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Abstract: The use of the Generalized Beam Theory (GBT) is extended to thin-walled beams with
curvilinear cross-sections. After defining the kinematic features of the walls, where their curvature
is consistently accounted for, the displacement of the points is assumed as linear combination of
unknown amplitudes and pre-established trial functions. The latter, and specifically their in-plane
components, are chosen as dynamic modes of a curved beam in the shape of the member cross-section.
Moreover, the out-of-plane components come from the imposition of the Vlasov internal constraint
of shear indeformable middle surface. For a case study of semi-annular cross-section, i.e., constant
curvature, the modes are analytically evaluated and the procedure is implemented for two different
load conditions. Outcomes are compared to those of a FEM model.

Keywords: generalized beam theory (GBT); curved cross-section; thin-walled beam;
cross-section deformation

1. Introduction

Thin-walled beams are structural elements with three characteristic dimensions of different orders
of magnitude: the thickness is small when compared to the dimensions of the cross-section, which in
turn are small when compared to the beam length.

Starting from the second half of the 19th century, slender thin-walled members have found
applications in civil and naval engineering as beams, columns, frame-works etc. Later they have been
adopted to the needs of aeronautics and aerospace design, as well as, e.g., turbomachinery industry.
They offer a number of advantages over the classical compact section beams. The most important
ones are lightweight combined with strong rigidity and loads resistance, lower manufacturing costs
due to reduced resource consumption and labor-saving design, lower transport and maintenance
expenses etc.. Moreover, thanks to their specific layout they leave to the designer much more flexibility
regarding the choice of the material and cross-section shape to meet any specific design requirements.

The slender thin-walled elements exhibit significantly different kinematic behavior when
compared to solid section beams. In particular the profile warping occurs combined with elastic
couplings involving bending and twisting; other local effects arise as well. Therefore, the recognized
classical beam theories like Euler–Bernoulli and Timoshenko cannot be trustworthy to analyse
thin-walled members.

The first successful attempt to model the kinematics of thin-walled beams was done by Vlasov [1].
He developed the Theory of Sectorial Area postulating the non-uniform torsion along the beam
axis contributing to out-of-plane warping of the cross-section. This hypothesis was accompanied
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by further assumptions regarding the cross-section being rigid in its own plane and no shear
deformability along the profile mid-line. Vlasov’s analytical model was widely adopted by the research
community and extended over the years to account for other effects like geometric non-linearities in
longitudinal deformations caused by large cross sectional rotation [2], shear deformability along the
wall thickness [3], variable cross section specimens (stepped or tapered) [4,5], curved axis beams [6,7]
or nonlinear warping effects [8].

A further generalization of Vlasov’s model was proposed by Capurso [9]. He revisited the
original assumptions to include shear deformation over the cross-section midline by generalizing the
description of warping. Later, significant research was focused on modern materials with directional
properties like composites and laminates. The works by Librescu and Song [10] and Variational
Asymptotic Beam Sectional (VABS) theory developed by Yu and Hodges [11] extending the original
Vlasov model are particularly worth noting. Research on the dynamics of composite thin-walled
beams with closed sections was also carried out by Latalski et al. [12,13].

According to the original assumptions on beam profile kinematics the Vlasov theory fails to take
into account the effects of cross-section distortion and any local in-plane deformations of the walls.
In this respect, The Generalized Beam Theory (GBT) is an alternative modeling concept that adds to
the Vlasov’s model the distortion of the cross-section.

The method was originally developed by Schardt [14,15] to deal with buckling stability of
prismatic cross-section columns. In its original formulation the slender thin-walled element was
considered as an assembly of plate segments which are free to bend in the plane of the cross-section.
The consequence of this assumption were in-plane deformations of the profile. The latter were
assumed to be expressed as the superposition of a series of cross-sectional natural modes whose
magnitudes varied along the member span. As a result the two-dimensional (2D) analysis within the
shell framework theory is condensed into one-dimensional (1D) beam theory.

Since the mid 1990s, Schardt’s original theory received significant attention from the research
community and was extended to take into account other cases and effects. Renton [16] proposed
to use the Generalized Beam Theory to estimate the shear stiffnesses of various cross-sections as
particular cases of a general analysis embracing torsion, bending, extension and shear of regular
prismatic systems. Silvestre and Camotim [17] developed a geometrically nonlinear Generalized Beam
Theory to consider large structural deformations. The proposed formulation was used to study the
post-buckling behavior of steel columns with cold-formed thin-walled profiles. The presented analysis
showed, among other things, the need to include shear and transverse extension modes to properly
capture system kinematics. The relevant shear-deformable GBT structural model was elaborated and
presented in authors later research [18,19]. Taig and Ranzi [20] adopted the GBT to study the response
of prismatic thin-walled members stiffened at different cross-sections along their span.

Next, Ranzi and Luongo [21] revisited the standard GBT algorithm for the determination of the
conventional modes, in which bending, shear and local modes are evaluated separately. Authors
proposed to use the dynamic modes of an unconstrained planar frame similar in shape to the member
profile to calculate cross-section in-plane deformation modes. Next, based on the enforcement of shear
conditions, the out-of-plane warping component was evaluated.

Piccardo et al. [22–24] proposed the new method to evaluate a suitable basis of modes for the
elastic analysis of thin-walled members. The suggested treatment relied on the solution of two distinct
eigenvalue problems governing the in-plane and the out-of-plane free oscillations of a thin-walled
beam cross-section. The first eigenvalue problem was solved posing an inextensibility condition for
the planar frame beam having the shape of the TWB middle line. In the second eigenvalue analysis the
transverse extension and membrane shear strain of the plate elements forming the cross-section were
accounted for and modes orthogonal to the inextensional ones were calculated. The efficiency of the
proposed method was confirmed by the outcomes of numerical examples.

The research was continued later by the authors to extend the theory to account for nonlinear
effects exhibited by elastic thin-walled beams [25]. To this aim, both linear and nonlinear functions
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were used to describe the displacement field of the member cross-section. The admissible set of trial
functions was determined requiring that the classic Vlasov’s kinematic hypotheses of the linear theory
(i.e., (a) transverse inextensibility and (b) unshearability) were satisfied also in the nonlinear sense.
An illustrative example of C-lipped cross-section beam with uniform thickness subjected to a uniform
vertical pressure load was presented. The accuracy of GBT analytical results was confirmed by the
outcomes of FE simulations.

Studying the invoked above references and other GBT related literature one observes the vast
majority of research deals with polygon-like cross sections while the cases of non-prismatic open or
closed profiles are very scarce. This results from the fact that curved geometries make the problem
to find the cross-section deformation modes quite complex. The exception might be tubular beam
designs studied by Schardt in [14], who presented solutions to the problem of uniform bending of
a closed cylinder specimen. The analysis was enhanced by discussion of solution accuracy when
approximating the cylinder profile by a regular polygon shape.

In recent years, Silvestre [26] investigated the buckling behavior of circular hollow section
(CHS) members. He postulated to extend the cross section analysis and include axisymmetric and
torsional modes apart from the set of classical orthogonal shell-type deformations of the profile.
The presented discussion concerned the influence of member length on the critical stress magnitude
and corresponding buckling mode shape. Comparison of the analytical GBT results to FE simulations
by shell elements revealed very good consistency with respect to both local and global structural
behavior. Afterwards, the author extended his research to account for elliptical cylindrical shells and
tubes under compression [27]. The problem of variable curvature along the cross-section mid-line was
solved by introducing parametric functions of tangential angle and their Fourier series expansions to
approximate the local arch radius. The proposed formulation proved to be very effective since only
three deformation modes (one local-shell, one distortional and one global) were required to accurately
evaluate the buckling behavior of elliptical members for a wide range of specimen slenderness.
The structural behavior of circular cross-section members was studied also by Nedelcu [28]. The author
considered conical shells under three different boundary conditions and subjected to buckling load.
In the proposed approach the member deformed configuration was approximated by a combination of
the predetermined shell-type deformation modes.

Thereafter, Luongo and Zulli [29] adopted a GBT framework to analyse the ovalization of a tubular
cross-section beam when subjected to bending. In the kinematic analysis of the member cross section,
distortional and bi-distortional strains were introduced in addition to the regular strain measures of
rigid cross-section beams. Several cases of static loadings applied at the free end were investigated
followed by large-amplitude free vibrations analysis. This research was continued to account for
tubular beams with a soft core, possibly made of foam materials [30]. The findings showed the inclusion
of a foam core could improve performance of the pipes due to the shifted structural instability limit
load. In the subsequent paper [31], Zulli adopted this model to capture the double-layered pipe
designs. New terms representing longitudinal slipping of the two layers were added to the kinematic
description of the structure profile. Next, a homogenization procedure was applied to obtain the
nonlinear, coupled, elastic response function of the beam-like member.

An efficient method to model beams with arbitrary but open cross section shapes within
Generalized Beam Theory was presented by Gonçalves and Camotim [32]. The core of this approach
was a modified two-stage cross sectional analysis procedure. Within the first step the curved mid-line
of the cross-section was finely approximated by a series of straight segments constituting the polyline.
The second stage consisted in selection just a few of natural nodes of this polyline to generate the
independent DOFs for warping analysis while the intermediate nodes of the profile were treated like
in classic procedure. By this approach it was possible to describe the cross-section geometry accurately,
without generating an excessive number of deformation modes. The method was applied to several
cross-sections with curved walls and it was shown it assured sufficiently accurate results even with
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a rough selection of cross-section DOFs. The method proved to be particularly efficient for polygonal
sections with rounded corners.

The presented above discussion and review of thin-walled structures bibliography demonstrates
that the problem of structural behavior of thin-walled beams with curvilinear open profiles has not been
comprehensively studied within the GBT framework. The main purpose of present contribution is to
fill this gap and to derive the analytical model of a generic thin-walled curvilinear cross-sections beam
within the GBT modelling framework. Therefore the outline of the paper is as follows. In Section 2.1
the analysis of the profile kinematics is presented and expressions for strains in curvilinear reference
system are given. The constitutive law is introduced in Section 2.2, and the procedure for setting
trial in-plane and out-of-plane warping functions is explained in Section 2.3. Next, in Section 2.4,
the governing equations are derived by means of the Hamilton’s method. In Section 3, the numerical
examples of semi-annular specimen in two loading conditions are presented. The analytical results
are compared to the outcomes of the FE simulations. Finally, the paper closes in Section 4 with the
concluding remarks.

2. The Beam Model

A thin-walled beam made of isotropic, homogeneous and linearly elastic material is considered.
The specimen is initially straight and its cross-sections, which are constituted by curved webs and
flanges, are assumed open, while the closed and multi-cell cases are left for future developments.
Furthermore, it is assumed that the profile of the beam is constant spanwise with no taper nor pretwist.

First, linear strain-displacement relationship is written and then, following the hypothesis of
plane stress in profile walls, the constitutive law for linear elastic material is used to calculate strain
energy. Finally, Hamilton’s principle is used and the equilibrium equations in terms of kinematic
descriptors are obtained, imposing that the total potential energy attains a minimum in the class of
compatible displacements. According to GBT framework, the displacements are considered as linear
combinations of pre-established trial functions and kinematic descriptors which change along the axis
line of the beam. The adopted cross-section modal shapes describe both rigid displacements, as in
classical beam models, and changes in the shape of the profile characteristic for thin-walled members.

2.1. Geometry and Kinematics

With reference to Figure 1, the axis line of the beam is defined in correspondence of the
cross-sections centroids. It is a straight line given as:

x̄0(x) = 0̄ + xex (1)

where 0̄ is the position of the origin, which is the centre of the left tip cross-section, and x is an abscissa
which runs in the interval [0, l], where l is the length of the beam; the unit vectors (ex, ey, ez) are
orthogonal to each other and define the canonical (global) basis. The initial position x̄ of a generic
point P located at the mid-surface of the wall is:

x̄(x, s) = x̄0(x) + r̄(s) (2)

where
r̄(s) = y(s)ey + z(s)ez (3)

is the vector which defines the mid-curve γ̄ of the cross-section, having curvilinear coordinate s as
parameter. Specifically about the mid-curve γ̄ of the cross-section, the parameter s is chosen so that( dy

ds
)2

+
( dz

ds
)2

= 1. Furthermore, it is convenient to set-up a local coordinate system along the curve
and given by the tangent, normal and binormal unit vectors (es, en, eb) where—with respect to global
basis—the relations follow:
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es(s) =
dy
ds

ey +
dz
ds

ez

en(s) = −
dz
ds

ey +
dy
ds

ez

eb(s) = ex

(4)

and the curvature around eb is defined as:

k̄(s) =
dy
ds

d2z
ds2 −

dz
ds

d2y
ds2 (5)

Through the beam deformation, the point P undergoes a displacement u, which can be
expressed in terms of components on both the global and local bases, namely uxex + uyey + uzez and
ues + ven + web. According to Equation (4) the two sets of displacements are related as:

u =
dy
ds

uy +
dz
ds

uz

v = −dz
ds

uy +
dy
ds

uz

w = ux

(6)

(a) (b)
axis line

mid-surface of the wall

0̄

x
ex

ey

ez

l

γ̄
x̄0

x̄

r̄

x̄0
ex ey

ez

es
en

eb ≡ ex

s

y

z

r̄

x̄

γ̄

Figure 1. Thin-walled beam in initial configuration (a) and details of the mid-curve γ̄ of the
cross-section (b).

In order to take into account the thickness h of the walls, the webs and flanges are considered as
singly curved thin shells, whose mid-surface coincides with γ̄ (Figure 2). The displacements of any
generic point located off the mid-surface (n 6= 0) are obtained from the mid-surface counterpart ones
using Kirchhoff’s thin plate assumption.
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mid-surface

normal line

eb ≡ ex

es

en

γ̄

x̄
n

h

Figure 2. Local sketch of the singly curved thin shell.

Thus, every line normal to the mid-surface at x̄ before deformation remains normal after the
deformation and relevant rotations about es and eb directions are:

θs = −
∂v
∂x

(7)

θb =
∂v
∂s

+ k̄u (8)

respectively. It is worth noting how the second term in the right hand side of Equation (8) results from
cross-section curvature about binormal axis [33].

As a consequence, any point out of the mid-surface performs displacement d which has the
following components on (es, en, eb):

ds = u− nθb

dn = v

db = w + nθs

(9)

respectively. Substituting Equations (7) and (8) into the above definitions, the local basis displacement
components are as follows:

ds = u− n
(∂v

∂s
+ k̄u

)
dn = v

db = w− n
∂v
∂x

(10)

The infinitesimal strain components within the curved thin wall are defined as [33]:

εx =
∂db
∂x

εs =
∂ds

∂s
− k̄dn

γxs =
∂ds

∂x
+

∂db
∂s

(11)

where εx, εs are longitudinal strain along x, s, respectively, and γxs is the shear strain. After substituting
Equation (10) in Equation (11), the strain components attain the following expressions:
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εx = εM
x + εF

x

εs = εM
s + εF

s

γxs = γM
xs + γF

xs

(12)

where the pure membrane strain components, i.e., relevant to the mid-surface (n = 0) and indicated
with superscript M, and the flexural strain components, i.e., proportional to n and indicated with
superscript F, are:

εM
x =

∂w
∂x

εM
s =

∂u
∂s
− k̄v

γM
xs =

∂u
∂x

+
∂w
∂s

(13)

and

εF
x = −n

∂2v
∂x2

εF
s = −n

(∂2v
∂s2 + k̄

∂u
∂s

+
∂k̄
∂s

u
)

γF
xs = −n

(
2

∂2v
∂x∂s

+ k̄
∂u
∂x

) (14)

Following the idea of the Kantorovitch semi-variational method the individual components of the
mid-curve γ̄ points displacement are expressed as a linear combination of K triplets of trial functions
(Uj(s), Vj(s), Wj(s)), j = 1, . . . , K, and unknown amplitude parameters aj(x):

u(s, x) =
K

∑
j=1

Uj(s)aj(x)

v(s, x) =
K

∑
j=1

Vj(s)aj(x)

w(s, x) =
K

∑
j=1

Wj(s)a′j(x)

(15)

where the prime indicates derivative with respect to x. The functions (Uj(s), Vj(s), Wj(s)) represent
the three components of the assumed j− th deformation field, defined on the section profile.

The use of Equation (15) in Equations (13) and (14) allows one to express the strain measures in
terms of the kinematic descriptors aj(x), for j = 1, . . . , K:

εM
x =

K

∑
j=1

Wj(s)a′′j (x)

εM
s =

K

∑
j=1

[dUj(s)
ds

− k̄Vj(s)
]

aj(x)

γM
xs =

K

∑
j=1

[
Uj(s) +

dWj(s)
ds

]
a′j(x)

(16)
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and

εF
x = −n

K

∑
j=1

Vj(s)a′′j (x)

εF
s = −n

K

∑
j=1

[d2Vj(s)
ds2 + k̄

dUj(s)
ds

+
dk̄
ds

Uj(s)
]

aj(x)

γF
xs = −n

K

∑
j=1

[
2

dVj(s)
ds

+ k̄Uj(s)
]

a′j(x)

(17)

2.2. Constitutive Law

It is assumed that the beam is made of an isotropic, homogeneous and linearly elastic material.
Moreover, the plane stress state hypothesis is adopted to a thin shell representing any individual beam
wall. For thin-walled structures this assumption is realistic and provides reliable results. According
to this formulation, the two-dimensional stresses are functions of solely two coordinates x and s,
while all the transverse stresses are negligible:

σn = τsn = τnx = 0 (18)

Thus, the corresponding 3D Hooke’s law is simplified to:

εx =
1
E
(σx − νσs) εs =

1
E
(σs − νσx) γxs =

τxs

G
(19)

where E, G, ν are the material Young’s and Kirchhoff’s moduli, and Poisson ratio, respectively.
Equation (19), when solved in terms of stresses, becomes:

σx =
E

1− ν2 (εx + νεs)

σs =
E

1− ν2 (εs + νεx)

τxs =Gγxs

(20)

Substituting Equation (12) in Equation (20), the expressions of the individual stress components
can be decomposed to the sum of membrane and flexural related terms, as well:

σx = σM
x + σF

x

σs = σM
s + σF

s

τxs = τM
xs + τF

xs

(21)

Finally, the use of Equations (16) and (17) allows one to express the stress components in (21) in
terms of the trial functions (Uj(s), Vj(s), Wj(s)) and kinematic descriptors aj(x), j = 1, . . . , K. The final
expressions are omitted for the sake of brevity.

2.3. Trial Functions and Vlasov’s Constraints

The regular Vlasov’s internal constraints specific for any open cross-section require that the profile
mid-curve γ̄ is inextensible and the middle surface of the thin-walled beam is shear indeformable.
Thereby two relations follow:

εM
s = 0

γM
xs = 0

(22)
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As a consequence, regarding Equation (16), every j-th set of assumed trial functions must satisfy
the following conditions:

dUj(s)
ds

− k̄(s)Vj(s) = 0 (23)

Uj(s) +
dWj(s)

ds
= 0 (24)

In this study, the trial functions (Uj(s), Vj(s), Wj(s)), j = 1, . . . , K are evaluated in two stages
as proposed by Ranzi and Luongo in [21]. At first, the in-plane deformation field components
(Uj(s), Vj(s)) are evaluated as the dynamical normal modes of the planar unconstrained inextensional
(i.e., satisfying the first Vlasov’s condition) frame having the shape similar to profile mid-curve γ̄.
Thereby the considered frame is constituted by a monodimensional curved beam element or assembly
of them in case of piece-wise regularity of γ̄. Having found the in-plane deformation modes, at the
next stage the third trial function Wj(s) is determined. This represents the component relevant to the
out-of-plane warping of the cross-section and it is consistently evaluated by integration of Equation (24).
The emerging unknown integration constant is obtained by imposing the orthogonality condition
of Wj(s) to the uniform axial extension, i.e.,

∫
γ̄ Wj(s)ds = 0. Therefore, the triple of thus deduced

deformation fields (Uj(s), Vj(s), Wj(s)) satisfy both Vlasov’s conditions given by Equation (22).
In the above analysis a uniform mass per unit length is assigned to the referenced frame in order

to evaluate the in-plane deformation components; the latter must also be consistent with Equation (23),
i.e., the curved beam constituting γ̄ is axially indeformable. Furthermore, a suitable normalization
condition on the normal modes is imposed.

It is worth noting that, due to the lack of external constraints, among the set of determined
in-plane modes, three independent rigid motions of the cross-section in its plane are present as well.
These are two translations in directions ey and ez, respectively, and rotation about ex. Moreover,
consistently with the internal constraint in Equation (24), the out-of-plane components relevant to the
two translations in directions ey and ez turn out to describe rotations of the cross-section about axes
ez and ey, respectively, as in an Euler–Bernoulli beam bending. Thus, it should be pointed out that,
with the present approach, it is precluded the possibility of introducing independent bending rotations
as it would be done in Timoshenko beam models.

An additional trial function, which describes the uniform extension in direction ex is defined as
well, and it is assigned to ordering j = 1. Therefore, the triplets (Uj(s), Vj(s), Wj(s)) for j = 1, . . . , 4

describe rigid motions of the profile and are given as follows: j = 1: (0, 0, 1); j = 2: ( dy
ds ,− dz

ds ,−y);
j = 3: ( dz

ds , dy
ds ,−z); j = 4: (y dz

ds − z dy
ds , y dy

ds + z dz
ds ,−

∫
(y dz

ds − z dy
ds )ds + c4). The other triplets (j > 4)

describe in-plane deformation of the cross-section and its corresponding kinematically consistent
out-of-plane warping.

It is worth mentioning that the Vlasov’s conditions (22) can be removed in the framework of GBT,
as well: This is the case, for instance, of structures where shear-lag might occur, as shown in [22];
there, further trial functions are introduced, which account for both shear and extensional deformation.

2.4. Equilibrium Equations

Equilibrium equations in terms of generalized amplitudes aj(x) are obtained imposing the
stationary condition to the sum of elastic and load potential energy (conservative external loads
are assumed). In particular, the elastic potential energy has the following expression:

Ue =
1
2

∫
V

[
σM

x εM
x + σF

x εF
x + σF

s εF
s + τF

xsγF
xs
]
dV (25)
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where V is the total volume of the beam and the differential volume element being dV = dndsdx.
In the above the membrane components of strain in tangential direction s and shear mid-surface
indeformability are omitted according to Vlasov’s conditions Equation (22).

After expressing the stress and strain components in Equation (25) in terms of the unknown
amplitudes aj(x), by means of the relevant equations from Sections 2.1 and 2.2, the elastic potential
energy becomes:

Ue =

l∫
0

[1
2
(
a ·Aa + a′ · Ba′ + a′′ · Ca′′

)
+ a · Fa′′

]
dx (26)

where a(x) := (a1(x), . . . , aK(x))T , the dot stands for scalar product, the prime indicates derivative
with respect to x and the expressions of the elements of the individual matrices are:

Ai,j =
∫
γ̄

∫ h
2

− h
2

n2E
1− ν2

d
ds

[dVi
ds

+ kUi

] d
ds

[dVj

ds
+ kUj

]
dnds

Bi,j =
∫
γ̄

∫ h
2

− h
2

n2E
2(1 + ν)

[
2

dVi
ds

+ kUi

][
2

dVj

ds
+ kUj

]
dnds

Ci,j =
∫
γ̄

∫ h
2

− h
2

E
1− ν2 [WiWj + n2ViVj]dnds

Fi,j =
∫
γ̄

∫ h
2

− h
2

n2Eν

(1− ν2)

d
ds

[dVi
ds

+ kUi

]
Vjdnds

(27)

It is worth noting that A, B, C are symmetric matrices.
The load potential energy is evaluated for a general case of a force per unit area acting in

correspondence of the mid-surface. The generally oriented force is defined by the three components
vector p(x, s) = pxex + pyey + pzez that yields the energy:

Ul = −
∫ l

0

∫
γ̄
[pxux + pyuy + pzuz]dsdx (28)

where the displacement components can be expressed in terms of a(x) as well, by means of
Equations (6) and (15).

The minimum of the total potential energy is attained imposing that δ(Ue + Ul) = 0,
∀δaj(x), j = 1, . . . , K, where δ is the variation operator, which produces the following set of
Euler-Lagrange equations:

Ca′′′′ + (F + FT − B)a′′ + Aa = f (29)

and boundary conditions in x = 0, l:

a = 0 or −Ca′′′ + (B− FT)a′ = g

a′ = 0 or Ca′′ + FTa = 0
(30)

where the elements of f and g are:

f j =
∫

γ̄

[
py

(dy
ds

Uj −
dz
ds

Vj

)
+ pz

(dz
ds

Uj +
dy
ds

Vj

)
− p′xWj

]
ds

gj =

[ ∫
γ̄
pxWjds

]
x=0,l

(31)
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Equations (29) and (30) represent a linear, ordinary differential boundary value problem with
constant coefficients, governing the evolution of the functions aj(x) along the span of the beam. Even if
it can be analytically solved using the well-known method of variation of constants, which provides
the exact solution, numerical tools capable to solve BVP will be used to find the solution, for practical
purposes. In spite of this, the outcomes will be referred to as analytical solution in the following part
of the paper.

It is noteworthy that the case of branched cross-section can be addressed piecewise evaluating
along γ̄ the integrals in Equations (27) and (31).

3. Numerical Results

3.1. Definition of the Case-Studies

A thin-walled cantilever of length l = 1 m is considered for numerical analysis. The cross-section
is semi-annular, with radius R = 0.1 m, uniform curvature k̄ = 1/R = 10 m−1, and constant thickness
of the wall h = 0.003 m (see Figure 3a). Defining the curvilinear abscissa s from the bottom end of the
semi-annular, the curve γ̄ turns out to be described by:

y(s) =
2R
π
− R sin

( s
R

)
z(s) = −R cos

( s
R

) (32)

with s ∈ [0, πR].
Two different load conditions are considered, namely load condition 1: p(x, s) = −pez in s ∈

[π
2 R, πR] (Figure 3a); load condition 2: p(x, s) = pey in s ∈ [0, πR] (Figure 3b). In both cases

p = 3× 103 Pa. It is worth noting that the second load case respects full symmetry about the ey axis.
The material data used for the calculations correspond to the aluminium alloy having longitudinal

elastic coefficient E = 84 GPa and Poisson ratio ν = 0.33.

(a) (b)

h

R

ey

ez

s

p

0̄

ey

ez

0̄

p

s

Figure 3. Cross-section and load conditions in case-studies: (a) load condition 1; (b) load condition 2.

3.2. Trial Functions

With reference to Section 2.3, the in-plane trial functions (Uj(s), Vj(s)) are analytically evaluated
as the in-plane normal modes of a semi-annular inextensible Euler–Bernoulli beam matching the shape
of the cantilever cross-section (Figure 3a), without any external constraints. Differently, in case of
cross-sections with general expression of the curvature as a function of s, numerical techniques might
be called for. Exclusively for this step, the mass per unit length m and the bending stiffness EI are
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assumed uniform and, conventionally, their values taken as m = 1 kg/m and EI = 1 Nm2. The normal
modes of the arch beam turn out to be the solutions of the following eigenvalue problem (see [34]):

dU
ds
− k̄V = 0 (33)

dV
ds

+ k̄U −Θb = 0 (34)

kb =
dΘb
ds

(35)

M = EIkb (36)

dN
ds
− k̄T + mλU = 0 (37)

dT
ds

+ k̄N + mλV = 0 (38)

dM
ds

+ T = 0 (39)

with natural boundary conditions in s = 0, πR:

N = 0

T = 0

M = 0

(40)

where the above represent the normal and shear forces and bending moment, respectively.
In particular, Equation (33) states the vanishing of the axial strain of the arch

beam, which corresponds to Vlasov’s condition of profile mid-plane inextensionality
(see Equation (23) for comparison); Equation (34) states the vanishing of arch beam shear strain,
where Θb is the rotation of the cross-section of the arch about eb—this condition corresponds to
former Kirchhoff’s assumption regarding wall bending. Equation (35) defines the bending curvature
kb about eb, Equation (36) is the classical constitutive law for bending moment M and curvature kb,
and Equations (37)–(39) are the balance equations for normal N and shear T forces, and bending
moment M, respectively. The eigenvalue λ is the square of the circular frequency ω. It is worth
noting that no constitutive law is used for N and T, they being the internal reactive forces to the
constraints (33) and (34).

Assuming an exponential solution of type v(s) = v̂eΩs where v(s) = (U, V, Θb, kb, N, T, M)T ,
after usual steps in modal analysis, the following bi-cubic dispersion equation is obtained:

EIΩ6 + 2EIk̄2Ω4 + (EIk̄4 −mλ)Ω2 + k̄2mλ = 0 (41)

Its roots Ωi(λ), i = 1, . . . , 6, after substitution in Equations (33)–(39), allow one to evaluate the
relevant eigenvectors v̂i and build the solution v(s) = ∑i civ̂ieΩis, where ci are six undetermined
constants. The latter expression is substituted in Equation (40) to get the first K natural frequencies
(or λ) and, for each of them, five of the six coefficients ci, while the sixth is given by the
normalization condition.

As expected, λ = 0 is a solution of multiplicity 3, giving rise to three in-plane independent rigid
motions. An additional rigid motion, required to describe the uniform displacement in direction ex,
is prepended to them as reported at the end of Section 2.3.

Once the modal in-plane components Uj(s), Vj(s), j = 1, . . . , K are obtained, the out-of-plane ones
Wj(s) are evaluated as well, as described in Section 2.3.

The first four modes, relevant to rigid motions, are shown in Figure 4 where, in the first and
second row, the in-plane and out-of-plane components are drawn, respectively. In particular, in the
first line, the in-plane components (Uj(s), Vj(s)) are combined to show the actual displacement of
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the cross-section (in thick solid line), whereas, in the second row, the corresponding normal direction
component Wj(s) is plotted (as polar plot, still in thick solid line). Following the same rule, the first
four in-plane deformation modes (i.e., which correspond to λ 6= 0) are shown in the first row of
Figure 5 and, in the second row, the corresponding out-of-plane components.

I-ip II-ip III-ip IV-ip

I-op II-op III-op IV-op

Figure 4. In-plane (ip) and out-of-plane (op) components of the trial functions, from I to IV
(rigid modes). Blue dashed line: initial configuration; black solid line: trial functions.

V-ip VI-ip VII-ip VIII-ip

V-op VI-op VII-op VIII-op

Figure 5. In-plane (ip) and out-of-plane (op) components of the trial functions, from V to VIII
(deformation modes). Blue dashed line: initial configuration; black solid line: trial functions.

3.3. Equilibrium Configuration

Using the K = 8 trial functions discussed in Section 3.2, the equilibrium Equation (29) can
be evaluated through Equation (27), and combined to the boundary conditions (30) relevant to the
cantilever, i.e., geometric at x = 0 and natural at x = l. The obtained equations are then solved using
a finite difference code based on the three-stage Lobatto IIIa formula, as implemented in the bvp4c
library command in MATLAB [35], and the solution in terms of aj(x), j = 1, . . . K, is used to calculate
displacement and stress components in specific points of the thin-walled beam.

In particular, for the two load conditions, plots are shown for: kinematic descriptors aj(x) as
functions of x ∈ [0, l]; displacement components ux, uy, uz as functions of x for three points of the
mid-curve γ̄, i.e., at positions where s = 0 (referred to as position S, i.e., the most southerly point),
s = πR

2 (referred to as position W, i.e., the most westerly point), s = πR (referred to as position N,
i.e., at the most northern point)—see also Figure A1 in Appendix A for reference; stress component σM

x
as a function of x at the same three positions (S,W,N); stress component σx as a function of n ∈ [− h

2 , h
2 ]
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at x = 0 in the same three positions. The GBT framework analytical solutions for ux, uy, uz are
compared to the outcomes of a FEM model implemented in the Abaqus software (dotted lines in the
plots). Details on the numerical model are given in Appendix A.

For the load condition 1 (load in ez direction), the solution is shown in Figure 6. From Figure 6a,b
it can be observed that the component a1, corresponding to uniform extension, is always zero,
as expected in a linear problem with structure subjected to transverse loads only. Moreover, amplitudes
aj, j = 3, . . . , 6 have at least one order of magnitude larger than the remaining a2, a7, a8, revealing
that global displacement along ey is almost zero and higher modes are actually not required for this
case (it is verified, even if not reported here for the sake of brevity, that higher modes than K = 8
give vanishing contributions for the two analyzed cases). In particular, the components a3, a4, a5

are those which give larger contributions, indicating that besides a rigid motion of the cross-section,
a not-negligible deformation component related to a5 (and in minor intensity a6) is present.

In Figure 6c–e, the individual displacement components at the three points of the cross-section
(S,W,N) are shown: the component ux comes only from warping of the cross-section and is much
smaller than uz and uy. Significant in-plane rotation (about ex) and change in shape of the cross-section
are observed, as related to quite large a4 and a5, respectively, as well as the expected slightly larger
maximum displacement in direction ez (direction of the load). These outcomes reveal very good
agreement with the FEM results. Consistently with Vlasov’s theory of non-uniform torsion [1],
Figure 6f shows a change in sign of the axial stress component σM

x with respect to the contribution
expected by simple bending: the latter is proportional to a′′3 and would give negative value at S, zero
value at W and positive value at N (Figure 4—component III-op); however, the change in sign is
due to the large contribution of the out-of-plane distortion proportional to a′′4 (Figure 4—component
IV-op), whereas the non-zero value at position W is mainly due to the contribution of the out-of-plane
distortion proportional to a′′5 (Figure 5—component V-op). A not-negligible change in the values of σx

along the thickness of the cross-section is shown at positions N and S in Figure 6g, which contributes
to the absolute value of the minimum and maximum stress, respectively.

(a)
x (m)

a1
a2
a3
a4

a j
(m

)

(b)
x (m)

a5
a6
a7
a8

a j
(m

)

(c)
x (m)

S
W
N

u x
(m

)

(d)
x (m)

S
W
N

u y
(m

)

Figure 6. Cont.



Appl. Sci. 2020, 10, 7802 15 of 18

(e)

S
W
N

x (m)

u z
(m

)

(f)

S
W
N

x (m)

σ
M x

(P
a)

(g)

S
W
N

n (m)

σ
x(

x
=

0)
(P

a)

Figure 6. Solution for the load condition 1; S: s = 0; W: s = πR
2 ; N: s = πR; (a) amplitudes aj,

j = 1, . . . , 4; (b) amplitudes aj, j = 5, . . . , 8; (c) displacement ux; (d) displacement uy; (e) displacement
uz; (f) stress component σM

x ; (g) stress component σx at x = 0. Solid lines–analytical solution, dotted
lines–FE solution.

For the load condition 2 (load in ey direction), due to the symmetry of the problem about axis ey,
only modes respecting the same symmetry condition are used in the procedure, namely: II, V, VII in
Figures 4 and 5. The relevant amplitude components a2, a5, a7 are shown in Figure 7a with clearly
dominating role of the component a2 corresponding to rigid motion of the cross-section. Furthermore,
among them, a7 is almost negligible as well. In Figure 7b,c, the symmetry of the problem causes the
blue and green lines to be superimposed to each other, and satisfying agreement with FEM outcomes
is noted. Distortion of the cross-section is evident, as confirmed by the displacement components uz

in Figure 7d, which are opposite in sign for points S and N, respectively, as given by a5 multiplying
the V-ip trial function in Figure 5. Specifically for this displacement component, a non vanishing
difference of GBT analytical and FEM numerical results is detected at the free tip relevant to positions
N and S. The outcomes are anyway in very good agreement in most of the domain of the beam,
i.e., for x ∈ [0, 0.8].

Figure 7e shows the axial stress component σM
x . The distribution is fully consistent with the

contribution expected in simple bending test, with stress proportional to a′′2 and multiplying the
component II-op in Figure 4. Finally, a vanishing change in the value of resultant σx along the thickness
of the cross-section is shown at positions S and N in Figure 7f. This is due to the fact that the thickness
of the profile wall in these points is perpendicular to the load direction thus the flexural component σF

x
is immaterial.

(a)
x (m)

a2
a5
a7

a j
(m

)

(b)
x (m)

S
W
N

u x
(m

)

Figure 7. Cont.
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(c)
x (m)

S
W
N

u y
(m

)

(d)

S
W
N

x (m)

u z
(m

)
(e)

S
W
N

x (m)

σ
M x

(P
a)

(f)

S
W
N

n (m)
σ

x(
x
=

0)
(P

a)

Figure 7. Solution for the load condition 2; S: s = 0; W: s = πR
2 ; N: s = πR; (a) amplitudes aj,

j = 2, 5, 7; (b) displacement ux; (c) displacement uy; (d) displacement uz; (e) stress component σM
x ;

(f) stress component σx at x = 0. Solid lines–analytical solution, dotted lines–FE solution.

4. Conclusions

A thin-walled beam with open and curved cross-section is considered in the paper, with the
aim of formulating an analytical Generalized Beam Theory framework model for this specific case.
Consistently, the displacements of the points of the walls are expressed as linear combinations of trial
functions and unknown amplitudes. Then, by adopting the Hamilton’s principle, the equilibrium
equations under external loads are evaluated taking into account the initial curvature of the members.
As proposed in the literature [21], two components of trial functions are chosen as dynamical in-plane
modes of the cross-section considered as a free beam. Consequently, the third out-of-plane component
is evaluated imposing the validity of Vlasov’s internal constraint. Being the member cross-section in the
shape of an arch, the trial functions are analytically evaluated solving the relevant eigenvalue problem,
which provides both rigid (frequency zero) and deformation (frequency different than zero) motions.
In case of elastic, isotropic and homogeneous material a case-study subjected to two load conditions
is considered. The outcomes in terms of displacements are compared to those of a companion FEM
model, showing generally good agreement. The provided results highlight the crucial contribution of
the cross-section change in shape at equilibrium.
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Appendix A. FE Model

To verify the analytical results, the ABAQUS system finite element representation of the structure
was developed. The beam under consideration was modelled by conventional linear quadrilateral
shape shell elements with reduced integration (S4R). They are general-purpose elements capable
to account for shear effects and provide correct results of displacements, strains, and stresses [36].
This type of elements is recommended for both thick and thin wall specimens approximating the
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Kirchhoff model as the thickness decreases. Moreover, this element accounts for finite membrane
strains and arbitrary large rotations; therefore, it is suitable also for geometrically nonlinear analysis.

Alternatively, one can use continuum shell elements but they require the geometry to model
explicitly the thickness of the shell, as it would be done with classical 3D solid elements. However,
in contrast to the classical shell, continuum shell elements enforce the first order shear deformation
constrains through particular element interpolation functions.

The beam structure was meshed into 100 elements along the span and 30 ones along the profile
perimeter. Moreover, the nodal sets required to record the spanwise deflections at most southerly (S),
most westerly (W) and most northern (N) positions of the profile were defined as shown in Figure A1.

S set

N set

W set

Figure A1. Meshed FE model of the thin-walled cantilever and nodal points to record displacements.
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