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Abstract: The primary goal of steganographic methods is to develop statically undetectable methods
with high steganographic capacity. The embedding efficiency is one kind of measure for undetectability.
Block-based steganography methods have been proposed for achieving higher embedding efficiency
under limited embedding capacity. However, in these methods, some blocks with larger embedding
distortions are skipped, and a location map is usually incorporated into these methods to record
the embedding status of each block. This reduces the embedding capacity for secret messages.
In this study, we proposed a block-based steganography method without a location map for palette
images. In this method, multiple secret bits can be embedded in a block by modifying at most one
pixel with minimal embedding distortion; this enables each block to be used for data embedding;
thus, our method provides higher embedding capacity. Furthermore, under the same capacity,
the estimated and experimental embedding efficiencies of the proposed method are compared with
those of Imaizumi et al. and Aryal et al.’s methods; the comparisons indicate that the proposed
method has higher embedding efficiency than Imaizumi et al. and Aryal et al.’s methods.

Keywords: block embedding; embedding capacity; embedding efficiency; optimal selection;
parity assignment

1. Introduction

Steganography is a technique for secret communication, in which secret messages are embedded
into common digital media such as images, audios, and videos. The original media is called “cover”,
and the embedded media is called “stego”. Of these media, images are the most popular because they
are widely transmitted over the Internet. Many image-based steganography methods [1–17] have been
proposed and applied in raw [1–5], JPEG [6], VQ [7], and absolute moment block truncation coding
(AMBTC) [8] images. However, the application in palette images [9–17] is limited. Palette images [18]
have gained popularity. Graphics interchange format (GIF) is a type of palette image frequently used
by young consumers to communicate and express themselves. GIF animations are widely used on
social media platforms such as Tumblr, Twitter, Facebook, and Line [18,19].

A palette image includes a palette and an index table. The palette consists of a few (generally no
more than 256) colors. Each pixel is represented by a color in the palette, and the index table records
each pixel’s corresponding color index. In general, the order of colors in the palette is random.
Because only limited colors are used in palette images, modifying a pixel’s color index considerably
distorts the pixel color. Thus, embedding data into a palette image is more challenging than in other
image formats.
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Embedding methods are of two types. In pixel-based methods (PBMs) [9–14], a pixel is used as a
unit to embed secret data. In block-based methods (BBMs) [15–17], a block is used as a unit to embed
secret data.

Fridrich [11] proposed a method in which the colors of a palette are partitioned into two sets with
different parities (R + G + B mod 2) to represent one secret bit. The capacity of this method is 1 bit per
pixel (bpp). Under the same embedding capacity, Fridrich and Du [12] proposed an optimal parity
assignment algorithm to improve image quality. Tzeng et al. [13] proposed an adaptive data-hiding
scheme for palette images based on local complexity. An embedding capacity of approximately 0.1 bpp
is used for most images [20]. Tanaka et al. [14] proposed an algorithm to partition colors into 2k sets.
Each set represents one type of k-bit secret data. For each pixel, according to the secret data, the closest
color in the corresponding set is determined to replace the pixel’s color. The embedding capacity is
increased to k bpp.

In [9–12,14], each pixel was used to embed secret data in PBMs. Therefore, the embedding
distortion for a pixel may be large. In [13], an adaptive scheme was provided to skip pixels with large
distortions. However, this reduced the capacity.

Imaizumi and Ozawa [15] proposed a BBM to embed k bits into each 3× 3 block. In this method,
first, all colors in a palette are reordered according to the color Euclidean distance. Next, for each block,
the sum of all color indices is calculated and divided by 2k to obtain a remainder. Then, some pixels in
the block are selected, and their color indices are adjusted to obtain a remainder equal to the value
of k embedding secret data bits with the least embedding distortion. The embedding capacity is k9
bpp. Imaizumi and Ozawa [16] adopted a block size of 2 × 2 to improve the embedding capacity
of their previous method [15]. Subsequently, Aryal et al. [17] used a block size of 1 × 2k−2 + 1 to
improve the embedding capacity of the aforementioned method [16] and used the L*a*b color space
to replace the RGB color space to improve image quality. In all of these BBMs [15–17], the palette of
an image is first reordered. Then, for each block, under the consideration of minimum embedding
distortion, several pixels are selected, and their color indices are modified by +1 or −1. In the reordered
palette, two colors with adjacent color indices may not be similar; some selected pixels may have large
embedding distortion, which degrades image quality after data embedding. Furthermore, the color
indices of some selected pixels may overflow or underflow after data embedding. To avoid using
these blocks, an additional location map is required to record if a block is used to embed secret data.
This reduces the embedding capacity for secret data because some blocks are skipped and some are
used to embed the location map.

To address the aforementioned problem, a novel BBM for palette images was proposed in this
study. First, Tanaka et al.’s k-bit parity assignment [14] was used to assign a k-bit parity to each color in
the palette of an image. Then, for each block, at most one pixel was modified for data embedding,
and no location map was required for data extraction. The proposed method provided higher capacity.

Note that the primary goal of steganographic methods [21] is to develop statically undetectable
methods with high steganographic capacity. Steganographic capacity [21] is defined as the maximum
number of bits that can be hidden in a given cover work, such that the probability of detection by an
adversary is negligible. The embedding efficiency [21] is one kind of measure for undetectability, and it
is defined as the number of embedded random message bits per embedding change. Crandall [22]
mentioned that the most obvious method to reduce the possibility of detecting hidden information
is to reduce the change density in the cover image. Since decreasing the change density raises the
embedding efficiency, higher embedding efficiency will lower the detectability. Since BBMs reduce the
change density, the detectability of these methods is lower.

To measure the undetectability of the proposed method, chi-square attack [23], RS steganalysis [24],
and embedding efficiency are used. Estimation and experimental results demonstrated that the proposed
method provided higher undetectability than the aforementioned BBMs [16,17].
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The remainder of this paper is organized as follows. Related works are introduced in Section 2.
The proposed method is presented in Section 3. The analysis of embedding capacities is given in
Section 4. Experimental results are provided in Section 5. Finally, conclusions are presented in Section 6.

2. Related Works

In this section, the parity assignment method proposed by Tanaka et al. [14] and referenced in the
proposed method is first described. Then, the method proposed by Aryal et al. [17] is described; it is
used to make a comparison with the proposed method.

2.1. Parity Assignment Method Proposed by Tanaka et al.

Tanaka et al. proposed an algorithm to assign k parity bits to each color in the palette of an image.
The algorithm contains two parts. In the first part, from the palette, 2k closest colors (c′0, . . . , c′

2k−1
)

are determined sequentially, c′i is assigned a k-bit parity with value i. Next, 2k sets (S0, . . . , S2k−1)

are established, that is, Si =
{
c′i
}
. In the second part, from the unassigned colors, the color c with the

minimal distance from the last assigned color is determined. Next, the minimal distance dp of c from
each set Sp is evaluated. Then, the maximal distance dp′ among {dp

∣∣∣p = 0, . . . , 2k
− 1} is determined

and p′ is assigned as the parity of color c. The procedure is repeated until all colors are assigned.
In the algorithm, the distance dci,c j between two colors ci = (ri, gi, bi) and c j =

(
r j, g j, b j

)
is defined

using the following expression:

di, j =

√(
ri − r j

)2
+

(
gi − g j

)2
+

(
bi − b j

)2
. (1)

The details of the parity assignment are described as follows:

Step 1: Let A be the set of all colors in the palette. Let Sq = φ, and assign parity q to Sq; q = 0, . . . , 2k
− 1.

Step 2: Let h = 0. Find an initial color c’
h using the following expression:

c′h = argmin
ci∈A

(
2562ri + 256gi + bi

)
, (2)

Sh = Sh
⋃{

c’
h

}
; A = A\

{
c’

h

}
.

Step 3: Let h = h+ 1. Find color c’
h in A with the minimum distance from c’

h−1 using the following equation:

c’
h = argmin

ci∈A
dc’

h−1,ci
, (3)

Sh = Sh
⋃{

c’
h

}
; A = A\

{
c’

h

}
.

Step 4: Repeat Step 3 until h = 2k
− 1.

Step 5: Let h = h + 1. Find color c′h in A with the minimum distance from c′h−1 using Equation (3).

Step 6: In each Sq, q = 0, . . . , 2k
− 1, find the color in Sq with the minimum distance mdq from c′h using

the following expression:
mdq = min

ci∈Sq
dc′h ,ci

, (4)

Step 7: Find the maximum distance mdq′ among all mdq using the following expression:

q′ = argmax
q

mdq, (5)

Sq’ = Sq’
⋃{

c’
h

}
, A = A\

{
c’

h

}
.
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Step 8: Repeat Steps 5 to 7 until A is empty.

2.2. Aryal et al.’s Method

Aryal et al.’s method [17] improves the capacity and image quality of Imaizumi et al.’s method [16].
In the method, the color c of each pixel in the RGB color space is first converted to color (L*, a*, b*) in the
L*a*b color space, and the CIEDE2000 formula [25] is used to calculate the color distance. The method
includes three processes: Palette reordering, block embedding, and extraction. In the method, the k-bit
messages are embedded into each 2k−2 + 1 pixel matrix. For convenience, we assumed k = 3 in the
following processes.

2.2.1. Palette Reordering Process

Step 1: Let the original palette P be {c0, . . . , c255}, the new palette P′ be {c’
0, . . . , c’

255}, and A = P.

Step 2: Set h = 0. Find the first color c’
h in P′ using the following expression:

c’
h = argmin

ci∈A
L∗i , (6)

where L∗i is the luminance component of color ci in the L*a*b color space.

Step 3: Let A = A\
{
c’

h

}
, h = h + 1. Find color c’

h in A with the minimum distance from c’
h−1 using the

following expression:
c’

h = argmin
ci∈A

∆Ec’
h−1,ci

, (7)

where ∆Ec’
h−1,ci

is the CIEDE2000 color distance [25] between c’
h−1 and ci.

Step 4: Repeat Step 3 until h = 255.

2.2.2. Embedding Process

Step 1: Divide the cover image into nonoverlapping blocks, each of which contains 1× 3 pixels.
Step 2: Reorder palette P to obtain a new palette P′ using the palette reordering process.
Step 3: Consider a block B with three pixels (B0, B1, B2) and three secret data bits w.
Step 4: Let Ii be the color index of Bi in P′, i = 0, 1, 2.
Step 5: Calculate T0 and T1 using the following equations.

T0 = I0 mod 2. (8)

T1 = (I1 + I2) mod 4. (9)

Step 6: Obtain t0 and t1 based on Table 1 and secret data w.
Step 7: If T0 = t0 and T1 = t1, then go to Step 10.
Step 8: If |T0 − t0| = 1, then I0 is changed by +1 or −1; this depends on whether ∆Ec’

I0−1,c’
I0

or ∆Ec’
I0+1,c’

I0
is smaller.

Step 9: If |T1 − t1| , 0, then three cases are possible:

Case 1: If |T1 − t1| = 2, then I1 and I2 are changed by +1 or −1; this depends on whether
∆Ec’

I1+1,c’
I1
+ ∆Ec’

I2+1,c’
I2

or ∆Ec’
I1−1,c’

I1
+ ∆Ec’

I2−1,c’
I2

is smaller.

Case 2: If T1 − t1 = 1 or T1 − t1 = −3, then either I1 or I2 is changed by −1; this depends on
whether ∆Ec’

I1−1,c’
I1

or ∆Ec’
I2−1,c’

I2
is smaller.

Case 3: If T1 − t1 = −1 or T1 − t1 = 3, then either I1 or I2 is changed by +1; this depends on
whether ∆Ec’

I1+1,c’
I1

or ∆Ec’
I2+1,c’

I2
is smaller.
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Step 10: Go to Step 3 until all secret data are embedded.

If any ∆E > 5 in the embedding process, the current block is skipped, and no secret data are
embedded. An additional location map is required for recording if a block is used to embed secret data.

Table 1. Relation between secret data w and (t0, t1).

w (3 Bits) t0 t1

7 (111) 0 3
6 (110) 0 2
5 (101) 0 1
4 (100) 0 0
3 (011) 1 0
2 (010) 1 1
1 (001) 1 2
0 (000) 1 3

2.2.3. Extraction Process

Step 1: Divide the stego image into nonoverlapping blocks, each of which contains 1× 3 pixels.
Step 2: Reorder palette P to obtain a new palette P′ through the palette reordering process used in the

embedding process.
Step 3: According to the location map, consider an embedded block B with three pixels (B0, B1, B2).

Let Ii be the color index of Bi in P′, i = 0, 1, 2.
Step 4: Calculate t0 and t1 using the following equations:

t0 = I0 mod 2. (10)

t1 = (I1 + I2) mod 4. (11)

Step 5: Extract w according to Table 1, t0 and t1.
Step 6: Go to Step 3 until all embedded blocks are processed.

In Imaizumi et al. and Aryal et al.’s methods, for data extraction, the receiver requires the positions
of embedded blocks. Thus, a location map with one bit for each block should be transmitted to the
receiver; this will reduce the embedding capacity for secret data, and will be discussed in Section 4.
To overcome this disadvantage, a novel BBM was proposed; it does not require a location map.

3. Proposed Method

To avoid using a location map and to obtain higher embedding efficiency and capacity, a novel BBM
for palette images is proposed. The method includes three processes: Parity assignment, embedding,
and extraction. In the parity assignment process, Tanaka et al.’s assignment [14] is used to assign a
k-bit parity to each color in a palette. Through the assignment, a stego image with lower embedding
distortion can be obtained, such that a location map is not required for secret data extraction. In the
embedding process, an optimal scheme is provided to select the pixel in a block with the minimal
embedding distortion; this makes each block used for data embedding. The embedding process is
performed as follows:

3.1. Embedding Process

Step 1: Divide the cover image into nonoverlapping blocks, each of which contains n×m pixels.
Step 2: Use Tanaka et al.’s parity assignment to assign a k-bit parity to each color in palette P.
Step 3: Take one block B with pixels (B0, . . . , Bn×m−1) and k secret data bits w sequentially.
Step 4: Let cB j be the color of B j, and q j be the parity of cB j , 0 ≤ j ≤ n×m− 1.
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Step 5: Calculate r using the following expression:

r =
∑n×m−1

j=0
q j mod 2k. (12)

Step 6: If r = w, then go to Step 10.
Step 7: For each pixel B j, parity q’

j is calculated using the following equation:

q′j =
(
q j + w− r + 2k

)
mod 2k, j = 0, . . . , n×m− 1. (13)

Step 8: For each pixel B j, find a new color c∗B j
with parity q’

j according to the following equation:

c∗B j
= argmin

ci∈Sq
′

j

dcBj ,ci , (14)

where Sq’
j

is the set of all colors with parity q’
j.

Step 9: Consider pixel Bα satisfying the following expression, and set the color of Bα to be c∗Bα .

α = argmin
j∈{0,...,n×m−1}

dcBj ,c
∗

Bj
, (15)

Step 10: Repeat Steps 3 to 9 until all blocks are processed.

In Step 2, Tanaka et al.’s parity assignment is used; it makes each color be able to find a closer
color in each set with a different parity. In Step 8, for each pixel, we always select the color with the
required parity and the minimal embedding distortion to replace the original color. In Step 9, at most
one pixel is modified with the minimal embedding distortion. Through these three steps, each block is
used to embed secret data, and the embedding quality is also improved.

3.2. Extraction Process

In the extraction process, the receiver uses the same parity assignment as that used in the
embedding process to assign a k-bit parity to each color. The extraction process is as follows:

Step 1: Divide the stego image into nonoverlapping blocks, each of which contains n×m pixels.
Step 2: Use Tanaka et al.’s parity assignment to assign a k-bit parity to each color in palette P.
Step 3: Take a block B with pixels (B0, . . . , Bn×m−1) sequentially.
Step 4: Use Equation (12) to obtain r.
Step 5: Set r to be the k secret data bits w.
Step 6: Repeat Steps 3 to 5 until all blocks are processed.

Because each block is used to embed secret data, the receiver does not require a location map in
data extraction.

4. The Analysis for Embedding Capacities

As mentioned previously, both Imaizumi et al. [16] and Aryal et al.’s [17] methods need a location
map in the extraction process; thus, the location map should be transmitted through another channel or be
embedded in the stego image. However, it is unreasonable to transmit the location map through another
channel. Thus, in the following, we only consider the location map embedded in the stego image. Let an
image size be N ×M, block size be n×m, the embedding bits for each block be k, then the total block
number T =

⌊
N ×M/(n×m)

⌋
. Assume that in the location map, each block is represented by one bit,

1 stand for the corresponding block used for embedding; 0 for skipping. Let X be the size of the location
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map, assume that the location map is embedded in the first [X/k] blocks, then the number of available
blocks for secret data embedding is T − [X/k]. Thus, X should satisfy the following equation:

X = T − [X/k]. (16)

Note that the embedding capacity (bits) is kX. Let an image size be 256× 256 and block size be
2× 2, then T = 16384. Let k = 3; through Equation (16), we can obtain X = 12, 288, that is, the number
of available blocks for secret data embedding is 12,288, and the block number needed for recording the
location map is 4096. Table 2 shows embedding capacities for Imaizumi et al.’s, Aryal et al.’s, and the
proposed methods. In the table, we can see that the proposed method is superior to Imaizumi et al.
and Aryal et al.’s methods in embedding capacity.

Table 2. The comparisons of embedding capacities among Imaizumi et al.’s [16], Aryal et al.’s [17],
and the proposed methods for image size 256× 256 and k = 3.

Block Size 2 × 2 1 × 3

Embedding Method [16] Proposed Method [17] Proposed Method

Total Block number (T) 16,384 21,845
Location map size (X bits) 12,288 0 16,383 0

Block number needed for record
location map (dX/ke) 4096 0 5461 0

Number of available blocks for secret
data embedding (T − dX/ke) 12,288 16,384 16,384 21,845

Maximum embedding capacity (bits) 36,864 49,152 49,152 65,535

5. Experimental Results

In the experiments, 25 images of 256× 256 in Figure 1 were used. These images were obtained
from the Standard Image Database [26] or CBlR Image Database [27] and in the TIFF or JPG format.
Photopea [18] was first used to resize and crop each image to 256× 256, then Cloudconvert [18] was
applied to convert TIFF (JPG) format into the GIF format. The embedded secret data were generated
using a pseudorandom number generator. Image quality was measured using the peak signal-to-noise
ratios (PSNRs). Chi-square attack, RS steganalysis, and embedding efficiency were used to measure
the undetectability of a steganography method.

5.1. PSNR Comparisons

To demonstrate the effectiveness of our method, we conducted three experiments for comparing
the image qualities of the proposed method with those of Imaizumi et al. [16] and Aryal et al. [17]
under the same embedding capacity. The first two experiments assume that the location map needed
by Imaizumi et al. and Aryal et al.’s methods is not embedded in the stego image, and it is sent through
another channel. The third experiment assumes that the location map needed by Imaizumi et al. and
Aryal et al.’s methods is embedded in the stego image; thus, the embedding capacity is reduced.
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Figure 1. Twenty-five test images.

In the first experiment, Imaizumi et al.’s and the proposed methods with capacities of 15,000 and
30,000 bits were conducted. First, each image was divided into 128× 128 blocks, each of which has size
2 × 2. Then, each block was embedded k bits, k = 1, 2. Part of results is depicted in Tables 3 and 4.
These tables reveal that the image qualities of the proposed method were the best. This means that the
proposed method actually has lower embedding distortion for each block such that each block can be
used for data embedding. In the following, more details of explanation are described.
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Table 3. Peak signal-to-noise ratios (PSNRs) of Imaizumi et al.’s [16] and the proposed methods.

Capacity (Bits) 15,000, k = 1 30,000, k = 2

[16] Proposed Method [16] Proposed Method

Aerial 38.78 41.99 36.71 39.31
Airplane 46.29 47.18 42.95 44.09
Balloon 45.10 48.04 42.14 44.14
Earth 43.70 50.61 42.45 47.22
Girl 42.57 43.33 39.40 40.12
Lena 41.51 45.21 39.17 41.89

Parrots 40.22 42.22 37.05 38.54
Pepper 41.42 42.53 38.02 39.17

Mandrill 38.82 40.34 35.81 37.30
Couple 41.44 46.16 39.77 43.18
Sailboat 40.62 43.96 38.24 40.76

Milkdrop 45.61 47.47 42.09 43.35

Table 4. PSNRs of Imaizumi et al.’s [16], Aryal et al.’s [17], and the proposed methods with a capacity
45,000 bits and k = 3.

Block Size 2 × 2 1 × 3

[16] Proposed Method [17] Proposed Method

Bell 34.39 41.45 37.51 41.13
Bricks 36.00 35.44 34.97 36.95

Church 36.21 42.07 38.06 41.29
Cliffs 33.28 39.51 36.05 39.50

Kangaroo 36.53 40.31 32.63 39.99
Kinkaku-ji Temple 34.60 38.61 34.66 38.54

Monkeys 36.08 39.53 34.87 39.99
Mosque 37.42 40.38 38.70 40.03
Painting 35.94 41.79 37.58 41.47

Rice paddies 36.18 41.18 36.46 40.93
Statue 30.79 39.28 35.25 38.77

Sydney Opera
House 40.18 43.87 39.07 43.80

Temple 40.22 40.38 36.39 40.51

In Imaizumi et al.’s method, the palette is reordered; this increases the distance between two
neighboring colors (i.e., two colors with index difference 1) when their indices are large. In data
embedding, if one pixel’s color c with index i is replaced by color c′, then the index of c′ is i− 1 or i + 1.
However, when i is large, these two colors with the index difference of 1 may not be close; this increases
the embedding distortion.

To provide more explanation, the image Lena was used with setting k = 1. Figure 2 illustrates the
result of Tanaka et al.’s parity assignment. Figure 2a depicts all colors with parity 0, and Figure 2c
illustrates all colors with parity 1. Figure 2b depicts the corresponding closest color with parity 1 of
each color in Figure 2a. Figure 2d depicts the corresponding closest color with parity 0 of each color in
Figure 2c. From these figures, we can determine that for each color with parity 0 (1), a similar color
with parity 1 (0) can always be found.

Figure 3 illustrates the result of Imaizumi et al.’s palette reordering. Figure 3a displays the
reordered color palette. Figure 3b denotes the best replacing one of each color in Figure 3a when
embedding data. Figure 3c illustrates the enlarged part of the rectangle marked by red color in Figure 3a.
Figure 3d depicts the enlarged part of the rectangle marked by red color in Figure 3b. These figures
indicate that some colors may be replaced by an unsimilar color during data embedding.
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In the second experiment, we compared the proposed method with the methods proposed by
Imaizumi et al. [16] and Aryal et al. [17] with a capacity of 45,000 bits and k = 3. Note that for the
image Couple, only 43,845 bits can be embedded using Aryal et al.’s method. Part of results is listed
in Table 4, which reveals that the proposed method provides the best image quality under the same
capacity. The reason is the same as that in experiment 1. Furthermore, our method modifies at most
one pixel during data embedding; other methods [16,17] may modify more than one pixel during
data embedding.

As mentioned previously, Imaizumi et al. and Aryal et al.’s methods need an extra location map
to record which blocks are used for embedding, in experiment 3, the location map is embedded into a
stego image. According to Table 2, the maximum valid embedding capacity of Imaizumi et al. and
Aryal et al.’s methods are 12, 288× k and 16384× k, respectively. Table 5 shows part of image qualities
of Imaizumi et al.’s, Aryal et al.’s, and our methods under the same embedding capacity. Note that to
enforce embedding the location map in the first 4096 (5467) blocks for Imaizumi et al.’s (Aryal et al.’s)
method, all indices 0 (255) of pixels in these blocks are changed to 1 (254) before embedding; this will
avoid overflow/underflow after embedding. From these tables, we can see that image qualities of the
proposed method are always superior to those of Imaizumi et al. and Aryal et al.’s methods under the
same embedding capacity. The main reason is that embedding the location map will occupy several
blocks and reduce the embedding capacity. Thus, under the same embedding capacity, those blocks
used for embedding the location map in Imaizumi et al. and Aryal et al.’s methods will be skipped
for data embedding in the proposed method. This will make the proposed method have higher
image quality.

Table 5. PSNRs of Imaizumi et al.’s [16], Aryal et al.’s [17], and the proposed methods with k = 3.

Block Size 2 × 2 1 × 3

Capacity 12,288 × k 16,384 × k

[16] Proposed Method [17] Proposed Method

Aerial 33.07 38.35 29.22 36.91
Airplane 37.05 42.62 34.96 40.66
Balloon 35.82 42.13 33.78 40.52
Earth 38.94 45.60 39.14 43.99
Girl 33.53 38.89 30.55 37.33
Lena 34.34 40.30 32.52 38.61

Parrots 31.60 36.52 29.86 34.97
Pepper 32.72 37.58 30.72 36.05

Mandrill 30.81 35.91 27.00 34.25
Couple 35.48 41.76 32.75 40.16
Sailboat 33.92 39.52 31.18 37.99

Milkdrop 35.58 40.99 33.50 39.20

5.2. Chi-Square Attack and RS Steganalysis

In steganography, the main goal for a stego image is statistically undetectable [21] (p. 52).
To test whether the embedded images are detectable, chi-square attack [23], RS steganalysis [24],
and embedding efficiency [21] were conducted. Chi-square attack and RS steganalysis are discussed in
this section, and embedding efficiency in Section 5.3.

Each of chi-square attack and RS steganalysis has two experiments, one embedded 15, 000 × k
bits (k = 1, 2, 3) for Imaizumi et al.’s and the proposed methods. The other embedded 15, 000× k bits
(k = 3) for Aryal et al.’s and the proposed methods.

Chi-square attack employs Pearson’s chi-square test to determine whether there is a statistically
significant difference between the expected frequencies and the observed frequencies in one or more
categories of an image, and it can detect whether a palette image is embedded by messages. The details
of applying the chi-square attack to steganography methods are described as follows:
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Step 1: Let the palette indices of a palette image be divided into K categories, each category contains
a pair of indices (2i, 2i + 1), i = 0, . . . , K − 1. Let Ei and Oi be the theoretically expected and
observed frequencies of pixels with index 2i after embedding messages, respectively. Then

Ei =
The number of pixels with color index 2i or 2i + 1

2
, (17)

Oi = The number of pixels with color index 2i. (18)

Step 2: The χ2 statistic is given as

χ2
K−1 =

∑K−1

i=0

(Oi − Ei)
2

Ei
with K − 1 degrees of freedom. (19)

Step 3: Let pv represent the embedding probability, pv can be calculated by the following equation:

pv = 1−
1

2
K−1

2 Γ
(

K−1
2

) ∫ χ2
K−1

0
e−

x
2 x

K−1
2 −1dx. (20)

In chi-square attack, the results for three methods are pv = 0; this means that the three methods can
resist chi-square attack. There are two reasons: (1) These three methods are block-based; the embedding
capacities are limited and lower than 1 bpp; this will make chi-square attack fail [21]; (2) chi-square
attack is used to detect LSB-based methods, but these three methods are not LSB-based methods.

Chi-square attack just uses sample counts and neglects spatial correlations among pixels in the
stego image. Fridrich et al. [24] introduced RS steganalysis for detection of LSB embedding that utilizes
sensitive dual statistics derived from spatial correlations in image.

In RS steganalysis, for a given image I, through a given local mask, two flipping functions, and a
discrimination function, all pixels of the image can be classified into three groups: Regular, singular,
and unchanged. Given a non-negative mask m, we can obtain the relative frequency of the regular
group denoted as R+ and the relative frequency of the singular group denoted as S+. Then through
the mask –m, we can obtain the relative frequency of the regular group denoted as R− and the relative
frequency of the singular group denoted as S−. Let pe be the embedding rate in f, RS steganalysis can
estimate pe by solving the following equation:

2(d1 + d0)z2 + (d−0 − d−1 − d1 − 3d0)z + d0 − d−0 = 0, (21)

where
d0 = R+(pe/2) − S+(pe/2), d1 = R+(1− pe/2) − S+(1− pe/2),

d−0 = R−(pe/2) − S−(pe/2), d−1 = R−(1− pe/2) − S−(1− pe/2),
(22)

and R+(p/2) represents R+ of a stego image with p pixels embedded (i.e., the LSBs of p/2 pixels
flipped from a cover image). Thus, we can obtain R+(pe/2) easily through f ; furthermore, by flipping
the LSB of each pixel in I to get I′, we can also obtain R+(1− pe/2) through I′. S+, S−, and R− can be
obtained by the similar way. Then, pe is calculated from the root z of Equation (20), whose absolute
value is smaller, by the following equation:

pe =
z

z− 1
2

. (23)

Two experiments are conducted, one for Imaizumi et al.’s [16] and the proposed methods uses
block size 2 × 2 and three capacities (23%, 46%, and 69%); the other for Aryal et al.’s [17] and the
proposed methods uses block size 1× 3 and the same three capacities. In the experiments, the mask m
is defined as [0 1 1 0]. Tables 6 and 7 show part of the pes of Imaizumi et al.’s, Aryal et al.’s, and the
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proposed methods. Note that both Imaizumi et al. and Aryal et al.’s methods embedded message by
reordering the original palette, so there are two results for their methods by analyzing the original
and the reordering palettes. From these tables, we can see that RS steganalysis cannot estimate pe

accurately. The reason is that these three methods are not LSB-based methods. We can conclude that
the three methods can resist RS steganalysis and are undetectable.

Table 6. The results of RS steganalysis for Imaizumi et al.’s [16] and the proposed methods with block
size 2× 2.

Method Proposed Method Imaizumi et al. Imaizumi et al.

Palette Original Original Reordering

k 0 1 2 3 0 1 2 3 0 1 2 3

Actual embedding rate (%)

0 23 46 69 0 23 46 69 0 23 46 69

Estimated embedding rate (%)

Aerial 0 -3 -5 1 0 10 10 16 −20 10 18 32
Airplane −16 −1 2 8 −16 −37 −56 −80 −9 −12 −5 −9
Balloon −11 −19 −17 −20 −11 −14 −12 −21 7 6 0 3
Earth −18 −12 −12 −16 −18 −23 −28 −26 21 14 14 −15
Girl 12 −23 −18 −30 12 10 −4 −7 −16 −8 −18 −19
Lena 0 12 11 12 0 2 −9 −4 4 6 10 8

Parrots 11 −1 1 2 11 12 11 15 −9 −6 −7 −6
Pepper −1 11 11 11 −1 −1 −3 −2 4 2 6 −4
Mandrill 0 0 0 −1 0 3 8 −11 5 10 9 7
Couple −11 −2 −11 −7 −11 5 −12 −4 −16 20 18 22
Sailboat 11 −15 −25 −24 11 12 10 5 −12 −12 −9 −12
Milkdrop 15 10 10 13 15 14 18 14 −1 2 0 −1

5.3. Embedding Efficiency

Another measurement for undetectability is embedding efficiency [21]. The embedding efficiency
is defined as the number of embedded random message bits per embedding change [21]. According to
this definition, embedding efficiency (EF) can be expressed as follows:

EF =
number of embedding bits

number of embedding pixel changes
. (24)

Methods with higher embedding efficiency are more undetectable, because under the same
capacity, higher embedding efficiency methods will change less pixels than lower embedding efficiency
methods. For k = 3, according to Equation (24), the estimated embedding efficiency of the proposed
method (EFp) can be calculated by Equation (25).

EFp =
3

0× p0 + 1× p1
, (25)

where pi stands for the probability of i pixel changed in a block, here p0 = 1/8 and p1 = 7/8.
The estimated embedding efficiency of Imaizumi et al.’s method (EFi) can be calculated by

Equation (26).

EFi =
3

0× p0 + 1× p1 + 2× p2 + 3× p3 + 4× p4
, (26)

where pi stands for the probability of i pixel changed in a block, here p0 = 1/15, p1 = p2 = p3 = 4/15,
and p4 = 2/15.
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The estimated embedding efficiency of Aryal et al.’s method (EFa) can be calculated by Equation (27).

EFa =
3

(p0) × (1× p1 + 2× p2) + (1− p0) × ((1 + 1) × p1 + (1 + 2) × p2)
. (27)

where p0 stands for the probability of B0 unchanged, pi stands for the probability of i pixels from
{B1, B2} changed, here p0 = 1/2, p1 = 4/7, and p2 = 2/7.

Table 8 shows the estimated embedding efficiencies of the proposed, Imaizumi et al.’s [16],
and Aryal et al.’s [17] methods obtained by using Equations (25)–(27). Table 9 shows part of
experimental embedding efficiency calculated by applying Equation (24) to each stego image, which
is obtained by one of Imaizumi et al.’s, Aryal et al.’s and the proposed methods. From these tables,
we can see that either estimated embedding efficiency or experimental one, the proposed method has
higher embedding efficiency than those of Imaizumi et al. and Aryal et al.’s methods. This means that
the proposed method is less detectable than Imaizumi et al. and Aryal et al.’s methods.

Table 7. The results of RS steganalysis for Aryal et al.’s [17] and the proposed methods with block size 1× 3.

Method Proposed Method Aryal et al. Aryal et al.

Palette Original Original Reordering

k 0 3 3 3 0 3 3 3 0 3 3 3

Actual embedding rate (%)

0 23 46 69 0 23 46 69 0 23 46 69

Estimated embedding rate (%)

Bell −11 −11 −11 −13 −11 −16 −15 −19 −12 −17 −16 −10
Bricks −27 −39 −55 −39 −27 −28 −31 −46 5 0 1 −9

Church 11 11 15 17 11 11 14 16 4 4 4 −2
Cliffs −9 −12 −19 −20 −9 −7 −6 −4 2 1 0 2

Kangaroo −40 −46 −40 −43 −40 −52 −60 −75 −39 −44 −47 −43
Kinkaku−ji

Temple −15 −16 −24 −31 −15 −19 −25 −30 4 2 −1 −4

Monkeys 4 5 5 8 4 0 −6 −9 −2 −2 2 3
Mosque −15 −11 −10 −8 −15 −14 −17 −19 −2 −2 0 8
Painting −11 −13 −19 −22 −11 −12 −22 −35 −5 −9 −13 −17

Rice paddies −148 −143 −144 −158 −148 −151 −138 −131 −54 −40 −39 −38
Statue 18 16 17 18 18 23 25 29 −9 −8 −11 −4

Sydney
Opera
House

1 −2 −6 −7 1 −2 1 −2 8 14 15 17

Temple −18 −16 −14 −17 −18 −48 −50 −45 6 11 15 13

Table 8. Estimated embedding efficiencies of Imaizumi et al.’s [16], Aryal et al.’s [17], and the proposed
methods with k = 3.

Block Size 2 × 2 1 × 3

Methods [16] Proposed Method [17] Proposed Method

1.406 3.428 1.909 3.428
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Table 9. Experimental embedding efficiencies of Imaizumi et al.’s [16], Aryal et al.’s [17], and the
proposed methods with k = 3.

Block Size 2 × 2 1 × 3

Capacity (Bits) 49,152 65,535

Images
Methods

[16] Proposed Method [17] Proposed Method

Aerial 1.492 3.417 2.006 3.442
Airplane 1.499 3.415 1.994 3.431
Balloon 1.497 3.430 1.999 3.423
Earth 1.500 3.415 1.994 3.425
Girl 1.490 3.454 2.007 3.450
Lena 1.491 3.412 1.996 3.431

Parrots 1.496 3.445 1.988 3.424
Pepper 1.482 3.401 2.011 3.427

Mandrill 1.507 3.434 2.015 3.442
Couple 1.482 3.432 2.012 3.440
Sailboat 1.505 3.425 1.996 3.427

Milkdrop 1.500 3.411 1.993 3.442

6. Conclusions

As mentioned previously, some BBMs produce large embedding distortions in some blocks;
a location map is incorporated into these methods to record which blocks are used for data embedding.
This will reduce the embedding capacity for secret data. To avoid this disadvantage, in this paper,
we have proposed a BBM for palette images. The method modifies at most one pixel in a block.
If modification is required, one optimal pixel with minimal embedding distortion is selected; this makes
each block be used to embed secret data; that is, the embedding capacity of the proposed method is
larger than that of the state-of-the-art BBMs. As to the undetectability, chi-square attack, RS steganalysis,
and the embedding efficiency are used. Imaizumi et al.’s, Aryal et al.’s., and the proposed methods can
resist chi-square attack and RS steganalysis. However, through the measure of embedding efficiency,
both estimated and experimental efficiencies revealed that our method provided higher undetectability.
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