and updating the state unit at the same time. In [71], it was stated
that such a convolutional LSTM layers could be added to any layer of the original object detector to
refine the input features of the next layer. An LSTM layer could be placed immediately after any feature
map. Placing the LSTM earlier would lead to larger input volumes and much higher computational
costs. In [71], the convolutional LSTM was placed only after the Conv13 layer, which was proved to be
most effective through experimental analysis. This method was evaluated on the ImageNet VID 2015
dataset [5] and achieved a good performance in terms of the model size and computational efficiency
(15 fps on a mobile CPU), with an accuracy comparable to those more computationally demanding
single frame models.

In 2019, the method in [71] was improved in [70] in terms of inference speed. Specifically, as shown
in Figure 5, due to the high temporal redundancy in the video, the model proposed in [70] contained
two feature extractors: a small feature extractor and a large feature extractor. The large feature
extractor with low speed was responsible for extracting the features with high accuracy, while the
small feature extractor with a fast speed was responsible for extracting the features with poor accuracy.
The two feature extractors were used alternately. The feature maps were aggregated using a memory
mechanism with the modified convolutional LSTM layer. Then, a SSD-style [9] detector was applied to
the refined features to obtain the final regression and classification outcome.
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For the methods mentioned above, image object detectors together with a temporal context
information enhancement were employed to detect objects in video. However, for online video object
detection, succeeding frames cannot be utilized. In other words, non-causal video object detectors are
not feasible for online applications. Noting that most video object detectors are non-causal, a causal
recurrent method was proposed in [72] for online detection without using succeeding frames. In this
case, the challenges in terms of occlusion and motion blur remain, which requires the use of temporal
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information. For online video object detection, only the current frame and the previous frame are used.
Based on the optical flow method [111], the short-term temporal information was utilized by warping
the feature maps from the previous frame. However, sometimes image distortion or occlusion would
last for several video frames. By using only the short-term temporal information, it was difficult to
deal with these situations. The long-term temporal context information was also exploited via the
convolutional LSTM, in which the feature maps of the distant preceding frame obtained from the
memory function was propagated to acquire more information. The important sub-network (temporal
Conv LSTM) is shown in Figure 6. Given the feature map at the time step t, the state and output
from the time step t−1, the output Ht and the updated state St at the current time step t are computed
as Equation (2). The long-term temporal information is stored, propagated and employed. Then,
the feature maps extracted on the current frame as well as the warped feature maps and the output of
the LSTM were concatenated to obtain the aggregated feature maps. Finally, the aggregated feature
maps were inputted into a detection sub-network to obtain the detection outcome on the current
frame. By utilizing both the short- and long-term information, this method achieved an accuracy of
75.5% mAP at a high speed on the ImageNet VID dataset, indicating a competitive performance for
online detection.

FGt = σ(WFG ∗ concat(Ft, Ht−1)),
It = σ(WI ∗ concat(Ft, Ht−1)),

Ot = σ(wO ∗ concat(Ft, Ht−1)),
Ct = tanh(wC ∗ concat(Ft, Ht−1)),

St = ( ft × St−1) + (It ×Ct),
Ht = tanh(St) ×Ot.

(2)

where the FGt, It, Ot and Ct denote the output of Forget Gate, Input Gate, Output Gate and the
information branch at the time step t, respectively. Their weights are represented by WFG, WI, WO and
WC. σ(), ×, +, ∗ represent the activation function, element-wise multiplication, element-wise addition
and 3*3 convolutions operations, respectively.
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3.3. Attention-Related

For video object detection, it is known that exploiting the temporal context relationship is quite
important. This relationship needs to be established based on a long-duration video, which requires
a large amount of memory and computational resources. In order to decrease the computational
resources, an attention mechanism was introduced for feature map alignment. This mechanism was
first proposed for machine translation in [118,119] and was then applied to video object detection
in [25,74–77].
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Some methods only take the global or local temporal information into consideration. Specifically,
the method RDN in [75] only makes use of the local temporal information. The methods SELSA in [77],
and OGEMN in [74] only utilize the global temporal information. While the other methods of PSLA
in [76], and MEGA in [25] use both the global and local temporal information.

Relation Distillation Networks (RDN) presented in [75] propagate and aggregate the feature maps
based on object relationships in video. In RDN, ResNet-101 [112] and ResNeXt-101-64 × 4d [120] are
utilized as the backbone to extract feature maps and object proposals are generated with the help of a
Region Proposal Network (RPN) [15]. The feature maps of each proposal on the reference frame are
augmented on the basis of supportive proposals. A prominent innovation in this work is to distill
the relation with multi-stage reasoning consisting of a basic and an advanced stage. In the basic
stage, the supportive proposals consisting of Top K proposals of a current frame and its adjacent
frames are used to measure the relation feature of each reference proposal obtained on the current
frame to generate refined reference proposals. In the advanced stage, supportive proposals with high
objective scores are selected to generate advanced supportive proposals. Features of selected supportive
proposals are aggregated with the relation against all supportive proposals. Then, such aggregated
features are employed to strengthen the reference proposals obtained from the basic stage. Finally,
the aggregated features of reference proposals obtained from the advanced stage are used to generate
the final classification and bounding box regression. In addition, the detection box linking is used in a
post-processing stage to refine the detection outcome. Evaluated on the ImageNet VID dataset, RDN
achieved a detection accuracy of 81.8% and 83.2% mAP, respectively, with ResNet-101 and ResNeXt-101
for feature extraction. With linking and rescoring operations, it achieved an accuracy of 83.8% and
84.7% mAP, respectively.

A module (SELSA) was introduced in [77] to exploit the relationship between the proposals in
the entire sequence level, and then related feature maps were fused for classification and regression.
More specifically, the features of the proposals were extracted on different frames and then a clustering
module and a transformation module were applied. The similarities of the proposals were computed
across frames and the features were aggregated according to the similarities. Consequently, more robust
features were generated for the final detection.

In [74], OGEMN was presented and used object-guided external memory to store the pixel and
instance level features for further global aggregation. In order to improve the storage-efficiency aspect,
only the features within the bounding boxes were stored for further feature aggregation.

In [25], MEGA was introduced, utilizing the global and local information inspired by how humans
go about object detection in video using both global semantic information and local localization
information. For situations when it was difficult to determine what the object was in the current
frame, the global information was utilized to recognize a fuzzy object according to a clear object
with a high similarity in another frame. When it was difficult to find out where the object was in a
frame, the local localization information was used by taking the difference between adjacent frames
if it was moving. More specifically, RPN was used to generate candidate proposals from those local
frames (adjacent frames of current frames) and global frames. Then, a relation module was set up to
aggregate the features of candidate proposals on global frames into that of local frames. This was
named the global aggregation stage. With this method, the global information was integrated into the
local frames. Then, features of the current frame were further augmented by the relation modules
in the local aggregation stage. In order to expand the aggregation scale, an efficient module (Long
Range Memory (LRM)) was designed where all the features computed in the middle were saved and
utilized in a following detection. Evaluated on the ImageNet VID dataset, MEGA with ResNet-101 as
backbone achieved an accuracy of 82.9% mAP. Compared with the competitor RDN, MEGA produced
1.1% improvement. Replacing ResNet-101 with ResNeXt-101 or with a stronger backbone to extract
features, MEGA obtained an accuracy of 84.1% mAP. With the help of post-processing, it achieved 1.6%
and 1.3% improvement with ResNet-101 and ResNeXt-101, respectively.
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The method Progressive Sparse Local Attention (PSLA) was proposed in [76] to make use of the
long term temporal information for enhancement on each feature cell in an attention manner. PSLA
establishes correspondence by propagating features in a local region with a gradually sparser stride
according to the spatial information across frames. Recursive Feature Updating (RFU) and Dense
Feature Transforming (DenseFT) were also proposed based on PSLA to model the temporal relationship
and enhance the features in a framework shown in Figure 7. More specifically, features were propagated
in an attention manner. First, the correspondence between each feature cell in an embedding feature
map of a current frame and its surrounding cells was established with a progressive sparser stride from
the center to the outside of another embedding feature map of a support frame. Second, correspondence
weights were used to compute the aligned feature maps. The feature maps were aggregated with
the aligned features. In addition, similar to other video object detectors, the features of key frames
were propagated to non-key frames. A lightweight network was then applied to extract low-level
features on non-key frames and fuse them with the features propagated from key frames (DenseFT).
Feature propagation was also employed between key frames, and key frame features were updated
recursively by an update network (RFU). Hence, features were enriched by the temporal information
with DenseFT and RFU, which were further used for detection. Based on the experimentations done
in [76], an accuracy of 81.4% mAP was achieved on the ImageNet VID dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 24 

features were enriched by the temporal information with DenseFT and RFU, which were further used 
for detection. Based on the experimentations done in [76], an accuracy of 81.4% mAP was achieved 
on the ImageNet VID dataset. 

 
Figure 7. PSLA (progressive parse local attention) framework [76]. 

3.4. Tracking-Based 

Inspired by the fact that tracking is an efficient way to utilize the temporal information, several 
methods [78,79,81] have been developed to detect objects on fixed interval frames and track them in 
frames in between. The improved methods in [26] and [80] detect interval frames adaptively and 
track the other frames. 

A framework named CDT was presented in [79], combining detection and tracking for video 
object detection. This framework consisted of an object detector, a forward tracker and a backward 
tracker. Initially, objects were detected by the image object detector. Then, each detected object was 
tracked by the forward tracker, and undetected objects were stored by the backward tracker. In the 
entire process, the object detector and the tracker cooperated with each other to deal with the 
appearance and disappearance of objects. 

Another framework named CaTDet with a high computational efficiency was presented in [78]. 
This framework is shown in Figure 8, which includes a tracker and a detector. CaTDet uses a tracker 
to predict the position of objects with a high confidence in a next frame. The processing steps of 
CaTDet are: (i) Every frame is inputted to a proposal network to output potential proposals in the 
frame. (ii) Object position in a next frame is predicted with a high confidence using the tracker. (iii) 
In order to obtain the calibrated object information, the outputs of the tracker and the proposal 
network are combined and inputted to a refinement network. 

 
Figure 8. CaTDet framework [78]. 

Figure 7. PSLA (progressive parse local attention) framework [76].

3.4. Tracking-Based

Inspired by the fact that tracking is an efficient way to utilize the temporal information, several
methods [78,79,81] have been developed to detect objects on fixed interval frames and track them in
frames in between. The improved methods in [26] and [80] detect interval frames adaptively and track
the other frames.

A framework named CDT was presented in [79], combining detection and tracking for video object
detection. This framework consisted of an object detector, a forward tracker and a backward tracker.
Initially, objects were detected by the image object detector. Then, each detected object was tracked
by the forward tracker, and undetected objects were stored by the backward tracker. In the entire
process, the object detector and the tracker cooperated with each other to deal with the appearance
and disappearance of objects.

Another framework named CaTDet with a high computational efficiency was presented in [78].
This framework is shown in Figure 8, which includes a tracker and a detector. CaTDet uses a tracker to
predict the position of objects with a high confidence in a next frame. The processing steps of CaTDet
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are: (i) Every frame is inputted to a proposal network to output potential proposals in the frame.
(ii) Object position in a next frame is predicted with a high confidence using the tracker. (iii) In order
to obtain the calibrated object information, the outputs of the tracker and the proposal network are
combined and inputted to a refinement network.
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More specifically, based on the observation that objects detected in one video frame would most
likely appear in a next frame, a tracker was used to predict the positions on the next frame with the
historical information. In case new objects appeared in a current frame, a computationally efficient
proposal network similar to RPN was utilized to detect proposals. In addition, to address situations
such as motion blur and occlusion, the temporal information was used by a tracker to predict future
positions. The results obtained by combining the tracker and the proposal network was then refined
by a refinement network. Only the regions of interest were refined by the refinement network to save
computation time while maintaining accuracy.

Similar to CDT and CaTDet, recent approaches for the detection and tracking of objects in video
involve rather complex multistage components. In [81], a framework using a ConvNet architecture
was deployed in a simple but effective way by performing tracking and detection simultaneously.
More specifically, first R-FCN [19] was employed to extract the feature maps shared between detection
and tracking. Then, proposals in each frame were obtained by using RPN based on anchors [15]. RoI
pooling [15] was utilized for the final detection. In particular, a regressor was introduced to extend the
architecture. Position-sensitive regression maps from both frames were used together with correlation
maps as the input to an RoI tracking module, in which the box relationship between the two frames
was outputted. For video object detection, the framework in [81] was evaluated on the ImageNet VID
dataset achieving an accuracy of 82.0% mAP.

Similarly, inspired by the observation that object tracking is more efficient than object detection,
a framework (D or T) was covered in [80], see Figure 9, which includes a scheduler network to
determine the operation (detecting or tracking) on a certain frame. Compared with the baseline frame
skipping (detecting on fixed interval frames and tracking on intermediate frames), the scheduler
network with light weights and a simple structure was found to be more effective on the ImageNet
VID dataset. Moreover, the adaptive mechanism in [26] (TRACKING ASSISTED) was used to select
key frames. Detection on key frames involved the utilization of an accurate detection network and
detection on non-key frames was assisted by the tracking module.
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3.5. Other Methods

Apart from the frameworks described above, some methods are presented that are based on a
combination of multiple methods described above [24,121]. The method in [24] is based on the optical
flow and tracking methods. The methods in [121] (Attentional LSTM) and [122] (TSSD) are based on
the attention and LSTM methods.

In addition, these other methods appear in the literature [36,83–90]. The methods in [83] and [87]
discuss ways to align and enhance feature maps. While the method in [90] studied the effect of the
input image size by selecting a size to achieve a better speed-accuracy trade-off. The method in [83]
named STSN (spatiotemporal sampling networks) is shown in Figure 10. This method aligns feature
maps between adjacent frames. Similar to the FGFA method in [22], it relies on the idea that detection
on a single frame would have difficulties dealing with noise sources such as motion blur and video
defocus. Multiple frames are thus utilized for feature enhancement to achieve better performance.
Unlike FGFA, which uses the optical flow method to align feature maps, deformable convolution is
employed for feature alignment in [83]. First, a sharing feature extraction network is applied to extract
feature maps on a current frame and adjacent frames. Then, the two feature maps are concatenated per
channel and a deformable convolution is performed. The result of the deformable convolution is used
as the offset for the second deformable convolution operation to align the feature maps. Furthermore,
augmented feature maps are obtained by aggregating the features in the same way as FGFA. Compared
with FGFA, STSN uses deformable convolution to align the features of two adjacent frames implicitly.
Although it is not as intuitive as the optical flow method, it is also found to be effective. According to
the experimental results reported, STSN still achieved a higher mAP than FGFA (78.9% vs. 78.8%)
without relying on the optical flow information. In addition, without the assistant of the temporal
post-processing, STSN obtained a better performance than the D&T baseline [81], 78.9% vs. 75.8%.
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Different from [83], by using the deformable convolution to propagate the temporal information,
the Spatial-Temporal Memory Network (STMN) was considered in [87], which involved an RNN
architecture with a Spatial-Temporal Memory module (STMM) to incorporate the long-term temporal
information. The Spatial-Temporal Memory Network (STMN) operates in an end-to-end manner to
model the long-term information and align the motion dynamics for video object detection. STMM
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is the core module in STMN, a convolutional recurrent computation unit which fully utilizes the
pretrained weights learned from static image datasets such as ImageNet [93]. This design is essential
to address the practical difficulties of learning from video datasets, which largely lack the diversity
of objects within the same category. STMM receives the feature maps of a current frame at time
step t and the spatial-temporal memory M→t−1 with the information of all the previous frames. Then,
the spatial-temporal memory M→t of the current time step is updated. In order to capture the information
of both later frames and previous frames at the same time, two STMMs are used for bidirectional feature
aggregation to produce the memory M, which is employed for both classification and bounding box
regression. Therefore, the feature maps are propagated and aggregated by combining the information
across multiple video frames. Evaluated on the ImageNet VID dataset, STMN has achieved the current
start-of-the-art accuracy.

All the algorithms described above start from how to propagate and aggregate feature maps.
In [90], video object detection was examined from another point of view. Similar to [123], the effect
of input image size on the performance of video object detection was studied in [90]. Furthermore,
it was found that down-sampling images can obtain better accuracy sometimes. From this point of
view, a framework named AdaScale was proposed to adaptively select the input image size. AdaScale
predicts the best scale or size of a next frame according to the information of a current frame. One of
the reasons for the improvement is that the number of false positives is reduced. The other reason for
this is that the number of true positives is increased by resizing the too-large objects to a suitable size
for the detector.

In [90], the optimal scale (pixels of the shortest side) of a given image is defined with a predefined
finite set of scales S (S = {600, 480, 360, 240} in [90]). Furthermore, a loss function consisting of the
classification and regression loss is employed as the evaluation metric to compare the results across
different scales. The regression loss for the background is expected to be zero. Hence, if the loss
function is utilized directly to evaluate the results across different scales, the image scale which contains
fewer foreground bounding boxes is supported. In order to deal with this issue, a new metric (the loss
function, which focuses on the same number of foreground bounding boxes chosen on different scales)
is employed to compare across different scales. More specifically, the number of bounding boxes
involved to compute the loss is determined by the minimum number (m) on all the scales. For each
scale, the loss of the predicted foreground bounding boxes on the image is sorted in ascending order
and the first m bounding boxes are chosen. The scale m with the minimum loss is defined as the best
scale. Inspired by R-FCN [19] working on deep features for bounding boxes regression, the channels of
the deep features are expected to contain the size information. Therefore, a scale regressor using deep
features is built to predict the optimal scale. Evaluated on the ImageNet VID and mini YouTube-BB
datasets, Adascale achieved 1.3% and 2.7% mAP improvements with 1.6 and 1.8 times speedup
compared with single-scale training and testing, respectively. Furthermore, combined with DFF [28],
the speed was increased by 25% while maintaining mAP on the ImageNet VID dataset.

4. Comparison of Video Object Detection Methods

The great majority of video object detection approaches use the ImageNet VID dataset [5] for
performance evaluation. In this section, the timeline of video object detection methods in recent years
is shown in Figure 11 together with a group listing of the methods in Figure 12. Then, a comparison
is provided between the methods covered in the previous section. The comparison is presented in
Tables 4 and 5, which correspond to with and without post-processing, respectively. The methods in
Figure 11 belong to different groups but the same time, whereas the methods in Figure 12 belong to
different times but the same groups. As can be seen from Figures 11 and 12, the methods based on
optical flow were proposed earlier. During the same period, video object detection methods were
assisted by tracking due to the effectiveness of tracking in utilizing the temporal–spatial information.
The optical flow-based methods needed a large number of parameters and they were only suitable for
small motions. In recent years, the methods based on attention have achieved much success, such as
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MEGA [25]. Using LSTM for feature propagation and aggregation is becoming a hot research topic
and many new methods are being proposed, such as STSN [83] using deformable convolution to align
the feature maps. The latest research is mostly based on attention, LSTM or a combination of methods
such as Flow&LSTM [72].
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Table 4 provides the outcomes without post processing. In this table, the methods are divided
into different groups according to the way temporal and spatial information are utilized. Flow-guided
groups propagate and align the feature maps according to the flow field obtained by optical flow.
Both accuracy and speed of various frameworks are reported in this table. For example, DFF provides
high computational efficiency and achieves a runtime of 20.25 fps using a Titan K40 GPU. FGFA
achieves a high accuracy producing 76.3% mAP with 1.36 fps. Obviously, DFF is faster than FGFA.
Flow-guided methods are intuitive and well understood to propagate features. Optical flow is deemed
suitable for small movement estimation. In addition, since optical flow reflects pixel level displacement,
it has difficulties when it is applied to high-level feature maps. One pixel movement on feature maps
may correspond to 10 to 20 pixels movement.
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Table 4. Comparison among the video object detection methods without post processing; note that
the runtime is based on the NVIDIA GPU used in the references: K means K40, XP means Titan XP,
X means Titan X, V means Titan V, 1060 means GeForce GTX 1060, 1080 Ti means GeForce GTX 1080 Ti,
2080 Ti means GeForce GTX 2080 Ti.

Type Framework Backbone mAP (%) Runtime (fps)

Single frame R-RCN [19] ResNet-101
73.9 4.05 K
70.3 12 XP

Flow based

Impression network [68] Modified ResNet-101 75.5 20 1060
FGFA [22] ResNet-101 76.3 1.36 K
DFF [28] ResNet-101 73.1 20.25 K
THP [69] ResNet-101 + DCN 78.6 13.0X/8.6K

THPM [27] Mobilenet 60.2 25.6 HuaiWei Mate8

LSTM based
Looking fast and slow [70] Interleaved 61.4 23.5 Pixel 3 phone

LSTM-SSD [71] MobilenetV2-SSDLite 53.5 −

Flow&LSTM [72] ResNet-101 75.5 −

Attention based

OGEMN [74] ResNet-101 79.3 8.9 (1080Ti)
ResNet-101 + DCN 80.0 −

PSLA [76] ResNet-101 77.1 30.8V\18.73X
ResNet-101 + DCN 80.0 26.0V\13.34X

SELSA [77] ResNet-101 80.25
−ResNeXt-101 83.11

RDN [75] ResNet-101 81.8 10.6 V100
ResNeXt-101 83.2 −

MEGA [25] ResNet-101 82.9 8.73 2080Ti
ResNeXt-101 84.1 −

Tracking based D&T loss [81] ResNet-101 75.8 7.8X
Track assisted [26] ResNet-101 70.0 30XP

Others
TCNN [24] GoogLeNet 73.8 −

STSN [83] ResNet-101 + DCN 78.9 −

Table 5. Comparison among the video object detection methods with post processing.

Type Framework Backbone mAP (%) Runtime (fps)

Flow-based FGFA [22] ResNet-101 78.4
−Inception-ResNet 80.1

Lstm-based

Looking fast and slow [70] Interleaved + Quantization + Async 59.3 72.3 Pixel 3 phone
MobilenetV2-SSDLite + LSTM (α = 1.4) [71] MobilenetV2-SSDLite 64.1 4.1 Pixel 3 phone
MobilenetV2-SSDLite + LSTM (α = 1.0) [71] MobilenetV2-SSDLite 59.1 −

MobilenetV2-SSDLite + LSTM (α = 0.5) [71] MobilenetV2-SSDLite 50.3 −

MobilenetV2-SSDLite + LSTM (α = 0.35) [71] MobilenetV2-SSDLite 45.1 14.6 Pixel 3 phone

Attention-based

OGEMN [74] ResNet-101 80.8
−ResNet-101 + DCN 81.6

PSLA [76] ResNet-101 78.6 5.7X
ResNet-101 + DCN 81.4 6.31V\5.13X

SELSA [77] ResNet-101 80.54 −

RDN [75] ResNet-101 83.8
−ResNeXt-101 84.7

MEGA [25] ResNet-101 84.5
−ResNeXt-101 85.4

Tracking-based
D&T (τ = 10) [81] ResNet-101 78.6 −

D&T (τ = 1) [81] ResNet-101 79.8 5X
D&T [81] Inception V4 82.0 −

Others
STSN [83] ResNet-101 + DCN 80.4 −

STMN [87] ResNet-101 80.5 −

Inspired by the LSTM-based solutions in natural language processing, LSTM methods are used
to incorporate the sequence information. In the LSTM group, Flow&LSTM [72] achieved the highest
accuracy of 75.5%. Looking Fast and Slow [70] generated high speed but with low accuracy. LSTM
captures the long-term information with a simple implementation. Since the sigmoid activation of the
input and forget gates are rarely completely saturated, a slow state decay and thus loss of long-term
dependence is resulted. In other words, it is difficult to retain the complete previous state in the update.

Attention-based methods also show the ability to perform video object detection effectively. In the
attention-related group, MEGA [25] with ResNeXt-101 as backbone achieved the highest accuracy of
84.1% mAP. As described, it achieved a very high accuracy with a relatively fast speed. Attention-based
methods aggregate the features within proposals that are generated. This decreases the computation
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time. Because of only using the features within the proposals, the performance relies on the effect of
RPN to a certain extent. Here, it is rather difficult to utilize more comprehensive information.

In the tracking-based group, the methods are assisted by tracking. D&T loss [81] achieved
75.8% mAP. Tracking is an efficient method to employ the temporal information with a detector assisted
by a tracker. However, it cannot solve the problems created by motion blur and video defocus directly.
As the detection performance relies on the tracking performance, the detector part suffers from tracking
errors. There are also other standalone methods including TCNN [24], STSN [83] and STMN [87].

In order to further improve the performance in terms of detection accuracy, post-processing can be
added to the above methods. The results with post-processing are shown in Table 5. One can easily see
that with post-processing, the accuracy is noticeably improved. For example, the accuracy of MEGA is
improved from 84.1% to 85.4% mAP.

5. Future Trends

Challenges still remain for further improving the accuracy and speed of the video object detection
methods. This section presents the major challenges and possible future trends as related to video
object detection.

At present, there is a lack of a comprehensive benchmark dataset containing the labels of each
frame. The most widely used dataset, that is ImageNet VID, does not include complex real-world
conditions as compared to the static image dataset COCO. The number of objects in each frame in the
ImageNet VID dataset is limited, which is not the case under real-world conditions. In addition, in many
real-world applications, videos include a large field of view and in some cases high resolution images.
Lack of a well-annotated dataset representing actual or real-world conditions remains a challenge
for the purpose of advancing video object detection. Hence, the establishment of a comprehensive
benchmark dataset is considered a future trend of importance.

Up to now, the most widely used evaluation metric in video object detection is mAP, which is
derived from static image object detection. This metric does not fully reflect the temporal characteristics
in video object detection. Although Average Delay (AD) is proposed to reflect the temporal
characteristics, it is still not a fully developed metric. For example, the stability of detection in
video is not reflected by it. Therefore, novel evaluation metrics to reflect detection stability which are
more suitable for video object detection are considered to be another future trend of importance.

Most of the methods covered in this review paper only utilize the local temporal information or
global information separately. There are only a few methods, such as MEGA, which have used the
local and global temporal information at the same time and achieved a benchmark mAP of 85.4%.
As demonstrated by MEGA, it is worth developing future frameworks which utilize both the local and
global temporal information. Furthermore, for most of the existing video object detection algorithms,
the number of frames used is too small to fully utilize the video information. Hence, as yet another
future trend, it is of importance to develop methods that utilize the long-term video information.

As can be observed from Tables 4 and 5, the attention-based frameworks achieved a relatively
high accuracy. However, such methods pose difficulties for real-time applications demanding very
powerful GPUs. Although the Looking Fast and Slow method [70] achieved 72.3 fps on Pixel 3 phones,
the accuracy is only 59.3%, which poses challenges for actual deployment. Indeed, the trade-off

between accuracy and speed needs to be further investigated. Real-time performance is important for
practical applications such as autonomous driving and video surveillance. It is significant to pay more
attention to the methods to make a light model, while ensuring that the accuracy will not drop too
much. Some light network structure design methods like Depthwise Separable Convolution [115] and
channel shuffle [124] used in the classification application can be used for reference in video object
detection. In addition, model compression methods like [125] can be considered as well.
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6. Conclusions

In recent years, after the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) announced
the video object detection task in 2015, many deep learning-based video object detection solutions have
been developed. This paper has provided a review of the video object detection methods that have been
developed so far. This review has covered the available datasets, evaluation metrics and an overview of
different categories of deep learning-based methods for video object detection. A categorization of the
video object detection methods has been made according to the way temporal and spatial information
are used. These categories include flow-based, LSTM-based, attention-based and tracking-based
methods, as well as others. The performance of various detectors with or without post-processing is
summarized in Tables 4 and 5 in terms of both detection accuracy and computation speed. Several
trends of importance in video object detection have also been stated for possible future works.
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