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Abstract: The main goal of any classification or regression task is to obtain a model that will generalize
well on new, previously unseen data. Due to the recent rise of deep learning and many state-of-the-art
results obtained with deep models, deep learning architectures have become one of the most used
model architectures nowadays. To generalize well, a deep model needs to learn the training data well
without overfitting. The latter implies a correlation of deep model optimization and regularization
with generalization performance. In this work, we explore the effect of the used optimization
algorithm and regularization techniques on the final generalization performance of the model with
convolutional neural network (CNN) architecture widely used in the field of computer vision.
We give a detailed overview of optimization and regularization techniques with a comparative
analysis of their performance with three CNNs on the CIFAR-10 and Fashion-MNIST image datasets.

Keywords: neural networks; optimization; regularization; overfitting; model generalization;
image processing

1. Introduction

The state-of-the-art results in different fields, such as computer vision [1,2], speech recognition [3]
and natural language processing [4,5], are obtained using deep neural networks. Deep neural
networks have high representative capacity; trained on a large dataset, they can automatically learn
complex relations between raw input data and given output. The high representative capacity of deep
models comes with the cost of overfitting: fitting available training data too well, i.e., memorizing
training data along with the noise contained in them and failing to generalize on new, unseen data.
Zhang et al. [6] showed that deep neural networks can easily fit data with random labels (achieving
100% accuracy on the training set). In this case, there is no apparent connection between input data and
target labels that model needs to learn, and yet it succeeds in fitting the given training data perfectly.

The main goal is to obtain a model that generalizes well. The generalization error of a deep learning
model refers to the expected prediction error on new data. Because generalization error is not directly
accessible, in practice, it is estimated using a misclassification rate on an independent test set not
used during the training. To obtain a low generalization error, the model needs to learn available
data without overfitting. Optimization and regularization are two significant parts of deep learning
research that play an essential role in the final performance of a deep model. Optimization considers
different methods and algorithms used for model training, i.e., learning the underlying mapping from
inputs to outputs by choosing the right set of parameters that will reduce the error on the training
data. Regularization, on the other hand, is focused on preventing the overfitting to the training data
by adding penalties or constraints on a model that incorporates some prior knowledge of underlying
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mapping or preference toward a specific class of models. The term regularization has been used quite
freely to denote any technique that aims to enhance model performance on the test data. This work
aims to provide the reader with a deeper understanding of commonly used optimization algorithms
and regularization techniques by giving necessary theoretical background and systematic overview
for both, together with the empirical evaluations and analysis of their effect on the training process
and the final generalization performance of the model.

The performance of convolutional neural networks with respect to optimization algorithms
and regularization techniques has been investigated in a number of works. Many variations of
the reported results are related to different optimizers and regularizing approaches taken under
consideration, or their combinations, different model architectures and datasets. The studies in [7–11]
are examples of works where existing optimization algorithms are reviewed, compared and evaluated
from a different perspectives. The reported results show that optimization effect differs not only
with the selection of optimization algorithm but with a problem under consideration. In parallel, the
works in [12–17] are some of the representative literature on regularization techniques ranging from
studies on influence in deep learning models to taxonomy definition and review. Smirnov et al. [12]
compared three regularization techniques, Dropout, Generalized Dropout and Data Augmentation,
and demonstrated improvements on ImageNet classification task. Another work that deals with
comparison of regularization techniques in deep neural networks is the work of Nusrat and Jang [13],
who reported that models using regularization techniques such as Data Augmentation and Batch
Normalization exhibit improved performance against the baseline on the weather prediction task.
In our work, optimization and regularization are considered as a complementary techniques, which are
worth of deeper investigation whenever a network is developed for a particular case. A work with a
similar idea to ours is the empirical study of Garbin et al. [14] who investigated the behavior of Dropout
and Batch Normalization with respect to two optimizers, the SGD and RMSProp on single network,
reporting favorable results with Batch Normalization but not with the Dropout on CNN. The difference
in our work is that our empirical evaluation studies a broad set of methods: we empirically evaluate
the effect of nine optimizers, Batch Normalization and six regularization techniques with three CNNs
on two image datasets, CIFAR-10 [18] and Fashion-MNIST [19].

The rest of the paper is structured in three sections as follows. Section 2 gives a theoretical
background and systematic overview of different optimization algorithms used for training deep
neural networks together with the Batch Normalization [20] technique. In Section 3, an overview
of different regularization methods is given. Section 4 provides a comparative analysis of different
optimization algorithms and regularization methods on the image classification problem supplemented
with appropriate visualizations that give a deeper insight into the effect of each method (or their
combination) on the training process and generalization performance. In Section 5, concluding
remarks are given.

2. Optimization

Neural network training is an optimization problem with non-convex objective function J: the
minimization problem minθ J(θ;Dtrain). During the training process, model parameters θ are iteratively
updated in order to reduce the cost J on the training data Dtrain. In subsequent sections, we use bold
symbols such as θ for vector quantities and regular ones for scalars. The most commonly used stopping
criterion for the iterative training process is the predefined number of passes through all available
training data, i.e., epochs. One epoch often consists of multiple iterations.

There are various optimization algorithms used for training neural networks, which differ in the
way they update network parameters. We describe the most commonly used optimization algorithms
in the subsections below. Up to date, there is no clear answer nor consensus on which optimization
algorithm is universally the best. Two metrics often used to evaluate efficiency of an optimization
algorithm are:
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• Speed of convergence: The time needed for algorithm to reach the optimal value
• Generalization: The model performance on new data

The optimization of deep neural networks comes with many challenges. One of them is a highly
non-convex objective function J with numerous suboptimal local minima and saddle points. Other
challenges include high-dimensionality of search space (deep models often have to learn millions
of parameters) and choice of appropriate values for hyperparameters of the model. We overview
classical and adaptive optimization algorithms commonly used to optimize neural networks’ cost in
the following subsections. Summary of update rules of overviewed optimization algorithms can be
found in the Appendix A.

2.1. Classical Iterative Optimization Algorithms

The main idea behind all optimization algorithms is to update parameters in the direction of a
negative gradient −∇θ J(θ;Dtrain), direction of the steepest descent. In each iteration, parameters are
updated by

∆θ = −η∇θ J(θ;Dtrain) (1)

where η > 0 is a hyperparameter called learning rate, which controls the amount of update.
In the sections that follow, we denote parameters in iteration t ∈ N with θt, while θ0 is used to
denote initial parameters of the model, which are usually small random numbers from a normal or
uniform distribution with 0 expectation.

2.1.1. Stochastic Gradient Descent (SGD)

In iteration t, an approximation of gradient ∇θ J(θt−1;Dtrain) is calculated using a mini-batch
D ⊆ Dtrain of training data and then used to modify parameters from previous time step t− 1 according
to the update rule [21]

θt = θt−1 − η∇θ J(θt−1;D). (2)

(In the literature, the term stochastic gradient descent is often used for a variant of gradient descent
in which one training example is used for approximation of the gradient. When the approximation of
gradient is calculated on a mini-batch of training examples, then the term mini-batch gradient descent is
used. Here, term SGD refers to mini-batch gradient descent as it is the case in the most deep learning
frameworks.) In the rest of the article, ∇J(θt−1) denotes approximation ∇θ J(θt−1;D).

The choice of learning rate η plays a crucial role in the convergence of SGD. Choosing too small
learning rate results in slow learning and choosing too high learning rate can lead to divergence. When
SGD gets very close to a local optimum, the parameter values sometimes oscillate back and forth
around the optima. It also takes a lot of time for SGD to navigate flat regions, which are common
around local optima where the gradient is close to zero. These problems led to developing new
optimization algorithms that incorporate the momentum term.

2.1.2. Momentum

Adding a momentum term m in classical stochastic gradient descent helps to accelerate learning
in relevant directions and reduce oscillations during training by slowing down along dimensions
where the gradient is inconsistent, i.e., in dimensions where the sign of gradient often changes. The
momentum [22] update rule is given by

m0 = 0 (initialize momentum)

mt = γmt−1 − η∇J(θt−1) (compute momentum update) (3)

θt = θt−1 + mt (apply update) (4)
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where γ ∈ [0, 1〉 is the decay constant. By setting γ to 0, we get classical SGD without momentum.
In iteration t, parameter update is equal to

mt = −η
z−1

∑
i=0

γt−1−i∇J(θi) (5)

= −η
(
∇J(θt−1) + γ∇J(θt−2) + · · ·+ γt−1∇J(θ0)

)︸ ︷︷ ︸
decaying sum of gradients

. (6)

From (6), it can be seen that update in iteration t takes into account all gradients calculated so
far with more weight put on the recent ones. As t increases, we have lesser and lesser trust in the
gradients calculated in iterations at the beginning of the training.

The ith component of vector m, which corresponds to update made to parameter i of the given
network, accumulates speed when partial derivatives ∂i J point in the same direction and slows down
when they point in different directions. This property helps momentum to more quickly escape flat
regions where the gradient is close to zero but often points in the same direction. Accumulated speed
sometimes leads to overshooting the local minimum, which results in many oscillations back and forth
around the minimum before convergence.

2.1.3. Nesterov Accelerated Gradient Descent (NAG)

Momentum’s update mt can be interpreted as a two-step movement. First, we move according
to decayed update history γmt−1, and then we make a step in the direction of the current gradient
calculated using parameters θt−1 from iteration t− 1. If we know that we will move in the direction
of history γmt−1, then we can first make the movement and then calculate gradient from the point
θt−1 + γmt−1 in which we arrive instead of calculating gradient in the point from the previous iteration
θt−1. The formal update rule for Nesterov accelerated gradient [23] (NAG) is given with

m0 = 0 (initialize momentum)

mt = γmt−1 − η∇J(θt−1 + γmt−1) (compute momentum update) (7)

θt = θt−1 + mt (apply update). (8)

When overshooting local minimum due to accumulated speed happens, looking ahead in (7) helps
NAG correct its course more quickly than in the case with regular momentum.

2.2. Adaptive Learning Rate Optimizers

While previously presented optimization algorithms use the same learning rate to modify all
parameters of the model, some new optimization algorithms developed from the 2010s seek to upgrade
this original behavior of SGD by allowing the algorithm to adaptively change the learning rate per
parameter during the training process. A brief overview of the most commonly used optimizers
considered adaptive is given below.

2.2.1. Adagrad

Adagrad optimization algorithm was first introduced by Duchi et al. [24]. It implements
parameter-specific learning rates: corresponding learning rates of parameters that are updated more
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frequently are smaller and larger for parameters that are updated infrequently. The update rule for
Adagrad is given by

v0 = 0 (initialize squared gradient accumulator)

vt = vt−1 +
(
∇J(θt−1)

)2 (accumulate squared gradient) (9)

θt = θt−1 −
η√

vt + ε
◦ ∇J(θt−1) (apply update) (10)

where ◦ denotes Hadamard (element-wise) product and (∇J(θt−1))
2 denotes the element-wise

square of the given gradient. Division and square root in η√
vt+ε are also calculated element-wise.

The ith component η√
∑t

k=1(∂i J(θk−1))
2+ε

of the latter vector corresponds to the learning rate that is

used to update parameter i in iteration t. The main weakness of Adagrad optimizer is the constant
growth of accumulator v during the whole training process, in each iteration on ith coordinate the
corresponding squared (and therefore non-negative) partial derivative of the cost function J is added,
which eventually results with infinitely small learning rates approximately ≈0 that basically stops the
training process.

2.2.2. Adadelta

The Adadelta [25] optimization algorithm tries to correct the diminishing learning rate problem
in the Adagrad algorithm by accumulating the squared gradients over the fixed-size window instead
of using gradients from all previous iterations. Instead of inefficient storing of all previous squared
gradients from the current window, Adadelta implements accumulator as exponentially decaying
average of squared gradients.

m0 = 0, v0 = 0 (initialize accumulation variables)

vt = βvt−1 + (1− β) (∇J(θt−1))
2 (accumulate squared gradient) (11)

∆θt = −
√

mt−1 + ε√
vt + ε

◦ ∇J(θt−1) (compute update) (12)

mt = βmt−1 + (1− β)(∆θt)
2 (accumulate squared update) (13)

θt = θt−1 + ∆θt (apply update). (14)

Constant ε in Equation (12) is added in the denominator to condition it better and in the numerator
to ensure that first update ∆θ1 6= 0 and also to ensure progress when update accumulator m becomes
small. It should be noted that the Adadelta optimization algorithm does not use the learning rate η.
Instead, the size of an update made to parameter i in iteration t is controlled by the ith component of
the vector

√
mt−1+ε√

vt+ε
that can be viewed as the quotient of RMS of updates ∆J(θ) and gradients up to

time t, i.e., the update rule (14) can be rewritten as

θt = θt−1 −
RMS

[
∆θ
]

t−1

RMS
[
∇J(θ)

]
t
◦ ∇J(θt−1). (15)

2.2.3. RMSProp

The RMSProp algorithm [26] shown on Hinton’s slides from the Coursera class was developed
independently from Adadelta around the same time. RMSProp tries to solve the indefinite
accumulation of squared gradients from Adagrad by replacing accumulator v with exponentially
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weighted moving average, which allows replacing older squared gradients with newer ones according
to the update rule given below

v0 = 0 (initialize squared gradient accumulator)

vt = βvt−1 + (1− β)
(
∇J(θt−1)

)2 (accumulate squared gradient) (16)

θt = θt−1 −
η√

vt + ε
◦ ∇J(θt−1) (apply update). (17)

Hinton suggests that 0.9 is a good default value for the β and 0.001 for the η. A version of RMSProp with
added momentum has been used in [27]. With added momentum update rule for RMSProp becomes

m0 = 0, v0 = 0 (initialize accumulation variables)

vt = βvt−1 + (1− β)
(
∇J(θt−1)

)2 (accumulate squared gradient) (18)

mt = γmt−1 −
η√

vt + ε
◦ ∇J(θt−1) (compute momentum update) (19)

θt = θt−1 + mt (apply update). (20)

2.2.4. Adam

The Adam (Adaptive Moment Estimation) optimizer introduced in [28] can be viewed as a “tweaked”
RMSProp optimizer with added momentum. There are two main differences between RMSProp with
momentum and Adam:

• Estimates of the first moment and second raw moment, i.e., accumulation variables m and v,
respectively, used for parameter update in Adam are calculated using exponential moving average.

• Adam includes initialization bias-correction terms for the first and second moment estimates,
which are due to their initialization to the vector of zeros in initial iterations biased towards 0.

Adam update rule is given below.

m0 = 0, v0 = 0 (initialize 1st and 2nd moment estimates)

mt = β1mt−1 + (1− β1)∇J(θt−1) (update biased 1st moment estimate) (21)

vt = β2vt−1 + (1− β2) (∇J(θt−1))
2 (update biased 2nd moment estimate) (22)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(compute bias corrected moment estimates) (23)

θt = θt−1 −
η√

v̂t + ε
◦ m̂t (apply update). (24)

Adam and classical momentum are the two most used optimizers used in many papers that
reported state-of-the-art results in different fields.

2.2.5. AdaMax

In the same paper as Adam, a variant of Adam called AdaMax, which uses L∞ norm instead of
L2 norm, is presented.
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m0 = 0, u0 = 0 (initilize 1st moment estimate and L∞ norm vector)

mt = β1mt−1 + (1− β1)∇J(θt−1) (update biased 1st moment estimate) (25)

ut = max
{

β2ut−1, |∇J(θt−1)|
}

(update L∞ norm vector) (26)

m̂t =
mt

1− βt
1

(compute bias corrected 1st moment estimate) (27)

θt = θt−1 −
η

ut
◦ m̂t (apply update). (28)

2.2.6. Nadam

Nesterov-accelerated adaptive moment estimation (NADAM) [29] incorporates Nesterov
momentum into Adam.

m0 = 0, v0 = 0 (initialize 1st and 2nd moment estimates)

mt = β1mt−1 + (1− β1)∇J(θt−1) (update biased 1st moment estimate) (29)

vt = β2vt−1 + (1− β2) (∇J(θt−1))
2 (update biased 2nd moment estimate) (30)

m̂t =
mt

1−
t+1
∏
i=1

µi

, v̂t =
vt

1− βt
2

(bias corrections) (31)

ĝt =
∇J(θt−1)

1−
t

∏
i=1

µi

(32)

mt = (1− µt)ĝt + µt+1m̂t (calculate update vector incoorporating Nesterov) (33)

θt = θt−1 −
η√

v̂t + ε
◦mt (apply update). (34)

According to the TensorFlow documentation (https://www.tensorflow.org/api_docs/python/tf/
keras/optimizers/Nadam), parameters µt are calculated using

µt = β1

(
1− 0.5× 0.96

t
250

)
, (35)

which is similar to the momentum schedule used in [30], while, in [29], µt are additional
hyperparameters required in advance.

2.3. Batch Normalization

Although it is not an optimization algorithm, the Batch Normalization [20] method is one of the
most significant innovations in deep model optimization in recent years. It stabilizes the learning
process by reducing changes in hidden layers input data distribution caused by constant changes
made to parameters from previous layers. The idea is to add new normalizing layers that will transform
data during the training in order to avoid unwanted changes in distribution.

Input to the given unit is normalized for each mini-batch D. Let zi be the input to the given unit
that corresponds to the ith example of mini-batch D of size m. Normalization of zi is done as follows

z(norm)
i =

zi − µD√
σ2
D + ε

, i = 1, . . . , m (36)

where

µD =
1
m

m

∑
i=1

zi, σ2
D =

1
m

m

∑
i=1

(zi − µD)
2 (37)

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Nadam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Nadam
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are mean and variance estimates for mini-batch D and ε positive constant added for numerical stability.
An additional linear transformation

z̃i = γz(norm)
i + β, i = 1, . . . , m, (38)

is applied to keep the expressive power of the hidden units. New parameters γ and β, which are also
learned during training (initialized with γ = 1, β = 0), enable normalized data to have any mean
and variance. During the test phase, an exponential moving average of mean and variance values
calculated during training is used.

3. Regularization

To prevent overfitting of the model to the training data, different regularization techniques are
used. In [31], regularization is defined as “any modification we make to a learning algorithm that is intended
to reduce its generalization error but not its training error”. There is a wide range of methods that are
considered as regularization methods. Some of the most commonly used ones are L2 weight decay,
Dropout, Data Augmentation and Early Stopping.

3.1. L2 Regularization

L2 regularization, also known as weight decay, is a regularization technique that adds parameter
norm penalty

penalty =
1
2
‖θ‖2

2 =
1
2 ∑

i
θ2

i (39)

to the cost function J. New, regularized cost function J̃ used for training is given by

J̃(θ;D) = J(θ;D) + λ

2
‖θ‖2

2 (40)

= J(θ;D) + λ

2
θTθ, (41)

where λ ∈ [0, ∞〉 is regularization parameter that controls the strength of regularization and D
mini-batch of training data. During the training process, the minimization of J̃ results in a decreased
original cost J and ‖·‖2 of the model parameters. The step in each iteration is now made based on

∇θ J̃(θ;D) = ∇θ J(θ;D) + λθ. (42)

Gradient descent update in iteration t

θt = θt−1 − η∇θ J̃(θt−1;D) (43)

after substituting (42) becomes

θt = (1− ηλ)θt−1︸ ︷︷ ︸
decay parameters
by constant factor

proportionally
to their size

−η∇θ J(θt−1;D)︸ ︷︷ ︸
make update

. (44)

Penalizing parameters proportionally to their size results in a model with smaller, more dispersed
parameters. In this way, the model is encouraged to use all input values a little bit instead of focusing
only on the some with large corresponding weights. The other intuition behind L2 regularization is that
the penalty imposes prior to the complexity of the model. By penalizing large parameters, we obtain a
less complex model that will reduce overfitting due to its inability to memorize all training data.
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3.2. L1 Regularization

Another less common type of weight penalty is ‖·‖1 penalty used in L1 regularization,
which results in a model with sparse parameters. Incorporating the norm penalty term

penalty = ‖θ‖1 = ∑
i
|θi| (45)

into cost function J gives regularized cost function

J̃(θ;D) = J(θ;D) + λ ‖θ‖1 (46)

with gradient
∇θ J̃(θ;D) = ∇θ J(θ;D) + λsign(θ), (47)

where sign function is applied element-wise on parameter vector θ. Update in iteration t is therefore
given by

θt = θt−1 − ηλsign(θt−1)︸ ︷︷ ︸
decay parameters toward 0

−η∇θ J(θt−1;D)︸ ︷︷ ︸
make update

. (48)

The decay is constant here; if ith parameter θi is greater than 0, then we subtract ηλ > 0 from it;
if it is negative, then we add ηλ pushing it in that way towards 0. Due to the resulting sparsity,
L1 regularization is often considered as a feature selection method; we ignore features with
0 coefficients.

3.3. Noise Injection

To improve the robustness of the network to variations of inputs during the training process,
random noise such as Gaussian noise can be added to the inputs. In this way, the network is no more
able to memorize training data because they are continually changing. Noise added to the input data
can be viewed as a form of data augmentation.

Noise is usually added to the inputs, but it can also be added to the weights, gradients, hidden
layer activations (to improve robustness of optimization process) and labels (to assure robustness of
the network to incorrectly labeled data). The Dropout regularization technique is one way of adding
the Bernoulli noise into the input and hidden units.

3.4. Dropout

To prevent complex co-adaptations of model units to the training data that can lead to overfitting,
the Dropout [32] regularization technique during the training in each iteration drops units randomly
with some probability p, which is given in advance. Probability p of dropping units can be defined
layer-wise with different probability for different layers. During the test phase, all units are kept
with corresponding weights multiplied by the probability pkeep of keeping the given unit during the
training phase. The Dropout during training and testing is illustrated in Figure 1. Dropout can also be
interpreted as:

• adding Bernoulli noise into the input and hidden units, where noise can be seen as the loss of the
information carried by the dropped unit; and

• averaging output of approximately 2n subnetworks that share weights obtained from the original
network with n units by randomly removing non-output units.

3.5. Data Augmentation

Overfitting can be addressed by adding new data into the training set. Acquiring new useful
training data and required labeling is a “painful” task often unfeasible in practice. Data Augmentation
is a regularization technique used to artificially enlarge training set by generating new training data
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by applying different transformations to the existing data. When working with labeled data, one
must be careful not to apply a transformation that can change the correct label. New data can be
generated before (preferred when a smaller dataset is used) or during the training process. Examples
of transformations that can be applied to image data are resizing, scaling, random cropping, rotation
and illumination.

present with 

probability 𝑝1

present with 

probability 𝑝2

present with 

probability 𝑝3

TRAINING:

always present

TESTING:

always present always present

multiply

weights by 𝑝1

𝒘𝑝1 𝒘𝑝2

𝒘𝑝3

multiply

weights by 𝑝2

multiply

weights by 𝑝3

Figure 1. Dropout during the training (left) and testing phase (right).

3.6. Ensemble Learning

Ensemble methods combine predictions from several models to reduce generalization error.
Prediction of the ensemble is obtained by averaging predictions from ensemble members (weighted or
unweighted average) or using majority vote for classification tasks. The averaging “works” because
different models often make different mistakes.

Because neural networks incorporate a significant amount of randomness (parameter initialization,
mini-batch choice, etc.), one neural network model trained multiple times using the same training data
can be used to construct an ensemble. The most significant improvements in generalization ability are
obtained when ensemble members are either trained on different data or have different architecture.
With deep neural networks, the two mentioned approaches are challenging to implement for several
reasons:

• Training multiple neural networks is computationally expensive.
• Constructing an ensemble of neural networks with different architectures requires fine-tuning

hyperparameters for each of them.
• Training one deep neural network requires large amount of data; training k networks on entirely

different datasets requires k times more training data.

3.6.1. Bagging

Bootstrap aggregating (bagging) [33] is an ensemble method focused on reducing the variance
of an estimate. With bagging, the ensemble of neural networks with the same architecture and
hyperparameter settings can be constructed.

If we construct an ensemble with k members, then from the available dataset Dtrain by sampling
with replacement k new training datasets D(1)

train, . . . ,D(k)
train (usually the same size as the original

training dataset) are generated. The model i is then obtained by training a neural network on dataset
D(i)

train. The bagging scheme is illustrated in Figure 2. Ensemble member differences are induced by
differences caused by the random selection of data during sampling.

3.7. Early Stopping

Training of deep models is challenging. One of the challenges is deciding how long to
train the model. If the model is not trained long enough, it will not be able to learn the underlying
mapping from inputs to outputs; it will underfit. On the other hand, if it is trained too long,



Appl. Sci. 2020, 10, 7817 11 of 30

there will be a point during training when model stops to learn generalizable features and starts
to learn statistical noise in the training data, i.e., starts to overfit.

training
Model 1

Model 2

Model k

training

training

Ensamble

new data: x

Figure 2. Bagging scheme.

Early Stopping is a regularization method that terminates the training algorithm before overfitting
occurs. During the training, generalization error is empirically estimated using a validation set.
The training algorithm stops when the increase of validation error is observed and parameters with
the lowest validation error are returned rather than the latest ones. However, the real validation
error curve is not “smooth”; it can still go further down after it has begun to increase. Because of
that, it is not ideal to stop the training immediately after the increase in validation error is observed.
The stopping is often delayed for some predefined number of epochs called patience. Some stopping
criteria used in practice are:

• stop the training if validation error increased in p successive epochs (with respect to the lowest
validation error up to that point);

• stop the training if there was no decrease in validation error of at least δmin > 0 in p successive
epochs; or

• stop if the validation error exceeds some predefined threshold.

Stopping criteria involve the trade-off between training time and final generalization performance.
The results of experiments made by Prechelt [34] show that criteria which stop training later on
average lead to improved generalization compared to criteria that stop training earlier. However, the
difference between training times used for “slower” and “faster” criteria that lead to improvements
in generalization is rather large on average and significantly varied when criteria that are slower are
used.

The Early Stopping method can be used to find the optimal number of epochs to train the model.
After the hyperparameter number of epochs has been tuned in that way, the model can be retrained
using all data (including validation set) for the obtained number of epochs.

4. Experiments

4.1. Baseline Model Architectures and Dataset Description

The goal of this experimental study was to quantify the effect of used optimizer and regularization
technique on the training process and final generalization performance of the given model.
Experiments were performed using three baseline convolutional neural network (CNN) model
architectures and two datasets. For implementation, TensorFlow framework, precisely tf.keras, was used.
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4.1.1. Baseline Model Architectures

For Model 1, we used CNN-C architecture from [35]. The Model 2 architecture was inspired
by VGG-16 [16], consisting of stacked convolutional layers followed by Pooling layer and Dense
layers incorporated before the output layer. Model 3, the largest model that we used (in terms of
the number of learnable parameters), has an AlexNet-like architecture [36], consisting of stacked
convolutional layers followed by Pooling layer, with 3× 3 receptive fields and without the last pooling
layer. Detailed descriptions of the architectures are given in Table 1. The same seed was used for
parameter initialization across all models.

4.1.2. Datasets

As training data, we used: (i) standard benchmark CIFAR-10 [18] dataset, which consists of
60,000 32 × 32 colored images divided into ten categories; and (ii) Fashion-MNIST [19] dataset,
comprising 70,000 28× 28 grayscale images of fashion products (clothes and shoes) from 10 different
categories. The original training data were split into two parts: training data and validation data;
20% of original training data were used for validation and the rest for training. All models were
trained with mini-batches of size 128. Models which use CIFAR-10 dataset were trained for 350 epochs,
while the ones that use Fashion-MNIST were trained for 250 epochs. To obtain an unbiased estimate of
the generalization error, validation data were used for tuning of hyperparameters and analysis of the
learning process, while test data were used only for final evaluation.

Table 1. Baseline model architectures.

Model 1 Model 2 Model 3

Conv 96, 3× 3 Conv 64, 3× 3 Conv 96, 3× 3
Conv 96, 3× 3 Conv 128, 3× 3 MaxPooling
MaxPooling, MaxPooling Conv 256, 3× 3

Conv 192, 3× 3 Conv 128, 3× 3 MaxPooling
Conv 192, 3× 3 Conv 256, 3× 3 Conv 384, 3× 3

MaxPooling MaxPooling Conv 384, 3× 3
Conv 192, 3× 3 FC 128 Conv 256, 3× 3
Conv 192, 1× 1 FC-Softmax 10 FC 4096
Conv 10, 1× 1 FC 4096

GlobalAveraging FC-Softmax 10
FC-Softmax 10

≈955 K params ≈2.1M params ≈56 M params

4.2. Results

In this subsection, we give a comparative analysis of different optimization and regularization
techniques based on the empirical evaluations of the generalization performance and visualizations of
the learning curves of models, i.e., the behavior of the loss. Iin the experimental part, we use the term
loss instead of the term cost to denote the value of the function J that is minimized during the training
(as it is the case in the most deep learning frameworks) and accuracy during the training on data that
were used for learning and on new data.

4.2.1. Evaluation of Optimization Algorithms

The following observations about the influence of used optimization algorithm on the behavior
and final generalization performance of the CNN model are based on their empirical evaluations on
three different model architectures, each trained on two datasets with the nine distinct optimizers
reviewed in Section 2. Hyperparameters of optimizers used for training each model are given in
Appendix B. Figures 3 and 4 show loss and accuracy learning curves of given models, and the final
results on the test and training set are reported in Tables 2 and 3.
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Table 2. Performance of baseline models trained with different optimizers on CIFAR-10 dataset.

Model 1 Model 2 Model 3

Optimizer Loss Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)
Train Test Train Test Train Test Train Test Train Test Train Test

SGD 2.25× 10−4 1.803 100.00 80.61 7.15× 10−6 2.688 100.00 76.49 7.73× 10−5 2.119 100.00 76.25
Momentum 2.65× 10−6 1.926 100.00 83.17 1.36× 10−6 2.442 100.00 78.37 8.37× 10−7 2.171 100.00 79.23

NAG 5.64× 10−7 1.516 100.00 83.68 9.79× 10−7 2.434 100.00 79.11 5.87× 10−7 2.007 100.00 80.40
Adagrad 1.38× 10−5 2.105 100.00 82.20 3.65× 10−6 2.586 100.00 77.49 4.13× 10−5 2.269 100.00 77.38
Adadelta 4.94× 10−7 2.218 100.00 83.65 1.92× 10−7 2.884 100.00 79.09 1.32× 10−7 2.567 100.00 78.46
RMSProp 9.02× 10−2 9.545 99.34 82.04 7.59× 10−2 35.001 99.79 78.99 4.74× 10−2 4.064 99.39 76.37

Adam 5.86× 10−5 1.528 100.00 82.93 2.00× 10−10 3.893 100.00 79.84 2.86× 10−11 2.517 100.00 79.07
AdaMax 6.95× 10−9 2.341 100.00 82.83 4.33× 10−4 3.119 99.99 78.44 0.00× 100 3.405 100.00 80.61
Nadam 9.63× 10−10 3.807 100.00 82.24 5.00× 10−3 4.925 100.00 78.65 0.00× 100 2.400 100.00 80.09

Table 3. Performance of baseline models trained with different optimizers on Fashion-MNIST dataset.

Model 1 Model 2 Model 3

Optimizer Loss Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)
Train Test Train Test Train Test Train Test Train Test Train Test

SGD 1.25× 10−1 0.353 95.43 89.64 1.34× 10−5 0.833 100.00 92.43 1.13× 10−5 0.954 100.00 91.88
Momentum 1.36× 10−6 0.845 100.00 92.54 3.58× 10−6 0.779 100.00 92.81 1.35× 10−6 1.022 100.00 92.13

NAG 1.09× 10−6 0.842 100.00 92.66 5.82× 10−7 0.863 100.00 93.34 5.38× 10−7 0.937 100.00 92.27
Adagrad 4.34× 10−5 0.940 100.00 91.46 5.57× 10−6 0.852 100.00 92.62 1.93× 10−6 1.139 100.00 91.53
Adadelta 7.82× 10−7 0.947 100.00 93.11 5.13× 10−7 0.961 100.00 93.20 1.41× 10−7 1.142 100.00 92.19
RMSProp 1.72× 10−2 2.965 99.81 92.32 4.06× 10−4 1.219 99.99 92.60 1.64× 10−2 2.211 99.73 91.05

Adam 5.84× 10−8 0.920 100.00 93.27 1.27× 10−10 1.029 100.00 93.53 1.01× 10−9 1.328 100.00 92.56
AdaMax 9.93× 10−5 0.664 100.00 92.90 6.41× 10−8 0.964 100.00 93.32 0.00× 100 1.790 100.00 92.58
Nadam 7.95× 10−11 1.662 100.00 93.00 3.61× 10−6 0.755 100.00 93.01 2.46× 10−7 1.770 100.00 91.62
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Figure 3. Loss learning curves for all optimizers on baseline models.

The following observations are made:

(i) The best test set results, in terms of accuracy, are obtained using the classical Nesterov
optimization algorithm and adaptive optimization algorithm Adam and its variant AdaMax.

(ii) Compared to Nesterov optimization algorithm, Adam and AdaMax show less stable
performance (with many “jumps”) on validation data. The most stable, not necessarily
the best, performance on validation data, especially loss, among adaptive optimizers show
Adagrad and Adadelta optimization algorithms.
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(iii) RMSProp optimization algorithm, in all six cases, has considerably larger validation loss than
other optimizers that consistently keeps growing. Interestingly, despite great discrepancy
between RMSProp and others optimizers losses, its validation, and finally test set accuracy
remains reasonable well and comparable with others.

(iv) In terms of test set accuracy, the ranking of classical optimizers stays consistent across
all six models; Nesterov ranked as best, followed by Momentum, and SGD at last.
Ranking of adaptive optimizers places Adagrad optimizer on last place, closely followed by
RMSProp optimizer.

(v) Most of the optimizers in 350 epochs succeeded in reaching the≈0 loss and≈100% accuracy on
the training data in all six models. Exceptions can be found in SGD and RMSProp optimizers,
with the overall worst performance obtained by SGD with 95.43% training accuracy.

(vi) In the early stages, especially on Model 2 and Model 3 (Fashion-MNIST), all optimizers beside
SGD on Model 1 show signs of overfitting. A large gap between accuracies on the training and
new data is noticeable during the whole training process.
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Figure 4. Accuracy learning curves for all optimizers on baseline models.

In the rest of the article, we examine how incorporating different regularization methods and Batch
Normalization technique affect generalization performance of a given model. For further investigation,
we used one optimizer and model architecture per each dataset. Namely, on CIFAR-10 data, we used
Nesterov optimizer with first model architecture, Adam with the second and again Nesterov with
the third one and refer to them as baseline model architectures. Analogously, for further research on
Fashion-MNIST data, as basline model architectures we used Model 1 and Model 2 with Adam optimizer
and Model 3 architecture with AdaMax optimization algorithm.

Batch Normalization

Incorporating Batch Normalization into baseline model architectures, as can be seen in Table 4,
showed beneficial effects on their final generalization performance. In all cases, the test set loss
is significantly reduced, while accuracy on test data increased in four out of six baseline models.
In Figures 5 and 6, we can see how validation loss learning curve in all cases significantly drops below
the original one. In models that use Adam optimization algorithm for training (Model 2 on CIFAR-10
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and Models 1 and 2 on Fashion-MNIST), we can see jumps in the values of both training and validation
loss (“spikes” on the learning curves). Even with those kinds of instabilities, the validation loss is still
improved over the baseline’s original one. On the training loss curve for the first model architecture,
we can se how Batch Normalization can accelerate convergence. From given learning curves, we also
notice that overfitting reduced in all cases. Because of that, Batch Normalization is sometimes referred
to as an optimization technique with regularizing effect.

Table 4. Comparison of results obtained with and without Batch Normalization.

(a) CIFAR-10

Model Loss Accuracy (%)
Train Test Train Test

1. NAG 5.64× 10−7 1.516 100.00 83.68
+ BatchNorm 2.34× 10−5 0.728 100.00 86.45

2. Adam 2.00× 10−10 3.893 100.00 79.84
+ BatchNorm 8.96× 10−5 2.203 100.00 82.89

3. NAG 5.87× 10−7 2.007 100.00 80.40
+ BatchNorm 2.25× 10−6 1.633 100.00 81.21

(b) Fashion-MNIST

Model Loss Accuracy (%)
Train Test Train Test

1. Adam 5.84× 10−4 0.920 100.00 93.27
+ BatchNorm 1.70× 10−3 0.405 99.96 93.25

2. Adam 1.27× 10−10 1.029 100.00 93.53
+ BatchNorm 6.10× 10−5 0.455 100.00 93.61

3. AdaMax 0.00× 100 1.790 100.00 92.58
+ BatchNorm 1.20× 10−3 0.724 99.96 91.85
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Figure 5. The effect of Batch Normalization on the loss of baseline models trained on CIFAR-10 dataset.
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Figure 6. The effect of Batch Normalization on the loss of baseline models trained on Fashion-MNIST
dataset.

4.2.2. Evaluation of Different Regularization Techniques

In this section, we add different types of regularization into the chosen baseline model
architectures to examine their effect on the model’s generalization performance.
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Weight Decay

Adding L2 and L1 regularization into the baseline models did not, in general, result in the
improvement of generalization performance. As we can see in Table 5, on the Fashion-MNIST
dataset, neither L2 nor L1 regularization leads to an increase in the test set accuracy. However,
applying L1 regularization on the CIFAR-10 leads to increased accuracy and decreased loss on the
test data in baseline Model 1, while adding L2 regularization has beneficial effect on the performance
of baseline Models 2 and 3. As parameter λ, for both L2 and L1 regularization, the best performing
value on the validation set from a predefined set of λ values {10−2, 10−3, 10−4, 10−5, 10−6} was chosen.
If two neighbor values were close in performance on validation data, we additionally investigated the
performance of their midpoint on validation data as potential value for the λ parameter. Figures 7 and 8
show that both L2 and L1 regularization reduce all six models’ validation loss during the training.
In the third model in Figure 7, penalizing models’ weights notably slows down the convergence;
the model needs more than 300 epochs to reach the loss that the baseline model reached before epoch
50. However, after epoch 200, the penalized model’s validation loss falls below the baseline’s validation
loss despite the slower learning process.

Table 5. Performance of models that use weight decay regularization.

(a) CIFAR-10

Model Loss Accuracy (%)
Train Test Train Test

1. NAG 5.64× 10−7 1.516 100.00 83.68
L2, λ = 5× 10−6 1.26× 10−2 13.615 100.00 83.33

L1, λ = 10−6 2.99× 10−2 1.477 100.00 83.83

2. Adam 2.00× 10−10 3.893 100.00 79.84
L2, λ = 10−5 2.90× 10−2 1.483 100.00 79.94
L1, λ = 10−6 9.27× 10−2 1.339 100.00 76.40

3. NAG 5.87× 10−7 2.007 100.00 80.40
L2, λ = 10−5 7.76× 10−2 1.569 100.00 80.70
L1, λ = 10−6 2.15× 10−1 1.650 100.00 79.99

(b) Fashion-MNIST

Model Loss Accuracy (%)
Train Test Train Test

1. Adam 5.84× 10−4 0.920 100.00 93.27
L2, λ = 5× 10−6 2.90× 10−2 0.593 100.00 92.96
L1, λ = 5× 10−6 5.37× 10−2 0.515 99.66 92.05

2. Adam 1.27× 10−10 1.029 100.00 93.53
L2, λ = 5× 10−5 3.64× 10−2 0.462 99.69 92.11

L1, λ = 10−6 1.51× 10−2 0.670 100.00 93.20

3. AdaMax 0.00× 100 1.790 100.00 92.58
L2, λ = 10−6 2.50× 10−2 0.843 100.00 92.39
L1, λ = 10−6 1.61× 10−2 0.581 99.98 91.99
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Figure 7. Loss learning curves of models that incorporate L2 and L1 weight decay in baseline models
trained on CIFAR-10 dataset.

From the results in Figure 9 and Table 6, we can gain insight into the effect that added weight penalties
have on final model weights. Obtained results justify the name weight decay; in both cases, resulting
weights of regularized models are closer to 0 than the baseline (Model 1 with used NAG optimizer) weights.
Most weights of the model that uses L1 regularization are ≈0; the obtained model has sparse weights.
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Figure 8. Loss learning curves of models that incorporate L2 and L1 weight decay in baseline models
trained on Fashion-MNIST dataset.

Figure 9. Comparison of baseline’s weights with weights obtained by models that use weight decay
regularization methods with regularization parameter λ = 5× 10−5.

Table 6. Summary statistics of absolute values of weights.

L2 L1 NAG

min 4.8× 10−8 0 5.57× 10−8

1st quartile 7.49× 10−5 7.02× 10−10 1.34× 10−4

median 1.47× 10−4 2.12× 10−9 2.73× 10−4

3rd quartile 2.22× 10−4 3.54× 10−9 2.74× 10−4

max 3.5251 6.6516 2.3028

mean 0.0216 0.0076 0.0349
std 0.0275 0.0426 0.0321

Interestingly, the L1 model has the most dispersed weights and the widest range of absolute values
of weights. This can be seen as feature selection; in each layer, weights that correspond to irrelevant
features are set to ≈0 while the more important features are emphasized by increasing their (absolute)
value and, in that way, also increasing their influence on the final output. L2 regularization has a
similar effect. The main difference is that in the case of L2 regularization less important weights are
“pulled” towards 0 but not really set to 0.

Noise Injection

Adding (Gaussian) noise to input images did not, in general, result in improved generalization
performance. We experimented with different amounts of added noise, Gaussian noise with
standard deviation σ ∈ {0.01, 0.05, 0.1, 0.2}. The final model was trained with parameter σ

that had the best performance on validation data. Examples of noise injected images from
CIFAR-10 and Fashion-MNIST data are shown in Figure 10. Results are given in Table 7.
Only in one case, we observe slight improvement in the test set accuracy, while accuracy on the
training set remains close to 100%. Adding noise makes real classes harder to separate. Models have
the capacity to learn available training data (training accuracy is in the worst case reduced to 99.74%),
but the learned separation criterion also captures the injected noise.
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Figure 10. Images with different amounts of added noise.

Table 7. Results of adding Gaussian noise into the baseline models.

(a) CIFAR-10

Model Loss Accuracy (%)
Train Test Train Test

1. NAG 5.64× 10−7 1.516 100.00 83.68
Noise, σ = 0.05 1.01× 10−2 19.875 99.74 80.70

2. Adam 2.00× 10−10 3.893 100.00 79.84
Noise, σ = 0.01 9.30× 10−3 4.305 99.77 78.57

3. NAG 5.87× 10−7 2.007 100.00 80.40
Noise, σ = 0.01 6.17× 10−3 2.111 100.00 80.42

(b) Fashion-MNIST

Model Loss Accuracy (%)
Train Test Train Test

1. Adam 5.84× 10−4 0.920 100.00 93.27
Noise, σ = 0.01 1.92× 10−1 0.649 100.00 92.92

2. Adam 1.27× 10−10 1.029 100.00 93.53
Noise, σ = 0.01 5.40× 10−3 11.151 99.86 92.63

3. AdaMax 0.00× 100 1.790 100.00 92.58
Noise, σ = 0.05 2.90× 10−3 0.910 99.95 90.95

Dropout

By adding Dropout into the baseline models, generalization performance improves. Dropping
units during training introduces a significant amount of regularization into the model and greatly
reduces signs of overfitting. As we can see in Figures 11 and 12, validation loss of all models on both
CIFAR-10 and Fashion-MNIST reduces at the expense of slower convergence and slightly worse final
performance on the training data. In Table 8, we give results obtained with models using Dropout
compared to baseline models’ results. All models use Dropout with parameter p = 0.5 on the hidden
layers and p = 0.1 on the input layer, which were chosen using the validation data.
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Figure 11. The effect of Dropout on baseline models trained on CIFAR-10 dataset.
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Figure 12. The effect of Dropout on baseline models trained on Fashion-MNIST dataset.

Although the original paper [20] states that Batch Normalization fulfills some of the goals of
Dropout and therefore removes the need for using the Dropout regularization method, from the results
reported in Table 8 and the accuracy learning curves in Figures 13 and 14 (Model 1 and Model 2), we
can see that the combination of these two techniques can benefit final performance of a given model.
In all four cases, both validation and training accuracy increase compared to the only Dropout model.
Batch Normalization inclusion into Model 1 and Model 2 also speeds up the learning process. However,
in the case of Model 3 with the largest number of parameters, Dropout–Batch Norm combination
indeed harms the model’s final classification performance. In Figure 13, the validation accuracy
learning curve of Model 3 significantly drops when we introduce Batch Normalization together with
the Dropout.

Table 8. Performance of models that employ Dropout regularization.

(a) CIFAR-10

Model Loss Accuracy (%)
Train Test Train Test

1. NAG 5.64× 10−7 1.516 100.00 83.68
Dropout 8.10× 10−2 0.754 97.31 86.54

Dropout + inputs 1.11× 10−1 0.700 96.51 85.38
Dropout + BatchNorm 2.00× 10−2 0.748 99.34 88.25

2. Adam 2.00× 10−10 3.893 100.00 79.84
Dropout 3.49× 10−2 0.728 98.89 83.64

Dropout + inputs 3.90× 10−2 1.128 98.72 80.77
Dropout + BatchNorm 9.9× 10−3 0.904 99.66 86.33

3. NAG 5.87× 10−7 2.007 100.00 80.40
Dropout 1.08× 10−2 1.099 99.63 80.50

Dropout + inputs 1.22× 10−2 1.056 99.63 81.26
Dropout + BatchNorm 1.22× 10−2 522.8 99.59 67.22

(b) Fashion-MNIST

Model Loss Accuracy (%)
Train Test Train Test

1. Adam 5.84× 10−4 0.920 100.00 93.27
Dropout 3.41× 10−2 0.471 98.79 93.59

Dropout+ inputs 6.76× 10−2 0.346 97.55 93.32
Dropout + BatchNorm 1.13× 10−2 0.412 99.66 93.84

2. Adam 1.27× 10−10 1.029 100.00 93.53
Dropout 1.46× 10−2 0.485 99.55 93.88

Dropout + inputs 2.11× 10−2 0.465 99.27 93.21
Dropout + BatchNorm 6.60× 10−3 0.434 99.77 94.25

3. AdaMax 0.00× 100 1.790 100.00 l92.58
Dropout 1.18× 10−2 0.576 99.60 92.01

Dropout + inputs 1.18× 10−2 0.638 99.62 92.04
Dropout + BatchNorm 8.10× 10−3 0.612 99.75 92.12
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Figure 13. The effect of the Batch Normalization on the accuracy of models trained on the CIFAR-10
dataset that incorporate Dropout regularization.
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Figure 14. The effect of the Batch Normalization on the accuracy of models trained on the
Fashion-MNIST dataset that incorporate Dropout regularization.

Although the accuracy results in Table 8 of the most models that use Dropout with the dropping
of input units are lower than those that drop only units in the hidden layers, dropping of input units
can play an important role in the generalization performance of the network. To demonstrate how
the dropping of input units can positively affect the final performance, we construct a new test set
consisting of images from the original CIFAR-10 and Fashion-MNIST test sets with some missing pixel
values. The new test sets are obtained by setting 10% of random pixel values from each image to 0. A
few examples are shown in Figure 15.

ORIGINAL new ORIGINAL new ORIGINAL new ORIGINAL new

ORIGINAL new ORIGINAL new ORIGINAL new ORIGINAL new

Figure 15. Examples from new CIFAR-10 (top) and Fashion-MNIST (bottom) test sets with missing
pixel values.

On the new CIFAR-10 test set, (NAG) Model 1, which used the Dropout method without dropping
input units, achieves 13.47% accuracy, while final evaluation of the model that dropped inputs
with probability p = 0.1 during the training results with 81.28% accuracy on new data. On the new
Fashion-MNIST test set, (Adam) Model 1 that incorporates Dropout only on hidden units achieves
83.21% accuracy, while the accuracy of one that drops inputs is equal to 93.17%.
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Data Augmentation

During the training, we augmented CIFAR-10 images using horizontal flipping, width and height
shifting, random zooming and shearing. For Fashion-MNIST augmentation, we used horizontal
flipping and random zooming. Figure 16 shows examples of corresponding augmented images for a
given image from CIFAR-10 and Fashion-MNIST data.

Figure 16. Examples of augmented images.

Table 9 gives the results of models that incorporate Data Augmentation compared with the initial
baseline results obtained without regularization. Training with augmented data in all cases leads to
enhanced model performance. The positive effect of Data Augmentation on generalization performance
is more noticeable on CIFAR-10 data than on Fashion-MNIST data due to its large variations in the
position of objects on images and background clutter. Including Data Augmentation in the training
pipeline alone leads to an increased test set accuracy on CIFAR-10 data for 5.86 in the worst case.
Combining Data Augmentation with Batch Normalization and Dropout in Model 1 and Model 2 further
improves generalization performance. On CIFAR-10 data, Dropout with parameter p = 0.25 is used
combined with Data Augmentation, while p = 0.5 is used in the case of the Fashion-MNIST data.
Figures 17 and 18 show the effect of Data Augmentation on the learning curves of models trained on
CIFAR-10 and Fashion-MNIST data; augmentation reduces validation loss and increases validation
accuracy at the expense of slower convergence and worse results on the training data.
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Figure 17. The effect of Data Augmentation on baseline models trained on CIFAR-10 dataset.

Early Stopping

Figure 3 shows how validation loss of all models trained with different optimizers (all optimizers
except slower-converging SGD optimizer) even before epoch 50 reaches its minimum value and
afterward only increases. Moreover, Figure 4 shows that there is also no specific improvement in
validation accuracy after epoch 100 for the most optimizers. Therefore, we could stop the model’s
training earlier and obtain model with roughly the same generalization ability. To reduce the training
time and prevent possible overfitting to the training data, we used the Early Stopping method
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with patience 30 to stop the training if there was no improvement in the validation accuracy for
30 consecutive epochs. The model with weights that correspond to the best-observed validation
accuracy is returned as a result of the training algorithm.
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Figure 18. The effect of Data Augmentation on baseline models trained on Fashion-MNIST dataset.

Table 9. Results obtained using Data Augmentation technique.

(a) CIFAR-10

Model Loss Accuracy (%)
Train Test Train Test

1. NAG 5.64× 10−7 1.516 100.00 83.68
DataAugm 4.51× 10−2 0.887 98.48 87.73

DataAugm + BatchNorm 1.57× 10−2 0.748 99.49 89.54
DataAugm + Dropout 1.61× 10−1 0.640 94.74 89.27

DataAugm + BatchNorm + Dropout 6.38× 10−2 0.655 97.85 89.15

2. Adam 2.00× 10−10 3.893 100.00 79.84
DataAugm 8.06× 10−2 0.728 97.33 86.99

DataAugm + BatchNorm 3.80× 10−2 0.673 98.74 88.54
DataAugm + Dropout 1.54× 10−1 0.649 94.74 86.10

DataAugm + BatchNorm + Dropout 9.06× 10−2 0.519 96.78 88.67

3. NAG 5.87× 10−7 2.007 100.00 80.40
DataAugm 1.88× 10−2 0.830 99.30 86.98

DataAugm + BatchNorm 1.66× 10−2 0.966 99.41 85.00
DataAugm + Dropout 5.72× 10−2 0.713 98.04 86.19

DataAugm + BatchNorm + Dropout 2.48× 10−1 12723 94.88 80.58

(b) Fashion-MNIST

Model Loss Accuracy (%)
Train Test Train Test

1. Adam 5.84× 10−4 0.920 100.00 93.27
DataAugm 1.18× 10−2 0.634 99.59 92.58

DataAugm + BatchNorm 5.30× 10−3 0.431 99.81 93.49
DataAugm + Dropout 8.93× 10−3 0.267 96.82 93.92

DataAugm + BatchNorm + Dropout 3.79× 10−2 0.283 98.62 94.53

2. Adam 1.27× 10−10 1.029 100.00 93.53
DataAugm 7.70× 10−3 0.726 99.77 93.88

DataAugm + BatchNorm 4.00× 10−3 0.443 99.87 94.17
DataAugm + Dropout 4.12× 10−2 0.312 98.59 94.32

DataAugm + BatchNorm + Dropout 2.09× 10−2 0.291 99.26 94.60

3. AdaMax 0.00× 100 1.790 100.00 92.58
DataAugm 4.40× 10−3 0.758 99.88 92.78

DataAugm + BatchNorm 2.80× 10−3 0.508 99.91 92.77
DataAugm + Dropout 5.71× 10−2 0.372 97.96 92.54

DataAugm + BatchNorm + Dropout 3.55× 10−2 0.409 98.72 92.20

The other metric that could be monitored during the training and used for decision making about
the appropriate time of ending the training algorithm is validation loss. It would be also reasonable to
stop the training (with some patience) when the increase in the validation loss is observed. Because we
are primarily interested in the accuracy of the final model, we decided to monitor validation accuracy
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(during the training, we minimize loss instead of maximizing accuracy because the loss function has
some “nice” properties such as differentiability).

The final accuracy obtained by models that use Early Stopping and those that do not are compared
in Table 10. Although model accuracy on new data is enhanced in some cases, it is often the case
that performance of models that use Early Stopping on test data declines. However, training time
significantly reduces. For achieving better final accuracy, we can use the larger values for the patience
parameter. In some sense, the Early Stopping method can be seen as the trade-off between the time
of training and the final performance of the model. For example, the accuracy of Model 1 trained on
CIFAR-10 data with Dropout regularization decreases from 87.73% to 84.51% when Early Stopping is
used, but training time reduces more than two times. If the training time is not a problem, the model
can be trained for longer with saving the parameters that resulted in the best values of a monitored
quantity. In Table 10, we can also see how the Data Augmentation technique yields the best accuracy
results compared to other previously mentioned “good performing” models that incorporate only one
regularizer.

Ensemble Learning

• Bagging

Let D1, . . . ,D5 be datasets of size 40,000 obtained by random sampling with replacement from
the CIFAR-10 or Fashion-MNIST training dataset. A Baseline Learner (BL) that has the same
architecture as the chosen model is trained on dataset Di, i = 1, . . . , 5. Ens i denotes the ensemble
{BL1, BL2, . . . , BLi} of the first i baseline learners.

Each model from the bagged ensemble has accuracy lower than the accuracy of the baselines
noted in the last rows of Tables 11 and 12 caused by the less diverse training dataset, which
contain multiple identical images, but together they outperform the baseline. Each ensemble
has better generalization performance than any of its members. Accuracy of ensemble increases
together with its size. Generalization performance of models that obtained the highest accuracy
on test data further increases when we apply the bagging technique, as shown in Table 13. The
downside of the Bagging method is the additional time necessary to train all of the base learners
to obtain desired enhancement in generalization performance.

• The ensemble of members trained with different settings

Below, we examine how ensembling models with different architectures and settings
(in terms of used regularization and optimization techniques) affect the ensemble’s generalization
performance compared to the bagging ensembling approach.

Final accuracies of such ensembles on CIFAR-10 and Fashion-MNIST data are given in Table 14.
Baseline learners used for CIFAR-10 image classification in Table 14a are Model 3 (NAG + Data
Augmentation), Model 1 (NAG + Data Augmentation + Batch Normalization), Model 2 (Adam + Data
Augmentation + Batch Normalization), Model 1 (NAG + Dropout), and Model 2 (Adam + Dropout
+ Batch Normalization). For Fashion-MNIST baseline learners given in Table 14ab are Model 1
(Adam + Dropout + Batch Normalization), Model 2 (Adam + Data Augmentation + Batch Normalization),
Model 3 (Data Augmentation), Model 2 (Adam + Data Augmentation + Batch Normalization + Dropout)
and Model 1 (Adam + Data Augmentation + Batch Normalization + Dropout). The ensemble formed
of “different” members outperforms bagged ensemble created using the one model with the best
generalization performance among the “different” ones.
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Table 10. Comparison of the accuracy results obtained with and without Early Stopping.

(a) CIFAR-10

Model Accuracy (%) EpochsTrain Test

Model 1

NAG 100.00 83.68 350
100.00 83.54 144

BatchNorm 100.00 86.45 350
100.00 86.92 63

Dropout 97.31 86.54 350
96.89 86.57 237

DataAugm 98.48 87.73 350
97.10 87.51 152

DataAugm + BatchNorm 99.49 89.54 350
98.42 87.89 127

Model 2

Adam 100.00 79.84 350
99.49 78.50 60

BatchNorm 100.00 82.89 350
100.00 82.62 72

Dropout 98.89 83.64 350
98.26 83.08 150

DataAugm 97.33 86.99 350
95.74 87.37 172

DataAugm + BatchNorm 98.74 88.54 350
94.56 86.36 127

Model 3

NAG 100.00 80.40 350
100.00 80.16 190

BatchNorm 100.00 81.21 350
100.00 80.33 175

Dropout 99.63 80.50 350
98.69 80.96 135

DataAugm 99.30 86.98 350
98.04 86.62 157

DataAugm + BatchNorm 99.41 85.00 350
98.92 87.38 265

(b) Fashion-MNIST

Model Accuracy (%) EpochsTrain Test

Model 1

Adam 100.00 93.27 250
99.36 92.80 54

BatchNorm 99.96 93.25 250
99.94 93.70 100

Dropout 98.79 93.59 250
98.13 93.80 156

DataAugm 99.59 92.58 250
99.06 93.09 101

DataAugm + BatchNorm 99.81 93.49 250
99.78 93.82 187

Model 2

Adam 100.00 93.53 250
99.94 92.98 64

BatchNorm 99.96 93.61 250
100 93.45 152

Dropout 99.55 93.88 250
99.04 93.83 74

DataAugm 99.77 93.88 250
99.50 93.70 81

DataAugm + BatchNorm 99.87 94.17 250
99.48 93.47 103

Model 3

Adamax 100.00 92.58 250
99.87 92.09 83

BatchNorm 99.96 91.85 250
99.90 91.96 124

Dropout 99.60 92.01 250
98.80 92.45 109

DataAugm 99.88 92.78 250
99.37 92.35 72

DataAugm + BatchNorm 99.91 92.77 250
99.73 92.78 115

Table 11. Bagging results of baseline models on CIFAR 10 dataset.

(a) Model 1

Accuracy (%)

BL1 80.28 80.28 Ens1
BL2 79.97 82.51 Ens2
BL3 79.87 83.49 Ens3
BL4 78.62 83.89 Ens4
BL5 80.14 84.20 Ens5

Baseline 83.68

(b) Model 2

Accuracy (%)

BL1 75.29 75.29 Ens1
BL2 73.55 77.69 Ens2
BL3 74.98 79.44 Ens3
BL4 74.74 80.41 Ens4
BL5 76.50 80.88 Ens5

Baseline 79.84

(c) Model 3

Accuracy (%)

BL1 76.84 76.84 Ens1
BL2 77.19 78.71 Ens2
BL3 76.65 79.44 Ens3
BL4 76.79 79.80 Ens4
BL5 76.41 79.99 Ens5

Baseline 80.40

Table 12. Bagging results of baseline models on MNIST-Fashion dataset.

(a) Model 1

Accuracy (%)

BL1 91.33 91.33 Ens1
BL2 92.36 92.65 Ens2
BL3 92.27 93.13 Ens3
BL4 92.68 93.27 Ens4
BL5 91.83 93.50 Ens5

Baseline 93.27

(b) Model 2

Accuracy (%)

BL1 92.56 92.56 Ens1
BL2 92.26 93.17 Ens2
BL3 91.79 93.35 Ens3
BL4 92.66 93.64 Ens4
BL5 92.73 93.91 Ens5

Baseline 93.53

(c) Model 3

Accuracy (%)

BL1 90.96 90.96 Ens1
BL2 91.67 92.00 Ens2
BL3 91.06 92.17 Ens3
BL4 90.95 92.45 Ens4
BL5 91.11 92.71 Ens5

Baseline 92.58
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Table 13. Bagging results applied on the best models on: (a) CIFAR-10 dataset (NAG model that
incorporates Data Augmentation and Batch Normalization); and (b) Fashion-MNIST dataset (Adam
model that uses Data Augmentation, Batch Normalization and Dropout regularization methods.).

(a) CIFAR-10

Accuracy (%)

BL1 86.58 86.58 Ens1
BL2 85.53 88.80 Ens2
BL3 86.42 89.56 Ens3
BL4 86.24 90.14 Ens4
BL5 86.53 90.44 Ens5

Baseline 89.54

(b) Fashion-MNIST

Accuracy (%)

BL1 94.11 94.11 Ens1
BL2 93.87 94.58 Ens2
BL3 93.71 94.61 Ens3
BL4 94.22 94.79 Ens4
BL5 93.92 94.91 Ens5

Baseline 94.53

Table 14. Ensemble of models with different architectures and incorporated regularization techniques.

(a) CIFAR- 10

Accuracy (%)

BL1 86.98 86.98 Ens1
BL2 89.54 90.90 Ens2
BL3 88.54 91.49 Ens3
BL4 86.54 92.04 Ens4
BL5 86.33 92.20 Ens5

best model acc 90.44

(b) Fashion-MNIST

Accuracy (%)

BL1 93.84 93.84 Ens1
BL2 94.17 94.96 Ens2
BL3 92.78 94.89 Ens3
BL4 94.60 95.08 Ens4
BL5 94.53 95.11 Ens5

best model acc 94.91

5. Conclusions

In this paper, we summarize different optimization algorithms and regularization methods
commonly used for training deep model architectures. The empirical analysis was conducted to
quantify and interpret the effect of employed optimization algorithm and regularization techniques
on the model’s generalization performance on image classification problem. Provided theoretical
background accompanied by experimental results of the learning process can be beneficial to anyone
who seeks more in-depth insight into the fields of optimization and regularization of deep learning.
When possible, visualizations are used together with experimental evaluations to corroborate claims
and intuitions about the effect of mentioned methods on the learning process and model’s final
performance on new data.

Empirical evaluations suggest that the optimization algorithm alone can positively affect model’s
generalization performance. Nesterov and Adam optimization algorithms were the best-performing
algorithms on new data in most of our settings. However, none of the optimization algorithms
should be discarded a priori; the evaluation is advisable to select the most appropriate one for
the given architecture and dataset problem at hand. Generalization performance can notably be
enhanced with proper regularization. Regularization techniques from which implemented CNN
architectures gained the most significant improvement in generalization performance were Data
Augmentation and Dropout. An appropriate combination of regularization techniques can lead
to an even greater boost in the model’s final generalization performance. Batch Normalization,
an optimization method with a regularizing effect, seems to work well in combination with the
Data Augmentation technique. In our experimental settings, the largest generalization gain was
obtained using the combination of Batch Normalization and Data Augmentation together with the
Dropout regularization method. However, one should combine Batch Normalization and Dropout
with caution since their combination can result with an underperformance. If we want to improve
generalization performance further, training multiple models to form an ensemble can be beneficial
(given the availability of computational resources). To speed up the training and still obtain a model
with reasonable generalization performance, the Early Stopping method can be used.
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It is important to mention some limitations of conducted evaluations. In this work, regularization
is used to complement the optimizer’s performance to explore the extent to which the generalization
performance can be improved, thus focusing on the evaluation of regularization techniques on the best
optimizer per each of three CNN architectures and two benchmark datasets. It would be interesting
to expand the experimental evaluations to examine the extent to which the regularizers would yield
favorable results with other lower-performing optimizers. Most of the mentioned techniques are
applicable to a wide range of problems. Therefore, it would be interesting to extend their experimental
evaluations on different neural network architectures and problems from different domains. Further
research within this scope could include a more detailed examination of the techniques associated
with the optimization, such as the learning rate schedules, different weight initialization schemes, and
their effect on the generalization performance.
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Appendix A. Optimizers Update Rules Table Summary

A summary of the update rules of optimizers is given in Table A1.

Table A1. Summary of the update rules of optimizers.

Classical optimizers

SGD
(1951, [21]) θt = θt−1 − η∇J(θt−1)

inputs:
• η

Momentum
(1964, [22])

m0 = 0

mt = γmt − η∇J(θt−1)

θt = θt + mt−1

inputs:
• η
• γ

Nesterov
(1983, [23])

m0 = 0

mt = γmt−1 − η∇J(θt−1 + γmt−1)

θt = θt + mt−1

inputs:
• η
• γ

Optimizers with adaptive learning rate

Adagrad
(2011, [24])

v0 = 0

vt = vt + (∇J(θt−1))
2

θt = θt−1 −
η√

vt + ε
◦ ∇J(θt−1)

inputs:
• η
• ε

Adadelta
(2012, [25])

m0 = 0, v0 = 0

vt = βvt−1 + (1− β) (∇J(θt−1))
2

∆θt = −
√

mt−1 + ε√
vt + ε

◦ ∇J(θt−1)

mt = βmt−1 + (1− β)(∆θt)
2

θt = θt−1 + ∆θt

inputs:
• β
• ε

RMSProp
(2012, [26])

v0 = 0

vt = βvt−1 + (1− β) (∇J(θt−1))
2

θt = θt−1 −
η√

vt + ε
◦ ∇J(θt−1)

inputs:
• η
• β
• ε
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Table A1. Cont.

Optimizers with adaptive learning rate

Adam
&

AdaMax

(2014, [28])

Adam:

m0 = 0, v0 = 0

mt = β1mt−1 + (1− β1)∇J(θt−1)

vt = β2vt−1 + (1− β2) (∇J(θt−1))
2

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

θt = θt−1 −
η√

v̂t + ε
◦ m̂t

AdaMax:

m0 = 0, u0 = 0

mt = β1mt−1 + (1− β1)∇J(θt−1)

m̂t =
mt

1− βt
1

, ut = max
{

β2ut−1, |∇J(θt−1) |
}

θt = θt−1 −
η

ut
◦ m̂t

inputs:
• η
• β1
• β2
• ε

Nadam
(2015, [29])

m0 = 0, v0 = 0

µt = β1
(
1− 0.5 · 0.960.004t)

mt = β1mt−1 + (1− β1)∇J(θt−1)

vt = β2vt−1 + (1− β2) (∇J(θt−1))
2

m̂t =
mt

1−
t+1
∏
i=1

µi

, ĝt =
∇J(θt−1)

1−
t

∏
i=1

µi

mt = (1− µt)ĝt + µt+1m̂t

v̂t =
vt

1− βt
2

θt = θt−1 −
η√

v̂t + ε
◦mt

inputs:
• η
• β1
• β2
• ε

Appendix B. Used Hyperparameters for Optimizer Per Model

The list of all used hyperparameters, denoted in accordance with the TensorFlow documentation,
can be found in Table A2 for models trained on CIFAR-10 dataset and Table A3 for models trained on
Fashion-MNIST data.

Table A2. Hyperparameters used on CIFAR-10 data.

Optimizer Model 1 Model 2 Model 3

SGD lr = 0.01 lr = 0.05 lr = 0.01

Momentum lr = 0.01,
momentum = 0.9

lr = 0.01,
momentum = 0.9

lr = 0.01,
momentum = 0.9

Nesterov lr = 0.01,
momentum = 0.95

lr = 0.01,
momentum = 0.9

lr = 0.005,
momentum = 0.95

Adagrad lr = 0.05, ε = 10−7 lr = 0.05, ε = 10−7 lr = 0.01, ε = 10−7

Adadelta
lr = 0.5, ρ = 0.95,

ε = 10−7
lr = 0.5, ρ = 0.95,

ε = 10−7
lr = 0.5, ρ = 0.95,

ε = 10−7

RMSProp
lr = 0.001, ρ = 0.9,

ε = 10−7
lr = 0.0005, ρ = 0.9,

ε = 10−7
lr = 0.0001, ρ = 0.9,

ε = 10−7

Adam
lr = 0.0005, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.0005, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.0001, β1 = 0.9,
β2 = 0.999, ε = 10−7

Adamax
lr = 0.001, β1 = 0.9,

β2 = 0.999, ε = 10−7
lr = 0.001, β1 = 0.9,

β2 = 0.999, ε = 10−7
lr = 0.001, β1 = 0.9,

β2 = 0.999, ε = 10−7

Nadam
lr = 0.0005, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.0005, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.0001, β1 = 0.9,
β2 = 0.999, ε = 10−7

The optimizers’ hyperparameters were tuned using the grid search technique. For implementation,
the best-performing parameter on validation data was chosen. The learning rates were chosen from a
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predefined set of values on logarithmic scale {1, 10−1, 10−2, 10−3, 10−4, 10−5}, while the momentum
hyperparameter was chosen from {0.9, 0.95, 0.99}. When two neighbor values’ performances were
close, their midpoint value was also considered a possible candidate. In the following, we emphasize
hyperparameter values that in our settings differ from the defaults in TensorFlow documentation.
In our settings, Adadelta’s learning rate that yielded the best results on validation data was mostly
0.5 (one time even 1), which is significantly different from the default value of 0.001 Similarly,
for slower-converging Adagrad, a larger learning rate of 0.05 or 0.01 was used instead of the default
0.001. On the other hand, the chosen Nadam’s and Adam’s learning rates were often smaller than the
default value of 0.001.

Table A3. Hyperparameters used on Fashion-MNIST data.

Optimizer Model 1 Model 2 Model 3

SGD lr = 0.05 lr = 0.05 lr = 0.05

Momentum lr = 0.01,
momentum = 0.95

lr = 0.005,
momentum = 0.95

lr = 0.01,
momentum = 0.9

Nesterov lr = 0.01,
momentum = 0.95

lr = 0.01,
momentum = 0.95

lr = 0.01,
momentum = 0.95

Adagrad lr = 0.05, ε = 10−7 lr = 0.05, ε = 10−7 lr = 0.05, ε = 10−7

Adadelta
lr = 0.5, ρ = 0.95,

ε = 10−7
lr = 0.5, ρ = 0.95,

ε = 10−7
lr = 1, ρ = 0.95,

ε = 10−7

RMSProp
lr = 0.001, ρ = 0.9,

ε = 10−7
lr = 0.0001, ρ = 0.9,

ε = 10−7
lr = 0.0001, ρ = 0.9,

ε = 10−7

Adam
lr = 0.0005, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.0005, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.0001, β1 = 0.9,
β2 = 0.999, ε = 10−7

Adamax
lr = 0.0001, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.001, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.001, β1 = 0.9,
β2 = 0.999, ε = 10−7

Nadam
lr = 0.001, β1 = 0.9,

β2 = 0.999, ε = 10−7
lr = 0.0001, β1 = 0.9,
β2 = 0.999, ε = 10−7

lr = 0.001, β1 = 0.9,
β2 = 0.999, ε = 10−7
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