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Abstract: Connected and automated vehicles (CAVs) as a part of Intelligent Transportation Systems
(ITS) are projected to revolutionise the transportation industry, primarily by allowing real-time
and seamless information exchange of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I).
However, these connectivity and automation are expected to offer vast numbers of benefits,
new challenges in terms of safety, security and privacy also emerge. CAVs continue to rely heavily
on their sensor readings, the input obtained from other vehicles and the road side units to inspect
roadways. Consequently, anomalous reading of sensors triggered by malicious cyber attacks may
lead to fatal consequences. Hence, like all other safety-critical applications, in CAVs also, reliable and
secure information dissemination is of utmost importance. As a result, real time detection of anomaly
along with identifying the source is a pre-requisite for mass deployment of CAVs. Motivated by this
safety concerns in CAVs, we develop an efficient anomaly detection method through the combination
of Bayesian deep learning (BDL) with discrete wavelet transform (DWT) to improve the safety and
security in CAVs. In particular, DWT is used to smooth sensor reading of a CAV and then feed the data
to a BDL module for analysis of the detection and identification of anomalous sensor behavior/data
points caused by either malicious cyber attacks or faulty vehicle sensors. Our numerical experiments
show that the proposed method demonstrates significant improvement in detection anomalies
in terms of accuracy, sensitivity, precision, and F1-score evaluation metrics. For these metrics,
the proposed method shows an average performance gain of 7.95%, 9% 8.77% and 7.33%, respectively
when compared with Convolutional Neural Network (CNN-1D), and when compared with BDL,
the corresponding numbers are 5%, 7.9% 7.54% and 4.1% respectively.

Keywords: connected and automated vehicles; discrete wavelet transform; intelligent transportation
system; Bayesian deep learning; convolution neural network
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1. Introduction

Intelligent transportation (IT) is an emerging technology where a large number of vehicles can
collect, process and communicate information to make collaborative decisions without direct human
intervention [1], through Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications.
Taking into account the enormous benefits expected from vehicular communications and the number
of vehicles (millions worldwide), it is evident that vehicular communications will possibly become the
most important mobile ad hoc network realization. Transportation has tremendous impacts on both
the economic and human assets in this era. From all indications, statistics show that as of 2018, in US
alone traffic accident amounts to a total of 36,473 deaths and traffic congestion resulted in the economic
cost of about 115 billion US Dollars [2]. This impending situation calls for meaningful enhancement of
transportation safety and efficiency. A promising approach to this end is to integrate transportation
systems with information technology in an intelligent fashion, where V2Vs communication networks
have been envisioned as an indispensable component.

Significant efforts have been made by researchers to investigate many aspects of vehicular
communication [3]. The United States’ Federal Communication Commission (FCC) has allocated
75 MHz bandwidth for these applications, usually known as Dedicated Short Range Communications
(DSRCs) and this same initiative has been expected in different parts of the world. The DSRC standards
IEEE 1609.1–IEEE 1609.4 was designed to provide active safety and enhance driver experience [4].
These IEEE standards provide a clear cut definition of physical (PHY) and Medium Access Control
(MAC) layer specifications for DRSC and security standards [3]. The DRSC extends to Society of
Automotive Engineers (SAE) standards, such as J2735 which defines the protocols and application
layers for Vehicular Ad hoc Networks (VANETs). Vehicles are known to generate 15 different messages,
well defined by SAE J2735. Among those messages is the basic safety messages (BSMs) which
communicate important information about the state of the road network, such as acceleration, heading,
global position systems (GPS) data, speed and braking system [5]. BSMs are created at the rate of
10 messages per second (m/s) and contained the required status information so that vehicles can be
aware of their environment and prepare to take action in the event of emergency situation.

The bid for adequate and reliable incorporation of the BSMs in some mission critical, safety and
emergency for improvement in transportation safety and traffic optimization, have raised formidable
research challenges. One of those challenges is security which has so far received limited attention.
For instance, any disruption to this network can potentially have deadly consequences [6]. That is why
disseminated information must be trusted (i.e., correct), and anomaly free. Currently, all the safety critical
information, such as BSMs must be signed to authenticate sender and to verify integrity. However,
an authenticated device might be compromised, tampered by malicious users and passed the information
among the Connected and Automated Vehicles (CAVs) as well as the centralized server in the cloud.
Even worse, malicious users can group to coordinate their efforts to attack the network to inflict a safety
related accidents. As of today, identifying malicious user in these networks is an active research area.

Anomalous behaviour in sensors could emerge in different forms and depictions. Several taxonomies
of network attacks are discussed in the literature. In line with the summary of intrusion or attacks
taxonomy on automated vehicles, the most dangerous attack is false injection attack. In this paper,
three types of anomalous sensor behaviour resulting from both sensor faults and injection attacks are
considered. An anomalous sensor behaviour is represented as follows, according to the literature [7,8]:

1. Instant I: This form of anomaly is simulated as a Gaussian random variable.
2. Bias B: The anomaly is simulated by adding a temporarily offset to the observation, which is

different when compared with the normal sensor reading.
3. Gradual Drift G: This type of anomaly is simulated by linearly adding set of values in

decreasing/increasing order to the base sensor values.

Along with literature, focus on detecting and identifying anomalous activity induced by either
cyber attacks or faulty sensors, resulting in ’instant’, ’bias’ and ’gradual drift.’
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Contributions

The contribution of the paper is summarized as follows:

1. We develop anomaly detection approach through combining Bayesian deep learning (BDL),
with a well established filter techniques , discrete wavelet transform (DWT), applied to time
series BSMs data obtained from multiple sensors.

2. Extensive experimental evaluations are carried out to investigate the effects of anomaly type,
magnitude, duration in single and multiple anomaly scenario (unseen anomaly) in real world
BSMs dataset.

3. We investigate the sensitivity and distribution of the selected anomalous BSMs sensor values
used in the experiment with or without DWT.

The rest of the paper is organised as follows—Section 2 provides a short overview of the
relevant works in progress in the field of anomaly detection and identification in CAVs. Section 3
demonstrates out the different misbehavior scenarios and their respective alert types. Section 4 shows
out the mechanisms used in the detection and identification of anomalous behaviors associated with
cyber-attacks in CAVs networks. In Section 5, presents and discusses the result of our analysis of the
methods on anomalous CAVs readings. Finally, in Section 6, concludes the paper.

2. Related Work

In this section presents the important works and addresses the related research studies to identify
the gaps that need to be taken into consideration for the proposed study question. The recent research
on anomaly detection have created a large amount of literature over the past few years, as it is
challenging topic in many disciplines, including but not limited to automotive [9], environmental
engineering and wireless networks [8]. Methods of anomaly detection are used in a range of
applications including systems for fault detection, diagnosis, monitoring, and intrusion detection [8].
In some scenarios where the cause of an anomaly can be detected easily, effective reconfiguration
control steps can be taken to prevent or reduce potential loss. A variety of methods have been
developed in recent years to detect anomalous behavior, and/or to identify the source of anomaly [7].
For example, in the field of CAVs, current studies conducted, demonstrate the vulnerability of
CAV sensors to cyber-attacks or faults, for example, speed, acceleration, and position sensors.
Sensor behavior with effect to anomaly can be as a result of either sensor failure or malicious
cyber-attack. CAVs have many internal and external cyber-attack surfaces from which adversaries
nodes can act on and exploit [10–12]. Different methods for detection of anomalies include
observer-based, parity relations and parameter calculation methods have been well explored in
the literature [7]. Observer-based (quantitative model-based) detection of faults is among the most
popular approach for faults detection. This approach is based on residual sequence derived from
using mathematical model and (adaptive) threshold. The work in Reference [7] conceived a novel
observer-based approach with comprehensive architecture that combines the adaptive extended
Kalman Filter (AEKF) with a moving vehicle model in detection of faults/malicious activities in
CAVs network. The authors stated that the proposed model could detect different types of anomalies
effectively. However, this approach, is that it is critically affected by uncertainty in noise processing
and it is very sensible to the corruption of outliers [13]. In addition, Kalman Filter based strategy has
some computational burden [14]. The work in Reference [15] shows that bogus message intrusion
and map network attack are two of the most dangerous possible attacks on CAVs. For example,
fake messages may be communicated by the infrastructure, that is, Road Side Unit (RSU) , or a
nearby vehicle, for example, Wireless Access in Vehicular Environment (WAVE) service advertisement,
BSMs, which may in effect generate incorrect, and potentially dangerous responses, for example,
bogus braking. The fake message communication may put CAV passengers and other road users in
life-threatening conditions. The authors of Reference [16], developed anomaly detection mechanism
using entropy-based approaches to detect anomalies in in-vehicle networks. The entropy-based
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approach has been well studied in the literature. This approach relies primarily on the similarity
between characteristics. However, due to the variation of traffic in CAV systems, the Entropy detection
technique is vulnerable to a high rate of false positives [17]. Moreover, research in Reference [8]
developed a methodology that can seamlessly detect anomalies and their sources in real time.
They developed an anomaly detection mechanism by combining deep learning method, in particular
convolutional neural network (CNN) with Kalman Filter-X2 mechanism to detect and identify
anomalous sensor readings in CAV system. However, the second phase of the analysis of the model
may not perform well when subjected to false data injection attacks derived statistically, due to the
independence of statistics characteristics nature of Kalman Filter-X2 [18]. Furthermore, Kalman Filter
is known for being computational intensive [14]. The research in Reference [19] created the VANET
positional attacks by using conventional attack methods and developed a dataset called Veremi (i.e.,
Vehicle Comparison Misbehavior). The authors developed a detection methodology termed Maat3,
which is a detection and fusion framework based on subjective logic. The mechanism is deployed on
false position attacks. Though subjective logic utilizes probabilistic models with an explicit notion of
uncertainty, reputation and computation here depends on the structure of trust framework and often
involves the discarding of information [20]. Again, this method employs a traditional trust technique
with predefined threshold that does not perform well in practice in real time scenario, such as in
vehicular networks [21]. These are severe setbacks. Detection of misbehavior in Reference [22]
includes deployment of smart protection system to secure the external communication of self-driving
cars. The smart system is capable of detecting both grey hole and rushing attack using Intrusion
Detection Based Systems-Based (IDS-based) support vector Machine (SVM) and feed-forward neural
networks (FFNN). The authors of the work found out that SVM seems to be more reliable. However,
this technique is its reliant on the selection of kernel and complex computation in optimization
process [23,24], and they considered only single attack scenario.

The work in Reference [25] addresses the problem of cyber-tracking for a platoon that moves in a
cohesive form along a single lane, and subjected with different kinds of cyber-threats. The authors
proposed a cooperative mechanism that leverage an adaptive synchronization on the basis of
control algorithm that incorporates distributed mitigation mechanism of adversary information.
The cooperative mechanism in form of closed loop stability is analytically demonstrated using
the Lyapunov-Krasovskii theory. A major drawback of this methodology comes as a result of the
analytical methods which are not scalable in real time scenario [26]. In Reference [27], the authors
suggested an intrusion detection approach for user-oriented V2V to protect the network from access
denial, integrity aim, and false warning generation using Greenshield’s model. To evaluate the
trustworthiness of vehicles’s behavior, a series of identification rules related to each attack is utilized.
In fact, a vehicle behaviour evaluation technique is established to determine a vehicle’s level of
trustworthiness. However, this method might not be scalable in high dense network where huge
amount of information is involved, using analytical means [21]. The authors of Reference [28] proposed
a novel trust method using logistic regression to identify events and malicious vehicles. In this context,
the nodes iteratively learn about the environment from received messages and then update the value
of their neighbours’ trust. A drawback of this model is the complex iterations which may likely
result in detection latency. This paper addresses and discusses the drawbacks relative to the cited
works above. Moreover, the paper proposes a data-driven anomaly detection mechanism for CAV
systems that combines DWT, which is a well denoising technique to smooth the CAV sensor values
and Bayesian deep learning (BDL) to learn the normal vehicular behavior, with the aim of identifying
anomalous behaviors. The proposed approach is robust with the aid of DWT and the automatic relevant
determination (ARD) mechanism of BDL, and shows an adequate care of the instances of noise/outliers
that can cause the detection function to exceed the threshold, assuming that the proposed methodology is
devoid of complexity based on the fact that BDL operates with optimized weight as a result of addition
of prior to weight of neural network (NN). In addition, single and multiple anomalies are considered to
access the reliability and robustness of our approach in a realistic network setting.
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3. Misbehavior Scenarios and Alert Types

Attacks in CAVs can alter the safety related BSMs features, which eventually can result to false
emergency alert in the network. For example, a CAVs system might detect certain road characteristics
or danger conditions (influencing vehicle driving) and trigger alert to other CAVs. The false alerts as a
result of BSMs features manipulations in real time are discussed below.

3.1. Emergency Electronic Brake Light (EEBL)

Anomaly in vehicular speed and lateral acceleration (Ax) can result to EEBL false notification.
An adversary CAV node Vi with manipulated speed Vi

′, is capable of introducing any false reference
position. This is a passive attack and can cause damage such as rear-end collision. As depicted in
Figure 1, an attacker Vi, raises an alert and sends its false coordinate location (xi

′, yi
′) marked with red

dotted square and velocity vi
′ across the network to prevent anyone from detecting its false warning.

Ui  

vk vj vi vi
/

False location report 

Figure 1. False Emergency ELectric Brake Light (EEBL) alert.

3.2. Change of Lane (CoL)

Change of lane alert (CoL) increases vehicle safety in a dense driving area. This helps to prevent
fatal accidents that can occur when a car unexpectedly switches its current path on a roadway. Here,
an attacker Vi in one lane raises a false CoL warning to the next Vj in another lane with the bid of moving
ahead of it. This is an intentional attack in which CAV tries to obtain space in one lane and move ahead
of CAV in another lane. This is illustrated in Figure 2, at time t with velocity vi

′, attacker Vi sends a false
CoL warning to other CAVs for lane switching with current false location denoted as (xi

′, yi
′) instead

of its actual position(xi, yi), as shown in Figure 2. The short distance between Vi and Vk prohibits Vi
from changing lane, however, the false reported location makes the inter-vehicle gap between Vi and
Vk appear too wide for Vi to change lane immediately with coordinates (xi, yi) < (xi

′, yi
′) <

(
xj, yj

)
.

Ui  

vkvj

v vi

False location report 

i

/

Figure 2. Change of Lane Attack Scenario.
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3.3. Path Deviation Alert (PDA)

For a straight road, it is estimated that the lateral acceleration should be 0, since the radius of
curvature (RoC) is 0. If the road has a RoC that is not negative, then the lateral acceleration Ax is
related with RoC and velocity v by:

Ax = RoC× v2, (1)

where RoC is 1
Radius(R) .

As shown in Figure 3, the attacker node Vi at position (xi, yi) can communicate to vehicle Vj with
RoC value of 0. Vj receives a falsified message and adjusts its speed and keeps heading in a straight
line with the assumption that Vi is at position (xi

′, yi
′), marked with red dotted square. Undoubtedly,

Vj will deviate from the lane if it goes by the information given by attacker node Vi. The node Vj needs
to take into consideration the tangential speed needed to ply the curved road. Such a false alert will
invariably leads to accident or crashing of vehicle.

Figure 3. Path Deviation Attacker Scenario.

4. Methods

This section discusses the mechanisms used in the detection and identification of anomalous
behaviors associated with cyber attacks in CAVs networks. Those approaches are namely,
Bayesian deep learning (BDL), convolutional neural networks (CNN-1D). The proposed approach
comprises the combination of DWT and BDL. In general, the BSMs data gathered from sensors are
the inputs to the detection mechanisms, reading the same or highly correlated physical quantities.
Based on the data, for example, a few milliseconds (ms) of each time step, outputs are generated as to
whether anomalous behaviour is present, and as such, which sensor reading is anomalous.
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4.1. Convolutional Neural Network (CNN)

The receptive field (RF) study provides the theoretical basis of the CNN’s local perception.
CNN consists of layer data, hidden layer, and output layer. The hidden layer includes convolution
layer, pooling layer, activation layer and fully connected layer. As the core of CNN, the convolution
layer, which is prompted by the RF, and computes the convolution of the data from input layer with
filters or kernels to extract high-level spatial characteristics. The main function of the pool layer is
down-sampling to reduce the number of features. Convolution operations cannot only improve the
original features of the data, but also reduces the data’s noise [29].

In this paper, we use 1D convolution method in our analysis. The convolution of the input
sequence x, at a time t is represented as:

yk = f

(
W

∑
i=1

(wi × xt−k+1) + bt

)
, (2)

where yk is the output feature at time t, f (x) is a nonlinear activation function, wi (i = 1, 2, ..., m ) is
the filter or kernel of length W and bt is a given offset vector at time t.

The outstanding effect of extracting spatial features at CNN makes it applicable to time series.
Usually, the kernel of convolution is two dimensions. To apply CNN for real-time detection and
identification of anomalous sensor behaviour, a fixed-width sliding window, is inserted on input data
from all sensors measuring the same quantity, either directly, where conversions or combination with
other sensors may be necessary to infer the quantity. The new observations are gathered from sensors
at each epoch, and from the sliding window shifts that includes the latest observations. Thus, the input
to the CNN during a CAV trip is a series of continuous feed of raw sensor data. Therefore, the CNN
allows for a holistic view of multiple sensors simultaneously, by incorporating information from other
sensors over time to help detect and identify anomalous values. Since the goal is to detect and identify
anomalous behaviour, training of the model for each sensor is implemented using the labelled sensor
readings. That is, if there is an anomalous behaviour relating to a given sensor the response variable is
either 0 or 1. Different models are trained to detect anomalous behaviour for each sensor, a logical OR
operator on the outcomes of the model decides whether or not an anomalous behaviour is observed
among all sensors. The architecture in Figure 4 is adopted in the course of the experiment in this work
to optimized anomaly detection and identification efficiency on a validation set. This architecture
involves three max-pooling and convolution layers. To train the CNN model, a random dropout rate
of 0.1 and a batch size of 128 are employed. Additionally, batch normalization and rectified linear
unit (ReLU) activation functions are used in layers as shown in Figure 4, and Adam optimizer for
TensorFlow is implemented in Python for the binary cross entropy minimization.

The following parameters are implemented for the Adam optimization; learning rate, α = 0.001
fuzz factor ε = 10−8 and β1 = 0.9, β2 = 0.99. Furthermore, to reduce the chance of over-fitting,
early stopping is introduced to track validation set accuracy with a duration of 200 epochs.
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Max Pooling 1D
(pooling size 1x2)

Dropout (0.1)

BSM Input

Activate (ReLU)

Output 

CONV 1D
(kernel size : 1x32)

CONV 1D
(kernel size : 1x64)

Batch Normalization

Dense Layer

Activate(Sigmoid) 

CONV 1D
(kernel size : 1x64)

Batch Normalization

Batch Normalization

Activate (ReLU)

Dropout (0.1)

Max Pooling 1D
(pooling size 1x2)

CONV 1D
(kernel size : 1x128)

Activate (ReLU)

Dropout (0.1)

Max Pooling 1D
(pooling size 1x2)

Figure 4. 1-Dimensional Convolutional Neural Network Architecture.

4.1.1. Classification Criterion of CNN Algorithm

Consider a time series X =
(

x1, x2, ..., xn)T
= (x1, x2, ..., xt) ∈ Rn×t, given that t is the time stamp

of each value and n remains the number of features. Where xt =
(
x1

t , x2
t , ..., xn

t
)
∈ Rn is denoted as an

input vector at time t time series anomaly detection is characterized by two problems: (1) Figuring all
the anomaly points; (2) Labelling all the target series.

The anomaly detection mechanism can be transformed into a problem of classification with the
use of sliding windows. The sliding window mechanism could fragment the entire multi-variable
series into continuously shorter sequences and get the two-dimensional data-set.
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D = (d1, d1, ...dt−T+1) = ((x1, ..., xT) ; (x1, ..., xT) , ..., x1, ..., xT) ∈ RT×(t−T+1), (3)

where T is the sliding window length and di is known as the anomaly series if it has some anomaly
value from the series of origin.

Hence the problem of detecting anomalies for time series x is transformed to label
each input vector for D. Classification approach is used to solve the problem of anomaly
detection and training data-set with labels is used to train NN. The target can be shown as:
max

(
Prob

(
yk = 0 | dj

)
, Prob

(
yk = 1 | dj

))
, where yk = 1 denotes honest message and yk = 0 denotes

anomalous message.

4.2. Discrete Wavelet Transform (DWT)

Wavelet transform actually decomposes the data of the time series in both time and frequency
domain, even though the data is non-stationary. Wavelet transform has achieved numerous successful
applications in engineering fields such as signal processing and image processing. The basic idea of a
classic wavelet denoising model is shown below:

s (n) = f (n) + ε (t) , (4)

where s (n) is known to be the observed signal (noisy signal), f (n) is the real signal and ε (t) remains
the Gaussian white noise. The essence of denoising the wavelet is to filter out the ε (t) as much
as possible.

The theoretical basis of the wavelet threshold denoising method based on Mallat’s theory assumes
that the low-frequency approximation part and high frequency information portion of a signal can be
fully reconstructed [30]. Suppose an original sensor reading denoted by s(n), is given by:

s (n) = ∑
k∈z

cj,k ϕj,k (n) +
j

∑
i=1

∑
k=z

di,kΨi,k (n) , (5)

where z is an integer, cj,k is the approximate coefficient, ϕj,k is the scaling function, while j is the
decomposition level, Ψi,k (n) is the wavelet basis function and di,k is the detailed coefficient. cj,k contains
information on the low frequency of the original discrete signal s(n), which is stated as follows

cj,k =
〈

s (n) , ϕj,k (n)
〉

, (6)

where
〈

s (n) , ϕj,k (n)
〉

denotes the orthogonal relationship between s (n) and ϕj,k (n). The notation
di,k has the original discrete signal’s high frequency information, which is defined as follows:

di,k =
〈

s (n) , Ψj,k (n) ,
〉

(7)

where s (n) and Ψj,k are orthogonal to each other.
The wavelet threshold denoising approach uses its main profile to be the low-frequency part of the

signal, while the high-frequency part represents its details. The details of each level has its own noise
information after decomposition of the wavelet. Threshold function tune the description coefficients
of each level di,k and is computed with the approximate coefficients of the last level. The denoising
wavelet threshold process is shown in Figure 5.

In Figure 5, s (n) is the original nosy signal, while mj,k is the wavelet coefficient as a result of
wavelet decomposition of the s (n), mj,k is obtained from the combination of the approximate coefficient
cj,k and the detailed coefficient di,k, vj,k remains the estimated wavelet coefficient after the denoising
threshold, and f̂ (n) is the estimated s (n) derived from the reconstruction of vj,k.
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Wavelet
decomposition

Wavelet
thresholding denoising

Wavelet
reconstruction

Figure 5. Wavelet Threshold Denoising Mechanism.

4.3. Connected and Automated Vehicles (CAVs) Data Characteristics and Anomaly Model

The data for this analysis are derived from the Safety Pilot Model Deployment (SPMD) program
research data exchange (RDE) database [31]. The program was implemented with the primary aim
of presenting CAVs in real-world environments, with focus on communication systems such as V2V
and V2I communications. The system data was generated from high frequency data (gathered every
100 ms) over a span of two years for more than 2500 vehicles. The data characteristics derived from the
SPMD data-set used in this analysis includes speed (s) (sensor 1), Ax (sensor 2), and RoC (sensor 3).

As there is no public data-set available for CAVs that includes anomalous behavior in sensor
measurements due to attacks and ground truths, the experimental data-sets are generated by
simulations. In particular, three types of anomalous behaviors are considered including instant,
bias and gradual drift. In the sensors experiment, we presume anomalous values exist independently
due to either attack or faults. Therefore, we assume that no more than one anomalous behavior will
begin in any epoch at the same time, which is in fact quite unlikely provided that sensors are usually
accurate, and that attacks will occur independently.

For our experiment, we generate various anomalous data with different attack rates denoted as
α ∈ {3%, 10%, 50%}, where either exactly one type of attack or all the three types are equally likely
to adversely affect each of the three sensors. Explicitly, we sample a uniform random variable of
U (0, c) where c ∈ 1, 2, 3 at each time epoch (every 100 ms), in the CAV trip to decide whether anomaly
exists, and if so, another uniform random variable of U (0, c) is used to decide the sensor that is
affected. Based on the experiments, we randomly sample from a set of one or three types of anomalies,
with uniform or normal distributions. The simulation is prepared in Python and the generated attacks
are added to the base value of the sensor.

Algorithm 1 provides the pseudocode depicting the random generation of anomalies.

Algorithm 1: Connected and Automated Vehicles (CAV) Cyber Attack Generation Process.
1 α: rate of anomaly
2 m: number of sensors
3 D: highest anomaly duration
4 t: time epoch
5 for t ∈ T do
6 for i ∈ {1, 2, . . . , m} do
7 if no trace of anomaly occurs at time t for the ith sensor then
8 if U (0, c) ≤ α then
9 d← randi(D)
10 switch (Choose anomaly type with probability distribution fω)
11 case Instant:
12 Inject ’instant’ anomaly type with parameter c1
13 case Bias:
14 Inject ’bias’ anomaly type with parameter c2 and duration d
15 case Gradual Drift:
16 Inject ’Gradual drift’ anomaly type with parameter c3 and duration d
17 end switch
18 end if
19 end if
20 end for
21 end for
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4.3.1. DWT Pre-Analysis of the Data

BSMs variables are usually in the form of time series format, and successive time series values
are not necessarily independent in real time but are strongly correlated. This makes it difficult to
establish successful feature selection strategies for the function that operate directly on time series
data. To mitigate the problem, DWT which comes with the flavor of both a feature extractor and
de-noising techniques as detailed in Section 4.2, can be applied to time series data to transform it from
time domain to frequency domain.

In this section, we mainly focus on the denoising of the BSMs attributes with DWT. The BSMs
data have some disturbances as a result of measurement noise and estimate error, which may cause
problems in the training phase of the anomaly detection mechanism. In addition, the inbuilt noise in the
system can induce outlier effect which can affect the performance of the attack detection mechanisms.
The details of mechanism of operation of DWT is examined on the selected BSMs sensors and the
simulation for the experiment is carried out with Python.

To make them smoother and accelerate the convergence of the loss function during the training
process, the input data is denoised. Table 1 demonstrates the anomalous and denoised plots of BSMs
attributes. From the simulation carried out at d = 3 in various network sizes, m in Table 1, indicates
finer coefficients of the noise measurement with decrease in standard deviation as indicated in Table
1,for instant anomaly case. Essentially, in Table 1, we equally conduct analysis on Bias anomalous BSMs,
we observed a smoother noise coefficient with DWT. The results in Table 1 of the different simulation
carried out on different network size m, with d = 3, presents a noise amplitude value reduction as
shown in Table 1. A similar simulation is carried out on Gradual Drift anomaly on the BSMs as shown
in Table 1, the result shows that the magnitude of the noise level of Gradual Drift anomaly is smaller as
compared with Instant and Bias anomaly. We note that the DWT, in which in this context, Daubechies
12 (dB12), consistently maintained a finer coefficient that shows closer representation of the original
feature of BSMs. Lastly, analysis of the noise distribution on the mixed anomaly data is carried out
on network size m = 10,000, and d = 7. From the observations in Figure 6, we find out a significant
decrease in the amplitude of the noise distributions of the three BSMs attributes selected in this paper,
namely Speed, Ax and RoC. The values of the noise amplitude decreases by σ = 0.731 for Figure 6a,
σ = 0.437 of Figure 6b and σ = 335.858 for Figure 6c, respectively.

Table 1. Selected basic safety messages (BSMs) variables Descriptive Statistics.

Instant Anomaly (Network Size m) µ (Anomaly) σ (Anomaly) µ (Wavelet dB(12)) σ (Wavelet dB(12))

2000 10.307401 6.170231 10.300251 5.7634621
4000 10.307407 6.170261 10.300258 5.763563
6000 10.307414 6.170258 10.300262 5.7635907
8000 10.307417 6.1702566 10.300263 5.7635937

10,000 10.307415 6.170257 10.300264 5.7635903

Bias Anomaly (Network Size m) µ (Anomaly) σ (Anomaly) µ (Wavelet dB(12)) σ (Wavelet dB(12))

2000 0.5829332 1.5610949 0.5813745 1.1946311
4000 0.53638434 1.581967 0.53705674 1.0952997
6000 0.6300388 1.7301117 0.6321792 1.0724595
8000 0.64839834 1.6975222 0.65079004 1.0431184

10,000 0.7417457 1.7784712 0.74250895 1.0478663

Gradual Drift Anomaly (Network Size m) µ (Anomaly) σ (Anomaly) µ (Wavelet dB(12)) σ (Wavelet dB(12))

2000 0.07693122 0.910007 0.076246604 0.4898912
4000 0.07699456 0.9098382 0.0763265 0.49061427
6000 0.07699457 0.908578 0.07632571 0.49055964
8000 0.07699094 0.9098535 0.07632209 0.49055964

10,000 0.07699085 0.9098535 0.07632202 0.49055642
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Figure 6. Denoised Multiple anomaly on Speed, Ax and radius of curvature (RoC) sensor readings.

4.4. Bayesian Deep Learning (BDL)

Imposing of BDL framework is required to overcome the challenges in a NN. BDL incorporates as
illustrated in Figure 7, the transformation of NN from point to probabilistic estimation is achieved by
first establishing series of functional transformation in different correlated layers. The mathematical
representation is stated below:

yk (x, w) = h

(
H

∑
j=1

w(2)
kj g

(
D

∑
i=1

w(1)
ji xi + w1

j0

)
+ w(2)

k0

)
, (8)

where yk is taken to be the kth output of the NN, x is the vector of the variable D for the input
layer, while w remains the combination of the adaptive weight parameters w(1)

ji and w(2)
kj , and the

bias w(1)
j0 and w(2)

k0 , while H is the number of units in the hidden layer. From the traditional
approach, the variable θ from the training samples is estimated by possible minimization of the error
function [32,33]

E = ED + EW =
1
2

N

∑
n=1

No

∑
k=1
{yk (xn; w)− cn

k }
2 +

α

2

W

∑
i=1

∣∣∣w2
i

∣∣∣
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where yk denotes the kth NN output with respect to xn, of the nth training input data; cn
k remains

the nth target of the output training data, N is the corresponding input and output pairs in the target
data set; No is denoted as the number of output variables;while W is the number of parameters in w
and α is the regularization parameter.The variable ED and Eθ remain the error between the data and
the approximation with respect to NN and decay regularization. To present the NN model within
the Bayesian context, the learning processing is to be interpreted as probabilistic ally. Bayesian phase
achieves this probabilistic nature of NN by adding strong distribution and uncertainty on the weights
in the network. The uncertainty in the weight of the network model enhances the practical framework
in automatic calculation of error associated with the predictions when dealing with data of unknown
targets. This also leverages the system to learn from a small amount of evidence [34] when Information
sparsity is experienced in a given network. Generally, data need to be pre-processed reduces the
complexity. A suitable network architecture is then selected, and the model probability is defined as:

p (w | D, α, β, M) =
p (D | w, β, M ) p (α, β | M)

p (D | M)
(9)

where w is the adaptive weight parameter,D is the data, H denotes the Bayesian model class that
specifies the form of the likelihood function and the prior probability distribution, and α, β are
the regularization parameters. At this stage, network training starts with the optimization of the
input and output data by maximising the posterior likelihood of the model specific by w. At the
end of the preparation, the degree of understanding and generalisation is considered adequate,
the iterative network optimization process is stopped and predictions can be made using the training
network. Bayes’ Theorem can be extended as seen below to select the appropriate values for the
hyper-parameters:

p (α, β | D, M ) =
p (D | α, β, M ) p (α, β | M)

p (D | M)
(10)

The hyper-parameters α and β are assumed to be known. Initial values for α and β are chosen as
seen in Figure 3, and the associated values of w are obtained by maximising their posterior likelihood.
Then, using the following relationship, the hyper-parameters are re-estimated where their MAP values
are based on uniform prior values for α and β, and the estimate of these values maximise evidence
p (D | α, β,H) in (10). The estimated values of α and β are represented below:

α′ =
γ

2ED
(11)

β′ =
N − γ

2ED
(12)

The γ parameter calculates the approximate number of parameters whose values, rather than the
prior, are controlled by the data, that is, the number of parameters that are well determined.

Bayesian approach achieves the correct solution by allowing objective comparison between
different models. The most probable model class within a set of classes M of Nm (no of candidates) is
obtained in Bayesian sample selection by applying the Bayes Theorem as follows:

p
(

Mj | D,M
)

∝ p
(
D | Mj

)
p
(

Mj | M
)

(13)

The factor p
(

Mj | D,M
)

is known as the evidence provided by data D for the model class Mj.
The user ’s judgement on the initial plausibility of each NN model is expressed by the prior probability
p
(

Mj | D,M
)

over the set of model classes Mj for j = 1, ..., Nm where:

Nm

∑
j=1

p
(

Mj | M
)
= 1 (14)
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The last problem to be discussed when deciding the optimum architecture is the relative value
of each input variable is the Automatic Relevance Determination (ARD). Using real-system data,
distinguishing the important variables from the redundant ones may be difficult. In the Bayesian
framework, the ARD method proposed in Reference [35] can address this problem.

Figure 7. Bayesian Hierarchical Framework for Neural Network.

By using this method, each input variable is associated with a separate hyper-parameter α

which represents the inverse variance of that input parameter’s prior distribution. In this way,
each hyper-parameter clearly reflects the importance of an input: a small value implies that a large
weight parameter value is permitted and the resulting input is important; on the contrary, a large
weight parameter value alpha is allowed and the associated weights parameter is confined to zero,
and thus the corresponding input is less relevant [35,36].

Therefore, the ARD enables inference to be applied in which the α hyper-parameters are chosen
by minimizing evidence for the class of model identified by these hyper-parameters. If the model
architecture is established, the importance of each input is assessed. If any hyper-parameters are
very high, the relevant input will be removed from the model and the equilibrium design will be
re-estimated for the new implementation.
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The BDL architecture is assumed to comprise of 4 hidden layers, with 20 nodes and 1 bias in the
first layer and the rest of the layers have 10 nodes and 1 bias each. To train the BDL mechanism, ReLU
activation function is used, coupled with Adam optimizer with default learning rate to minimize the
validation binary cross entropy loss.

4.5. The Proposed Method

To improve the detection and identification efficiency of the BDL algorithm, a new framework is
proposed (DWT-BDL) based on reliance of DWT and BDL as shown in Figure 8. Prior to feeding the
data into the BDL detection algorithm, DWT is added to the BSMs sensory information for denoising
(as explained in Section 4.2). In particular, the noisy sensory BSMs data is decomposed by transforming it
into an orthogonal domain and processing operations on the resulting coefficients followed. Eventually,
through reconstruction process, the sensory input is transformed back to original state.

The denoised reconstructed BSMs sensory input is fed into the BDL algorithm for further
examination and anomaly detection as explained in Section 4.4. This stage of anomaly detection
is achieved by first splitting the data into training and testing data-set. The proposed approach is
trained to develop a prediction on the training data-set. while the testing data-set is fed to the algorithm
for prediction test.

4.5.1. Classification Criterion of the Proposed Approach

This section provides a detailed description of the anomaly detection of the proposed approach in
CAVs network and Figure 8 illustrates the process. The value ~x is a vector of BSMs sensory input of D
variables, while ck and M are the relevant class output (ground truth) to be estimated by the proposed
method and the model respectively.

In other words, ~x is the piece of evidence to be predicted. The variable ck is assigned with
values 0 or 1. Where 0 or 1, represent the malicious (mal) and honest (hon) information, sent by the
nodes respectively. Mathematically,~ck ∈ {mal, hon} ≡ ~ck ∈ {0, 1} considering a binary classification.
The mathematical representation of the classification process can be expressed using Bayes Theorem as
follows:

p(C = ~ck | Mj, D = ~xi) =

p
(

Mj | C = ~ck, D = ~xi
)

p(C = ~ck | D = ~xi)

p(Mj | D = ~xi)

(15)

By application of total probability theorem, (15) can be expressed as follows:

p(C = ~ck | Mj, D = ~xi) =

P(Mj | C = ~ck, D = ~xi)p(C = ~ck | D = ~xi)

∑c∈(mal,hon)[p(Mj | C = ck, D = ~xi)p(C = ck | D = ~xi)]

(16)

For possible expression of mathematical simplicity, it is assumed that the individual reports remain
independent [37]. From conditional probability of honest and malicious information in vehicular
networks, the following mathematical expression is deduced:

p (mal | ~x) + p (hon | ~x) = 1 (17)

It can be deduced from (17), that ~X is malicious, when ~X = 1− p (hon | ~x). Threshold selection for
the categorization of the information into malicious and honest classes is adaptively done as detailed
in Section 4.4.
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Network Model

i = i+1

Figure 8. Proposed Approach Framework.

5. Results and Discussion

This section shows the results of the analysis of anomaly detection mechanisms in CAVs network.
Comparing the results of the individual mechanisms are made to highlight their respective capabilities.
The detection performances of the different approaches are taken when trained and tested for a specific
category of anomaly or in the presence of all the anomaly types.

In this study analysis, the three anomaly types are simulated from the CAVs data-set with
varying anomaly durations, magnitudes of network density and the anomaly rate α to draw insight
on the performance strength from the use of CNN, BDL, and the proposed approach (DWT-BDL) in
detecting/identifying anomalous sensor behaviors in real-time. The simulation is carried out with
Python libraries namely: TensorFlow and TensorFlow Probability. The training/validation/testing
split of 60%, 20%, 20%, are used on every given sample. The validation and training sets are used to
tune the parameters of the selected detection mechanisms and different test sets are used to assess and
measure the performance of each of the detection/identification mechanisms. For a higher degree of
confidence level, each simulation is repeated 15 times with a different seeds. Each experimental result
is the average over the number of repeated simulations

5.1. Mechanisms Under Single Anomaly System

The different detection mechanisms are applied on the modeled anomalies types and their
performance evaluations are taken accordingly. Different datasets are generated, each with a
specific type of anomaly, with the anomaly incidence rate α, and duration d set to values of 3%
and 3 respectively. Furthermore, in all the experiments we consider a varying network densities
mi ∈ {2000, 4000, 6000, 8000, 10000}.

5.1.1. Impact of Network Density on Anomaly Detection

(i) Instant Anomaly
In this section, the impacts of the magnitude of network density m, on the performance of
CNN, BDL and the proposed approach (DWT-BDL) are evaluated. Figure 9 indicates that
at a low network density CNN, BDL and the proposed approach show poor performance.
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This is very much observed in the state-of-the-art approaches compared to the proposed
approach. For instance at, m = 2000, CNN and BDL have the performance values of 85.70%
and 85.00% and 85.0% and 87.1% in F1-score as plotted in Figure 9a and sensitivity metrics as
plotted in Figure 9c, while the proposed approach improves over CNN and BDL in the same
metric values with performance gains of 4.3% and 2.7% compared to CNN and 2.9% and 1.9%
compared to BDL respectively. Similarly, Figure 9d illustrates the superiority of the proposed
approach. However, the CNN approach in this scenario maintained a lead performance in
some cases of m in the experiment as shown in Figure 9b.

However, at high values of m, the overall strength of the detection approaches used in
this analysis systematically improves. The proposed approach demonstrates a superior
performance over BDL and CNN in all the performance metrics except at some accuracy
values as shown in Figure 9b, where CNN has a better performance. However, the proposed
approach outperforms CNN, BDL in the rest of the metrics in all the cases of m. For instance,
at density m = 10,000, the sensitivity of the proposed approach shows performance gains of
5.0% and 4.0% when compared to BDL and CNN, respectively. This superior performance
trend of the proposed approach is replicated in all the performance metrics as seen in Figure 9.
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Figure 9. Detection Performance of Instance Anomaly type for Convolutional Neural Network (CNN),
Bayesian Deep Learning (BDL) and the Proposed Method.

It can be generalized that as the value of m decreases, the overall detection approaches
systematically deteriorates. This clearly indicates the relevance of m in anomaly detection
system. The consistent superior performances of the proposed approach, relatively in all
the metrics as a result of combining the performance of the BDL and DWT. The proposed



Appl. Sci. 2020, 10, 7833 18 of 26

approach utilizes the decomposition and denoising qualities of DWT, coupled with the robust
BDL mechanism in optimal decision making.

(ii) Bias Anomaly
Figure 10 presents the bias anomaly type results for BDL, CNN and the proposed mechanism.
As demonstrated in the experiments, at a very small magnitude of m, the BDL approach
performs better than the CNN, while the proposed approach outperforms both BDL and CNN
mechanisms in all the metrics in small network density scenario. For example, BDL’s accuracy
as shown in Figure 10b, by approximately 5.2% higher than CNN’s, while the proposed
approach has performance gain of 1.2% and 5.2% over BDL and CNN respectively, with m =
2000 samples drawn from U (0, 1).

At m = 10,000 in the simulation, the efficiency of these approaches increase as the magnitude
of network density increases. Detection mechanisms in this anomaly/attack case show a
similar behavior as shown in instant anomaly case with the distribution drawn from a fixed
random variable U (0, 1) and duration d = 3. The proposed approach shows improvement in
sensitivity metrics as illustrated in Figure 10c, more than BDL and CNN by values of 4.5% and
2.6%, respectively. Similarly, the performance evaluation on bias anomaly as demonstrated in
Figure 10a,d support the superiority of the proposed approach over BDL and CNN.
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Figure 10. Detection Performance of Bias Anomaly type for CNN, BDL and the Proposed Method.

(iii) Gradual Drift Anomaly
Figure 11 shows the results of the BDL, CNN, and proposed approach for gradual drift
anomaly type detection. This type of anomaly involves a gradual rise in sensor values making
it difficult to identify and discern the onset of anomaly from normal sensor values. In general,
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for a small magnitude of network densities, BDL outperforms the CNN detection performance.
For instance, in Figure 11a,d using BDL approach, at network density of 2000, the F1-score and
precision respectively, increase by approximately 2.0% and 14.10% when compared to CNN
mechanism. However, at high magnitude of network density, CNN consistently outperforms
BDL in all the performance across the experiments. For instance, at m = 10,000, the F1-score
and precision metrics of CNN, improve by 2.4% and 3% over BDL approach.

Considering the anomaly detection performance of the proposed approach for gradual drift
anomaly, the following is noted. The experiments indicate that the proposed approach
provides a significant improvement in low and high density networks scenarios when
compared to CNN and BDL. For instance, at low density network, the proposed approach in
respect to F1-score, precision and sensitivity, as plotted in Figure 11a,c,d has performance gains
of 9%, 16% and 20%, respectively, over CNN approach and 6.95%, 1.95% and 2% compared to
BDL. At a high value of m, the detection performance of the various approaches used in this
context increase across all the metrics. Furthermore, it is shown that in general, the proposed
approach outperforms CNN and BDL. For instance, experiment carried out on network density
of 10,000, again shows that F1-score, precision and sensitivity approach are increased by 2.4%,
1.8% and 2.6% over the CNN mechanism, and by 2.4%, 2.68% and 4.9% over BDL approach.
Moreover, the proposed approach improves upon the detection performance of both DWT
and BDL respectively.
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Figure 11. Detection Performance of Gradual Drift Anomaly type for CNN, BDL and the
Proposed Method.
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Discussions of the Mechanisms Under Single Anomaly

As seen in the experiments of single anomaly types, the performances of the detection approaches
significantly increase in consonant with the magnitude of anomaly duration d, network density m
and the considered distributions, c×N (0, 0.01), U (0, c), and linspace (0, c). Intuitively, the larger the
distribution, the larger the deviation from the true values of the normal sensors behaviors, thus the
greater the effectiveness of the approaches in detecting the anomalies.

In addition, regarding the high performance of the detection mechanisms with longer duration,
is simply because longer duration extends the detection mechanisms time to accumulate a practical
body of knowledge about the behaviors and anomaly impacts in a given environment.

In all, the single attack system as shown in Section 5.1, the detection mechanisms can generalize
and correctly classify previous unseen observation with similar distribution, (test set) throughout
the experiment by training on representative training sets. However, in practice, CAVs anomaly
detection methods can experience instance of anomalies for which the mechanisms are not trained
specifically. Details of the incidents of unseen observations as expressed in the multiple attack scenarios
are discussed in the next section below.

5.2. Mechanisms Under Multiple Anomaly System

This section addresses the effectiveness and reliability of a specific detection mechanism used in
multiple anomaly scenarios. To obtain a more solid insight on the robustness of detection mechanisms
in producing practical performance, the anomaly/attack detection approaches are exposed to multiple
attack/anomaly scenarios, with real-time attribute of varying anomalous behaviors. In this context,
the instant, bias and gradual drift anomalies are all present in the test data-set and modeled with
100,000 ×N (0, 7), U (0, 3), linspace (0, 3) and d = 7. Investigation is carried out on the generalisation
of the detection mechanisms on the unobserved multiple anomaly scenarios, having been trained on
one of the anomaly types. We only consider the impacts of the percentage of anomaly rate α on the
three different sensors in the experimental settings. The evaluation performances of the detection
mechanisms are carried out with two anomaly rates (at α = 10% and α = 50%) scenarios.

To ensure statistical relevance of the performance of the detection mechanisms, the simulations are
run multiple times at least 20 times to provide a confidence interval (CIs) for CNN and credible interval
denoted in this context as (CRIs) for the proposed mechanism and BDL respectively. Specifically,
we present the mean performance along with the 95% CI and CRIs.

Figure 12 depicts the performance of the detection mechanisms used in this study, for the multiple
anomaly scenario with α = 50%. The value of α is set high to capture the behaviors and detection
capabilities of the selected mechanisms for threat that can pose considerable risk to the operation of
the CAVs system. Figure 12a shows that the detection performances of all the metrics vary across the
sensors, in all the experiments. In particular, for sensor 3 (RoC), it is observed that the performance
values of the approaches are worse when compared with the other two sensors, Ax and speed that
appear to show much smoother reading over time, under the same anomaly scenario. This is partly
being attributed to the tremendous variation of consecutive RoC readings. The distribution of the
RoC values in Figure 12a, validates the performance degradation of the mechanisms when subjected
to unobserved anomalous RoC sensor values. However, the proposed approach demonstrates a
lead performance in all the scenarios with the values of 4.92± 0.009 and 6.95± 0.009 over BDL and
CNN, considering the worst case scenario of RoC sensor analysis. This significant improvement in
performance is also replicated in Figure 12b–d.
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Figure 12. Detection performance and 95% confidence intervals (CIs) and CRIs across 15 to 20 different
executions for all three methods, at anomaly rate α = 50% an in the presence of all the types of anomalies.

A similar experiment is conducted to investigate the behaviors of CAVs system and detection
mechanisms at low value of α = 10% and d = 7, with all the types of anomaly present. As shown
in Figure 13 the detection performances of the selected mechanisms vary among various sensors,
again detection mechanisms show the lowest performance values when applied to anomalous RoC
sensor values. This may equally be attributed to the variation in input read sequence of RoC sensor
readings. At a value of α set to 10%, the approaches tend to show a better classification accuracy but
generally indicate poor performances on other metrics, especially on Figure 13a when compared to
α = 50% as shown in Figure 12a. The observation is in compliance with intuition, as lower value
of α makes the anomaly more elusive and thus more difficult to spot. The high detection accuracy
as shown in Figure 13b in this case may be as a result of the imbalance nature of the BSMs samples,
classification in this context appears to favor the more representative class [38]. Accuracy metrics may
not be a much appropriate performance metric for imbalance data. The proposed approach presents
significant performances in the values of precision and sensitivity metrics when compared to BDL and
CNN as shown in Figure 13c and 13d respectively. Our focus mainly is on F1-score which provide
more insights on the strength of detection mechanisms in event of imbalance class [39] scenario. From
the obtained F1-score results in Figure 13a, BDL outperforms CNN, while the proposed approach
provides significant improvement of performance by values of 4.36± 0.010 and 6.45± 0.010 compared
to the performance of BDL and CNN mechanisms.
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Figure 13. Detection performance and 95% CIs and CRIs across 15 to 20 different executions for all
three methods, at anomaly rate α = 10% an in the presence of all the types of anomalies.

Furthermore, in the experimental setting, we compute the Area Under the Curve (AUC) of
the Receiver Operating Characteristics (ROC) curve to validate the performance and reliability of
our proposed model on gradual drift anomaly at α = 10 and α = 50 respectively. The ROC curve
is a graphical plot tool that shows the binary classifier’s diagnostic potential as its discrimination
threshold is varied and this result denotes the plot of true positive rate (sensitivity) as against false
positive rate (1-specificity). In the simulation setting in this scenario, we train the methods on Bias
and Instant anomaly and then carry out detection process of these trained methods on gradual drift
anomaly to validate and generalize the performance of the proposed approach. From Figures 14 and 15
respectively, we observe that the proposed approach shows superior performances over the existing
approaches. For instance, in Figure 14a at α = 10%, the proposed approach has a performance gain
of 1.9%, 7.4% and 3.5 over DWT- CNN, BDL and CNN, respectively. At the same time, Figure14b
shows that when α = 50%, the proposed approach is improved by values of 2.2%, 8.4% and 3.4,
respectively, when compared with over DWT- CNN, BDL and CNN, respectively. Similarly, Figure 15a
indicates that the proposed method demonstrates a significant improvement by values of 0.7%, 5.3%
and 1.1 compared with the performance of DWT- CNN, BDL and CNN respectively. Finally, results in
Figure 15b also indicates that the propose approach provides significant improvement in performance
by values of 2.1%, 0.4% and 2.6 over DWT- CNN, BDL and CNN, respectively.
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Figure 14. Performance Variation of the Various Methods trained on Instance Anomaly, on Gradual
Drift Anomaly at α = 10% and α = 10%.
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Figure 15. Performance Variation of the Various Methods trained on Bias Anomaly , on Gradual Drift
Anomaly at α = 50% and α = 50%.

Discussion of the Mechanisms Under Multiple Anomaly

The purpose of this experiment is to establish a likely situation of multiple anomaly/attack which
depicts real-time scenarios. The proposed approach demonstrates a reasonable detection performance
as a result of the Bayesian prior probability to establish synergies/fusion between heterogeneous
information and classification of out-of-distribution instances as unknown, for impressive detection of
unknown attacks/anomalies in a system [40,41].

6. Conclusions

From CAVs framework standpoint, the proposed mechanism is developed by combining DWT
and BDL. The DWT applies wavelet transform to decompose the sequence of measurements of the
anomalous input vectors (BSMs sensor readings) and to denoise them before being fed into BDL for
further analysis. The simulation results show the effectiveness of the proposed approach in real-time
detection/identification of anomalous sensor values in CAVs setting. In particular, the experiment
shows the ability of the proposed approach in adapting and capturing of anomalous behaviours in
the unstable CAVs network states (density, duration and anomaly rate) and hence providing good
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performance. More specifically, simulation results shows the ability of the proposed approach to
detect and identify anomalous sensor values in real time with high precision, accuracy, F1-score and
sensitivity by using BDL empowered by DWT on raw sensor data. Moreover, the simulation results
show the performance gain of the proposed approach in comparison with the baseline mechanisms,
with a significant difference.

The anomalous values of sensors used in the experiments are simulated, along with previous
literature researches, primarily because this form of data is not yet readily available. Additionally,
the tests are limited to on-board sensors due to the lack of data on CAVs.

As a conclusion, manufactures and policy-makers will benefit from the findings in this study
on the importance of providing redundant information for a particular parameter such as curvature
radius and speed of a vehicle. Consequently, more redundant sensors and systems for collecting
information may be introduced and considered in CAVs to improve their resilience against anomalous
sensor values. The proposed mechanisms presented in this paper are also intended to be extended to
various sources of CAVs/M2M networks to improve their safety.
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