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Abstract: Microservice Architecture (MSA) is becoming the predominant direction of new
cloud-based applications. There are many advantages to using microservices, but also downsides
to using a more complex architecture than a typical monolithic enterprise application. Beyond
the normal poor coding practices and code smells of a typical application, microservice-specific
code smells are difficult to discover within a distributed application setup. There are many
static code analysis tools for monolithic applications, but tools to offer code-smell detection for
microservice-based applications are lacking. This paper proposes a new approach to detect code
smells in distributed applications based on microservices. We develop an MSANose tool to detect up
to eleven different microservice specific code smells and share it as open-source. We demonstrate
our tool through a case study on two robust benchmark microservice applications and verify its
accuracy. Our results show that it is possible to detect code smells within microservice applications
using bytecode and/or source code analysis throughout the development process or even before its
deployment to production.
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1. Introduction

Microservices are becoming the preeminent architecture in modern enterprise applications [1].
There are several advantages to utilizing this architecture, which have led to its rise in popularity [2].
The distributed nature of a microservice-based application allows for greater autonomy of developer
units. While this provides greater flexibility for faster delivery, improved scalability, and benefits
in existing problem domains [3], it also presents the opportunity for code smells to be more readily
created within the application. This is especially true since distinct teams manage different distributed
modules of the overall system.

Code smells [4] are anomalies within codebases. They do not necessarily impact the performance
or correct functionality of an application. They are patterns of poor programming practice and
deteriorate program quality. They can affect a wide range of quality attributes in a program including
reusability, testability, and maintainability. If code smells go unchecked in a microservice-based
application, the benefits of using a distributed development process can be mitigated. It is therefore
crucial that the code smells in an application are appropriately detected and managed [4,5].

Microservices present a unique situation when it comes to code smells due to the distributed
nature of the application. Microservice-specific code smells often focus on inter-module issues rather
than an intra-module issue. Traditional code-smell detecting tools cannot detect code smells between
discrete modules, so these issues go unchecked during the development process. This paper shows
that, when we augment static code analysis to recognize enterprise development constructs, we can
effectively detect code smells in distributed microservice applications.
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We share a case study targeting eleven recently identified code smells for this architecture to
demonstrate our approach. Furthermore, we develop a prototype code smell detector for microservices
and share it with the community as open source. Our prototype is based on code analysis and
recognizes Java code along with Enterprise Java platform constructs and standards [6–10]. Next,
it identifies the eleven microservice code smells targeted in this paper.

The rest of the paper is as follows. Section 2 assesses related work for code smells detection and
the shortcomings for distributed systems. Section 3 introduces the code smells used in this paper.
Section 4 describes the static code analysis of enterprise systems. Section 5 proposes our solution for
automatic code-smell detection for microservices. Section 6 verifies our approach on two existing
microservice benchmark applications. Lastly, Sections 7 and 8 conclude the work and highlight future
perspectives.

2. Related Work

Although first defined by Fowler [4] as problems in code caused by poor design decisions,
code smells have evolved in the world of modern software engineering to encompass much more.
Code smells can be defined as “characteristics of the software that may indicate a code or design problem that
can make software hard to evolve and maintain” [11].

Code smells are not necessarily a problem but rather an indicator of a problem. They can be seen
as code structures that indicate a violation of fundamental design principles and negatively impact
design quality [12]. Urgent maintenance activities prioritizing feature delivery over code quality often
lead to code smells [13]. Thus, code smells are codebase anomalies and do not necessarily impact the
performance or correct functionality; they are poor programming practice patterns. Code smells can
affect a wide range of areas in a program, including reusability, testability, and maintainability.

Gupta et al. [14] underlined that it is essential to identify and control code smells during
the design and development stages to achieve higher code maintainability and quality. However,
even if developers are not invested in fixing them, code smells do matter to the overall software
maintainability [15–17]. Furthermore, if left unchecked, code smells can begin to impact the overall
system’s architecture [18]. Code smells can be deceptive and hide the true extent of their ‘smelliness’
and even carry into further refactorings of the code [18,19]. Frequently code smells are also related to
anti-patterns [20] in an application.

Code-smell correction is a necessary process for developers [21], but it is often pushed aside.
A study by Sae-Lim et al. [21] found that the most prevalent factor towards developers addressing
code smells is the importance of the issue and the relevance of the issue to the task they were working
on. Another study by Peters et al. [22] found that, while developers are frequently aware of the code
smells in their application, they do not care about actively fixing them. Most of the time, the code
smells are fixed accidentally through unrelated code refactoring [4]. Much has been done in research
to address the problem of code smells, and many studies have been performed, exploring how code
smells are created [19], managed [23], and fixed in industry [24].

Tahir et al. [25] studied how developers discussed code smells in stack exchange sites and found
that these sites work as an informal crowd-based code smell detector. Peers discuss the identification
of smells and how to get rid of them in a specific given context. Thus, the question is how to detect
and eliminate them in a given context. They found that the most popular smells discussed between
developers are also shown to be most frequently covered by available code analysis tools. It is also
noted that, while Java support is the broadest, other platforms, including C#, JavaScript, C++, Python,
Ruby, and PHP, are lacking in support. Concerns were also raised that there is a missing classification
for how harmful smells are on a given application.

Some researchers would argue that developers do not have the time to fix all smells. For instance,
Gupta et al. [14] identified 18 common code smells and the driving power of these code smells to
improve the overall code maintainability. The effect is that developers could refactor one of the smells
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with higher driving power, rather than address all smells in an application, and still significantly
improve code maintainability.

One of the first attempts at automatic code-smell detection came from Emden and Mooden [26],
who defined an automated code-smell detection tool for Java. Since then, the field of code-smell
detection has continued to grow. Code smell tools have been developed for high level design [27–29],
architectural smells [30–32], and language-specific code smells [33–35], measuring not just code smells but
also the quality [14,36] of the application. The field of automatic code-smell detection continues to
evolve with an ever-changing list of code smells and languages to cover.

It is common to identify code smells in monolithic systems using code-analysis. For instance,
tools such as SpotBugs [37], FindBugs [38], CheckStyle [39], or PMD [40] can detect code patterns that
resemble a code smell. Anil et al. [41] recently analyzed 24 code smells detection tools. While the tools
correctly mapped the code smells in an application, they are limited to a single codebase, and so they
become antiquated as modern software development tends towards microservice architectures.

While extensive research has been done to define and detect code smells in a monolithic
application, little has been done for distributed systems [42]. It would be possible for a developer to
run code-smell detection on each of the individual modules, but this does not address any code smells
specific to microservice architecture.

In a distributed environment, in particular microservices, there have been multiple code smells
identified. In one study [43], these smells include improper module interaction, modules with too many
responsibilities, or a misunderstanding of the microservice architecture. Code smells can be specific
to a certain application perspective, including the communication perspective, or in the development
and design process of the application. These smells can be detected manually, which usually requires
assessing the application and a basic understanding of the system, but this demands considerable effort
from the developers. With code analysis instruments, smells can be discovered almost instantly and
automatically with no previous knowledge of the system required. However, we are aware that no tool
can detect the code anomalies that can exist between discrete modules of a microservice application.

3. Microservice Code Smell Catalogue

For this paper’s purposes, we reused the definition of eleven microservice specific code smells
from a recent exploratory study by Taibi et al. [43]. They used existing literature and interviews with
industry leaders to distill and rank these eleven code smells for microservices. The code smells are
briefly summarized as follows:

• ESB Usage (EU): An Enterprise Service Bus (ESB) [2] is a way of message passing between modules
of a distributed application in which one module acts as a service bus for all of the other modules
to pass messages on. There are pros and cons to this approach. However, in microservices, it can
become an issue of creating a single point of failure, and increasing coupling, so it should be
avoided. An example is displayed in Figure 1.

• Too Many Standards (MS): Given the distributed nature of the microservice application, multiple
discrete teams of developers often work on a given module, separate from the other teams.
This can create a situation where multiple frameworks are used when a standard should be
established for consistency across the modules.

• Wrong Cuts (WC): This occurs when microservices are split into their technical layers (presentation,
business, and data layers). Microservices are supposed to be split by features, and each fully
contains their domain’s presentation, business, and data layers.

• Not Having an API Gateway (NAG): The API gateway pattern is a design pattern for managing the
connections between microservices. In large, complex systems, this should be used to reduce the
potential issues of direct communication.
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• Hard-Coded Endpoints (HCE): Hardcoded IP addresses and ports are used to communicate between
services. By hardcoding the endpoints, the application becomes more brittle to change and reduces
the application’s scalability.

• API Versioning (AV): All Application Programming Interfaces (API) should be versioned to keep
track of changes properly.

• Microservice Greedy (MG): This occurs when microservices are created for every new feature, and,
oftentimes, these new modules are too small and do not serve many purposes. This increases
complexity and the overhead of the system. Smaller features should be wrapped into larger
microservices if possible.

• Shared Persistency (SP): When two microservice application modules access the same database,
it breaks the microservice definition. Each microservice should have autonomy and control over
its data and database. An example is provided in Figure 2.

• Inappropriate Service Intimacy (ISI): One module requesting private data from a separate module
also breaks the microservice definition. Each microservice should have control over its private
data. An example is given in Figure 3.

• Shared Libraries (SL): If microservices are coupled with a common library, that library should be
refactored into a separate module. This reduces the fragility of the application by migrating the
shared functionality behind a common, unchanging interface. This will make the system resistant
to ripples from changes within the library.

• Cyclic Dependency (CD): This occurs when there is a cyclic connection between calls to different
modules. This can cause repetitive calls and also increase the complexity of understanding call
traces for developers. This is a poor architectural practice for microservices.

Microservice 1 Microservice 2 Microservice 3

Microservice 4 
possible ESB

Figure 1. Example ESB usage.
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To highlight the gap in microservice code smells, we took a list of existing state-of-the-art
architecture-specific code-smell detection tools from a previous and recent study [42] and verified
whether they detect any of the previously mentioned microservice-specific code smells. We chose
these tools as they were compiled to study the existing state of the art of architecture smell detection
tools and were shown to meet a minimum threshold of documentation and information about the tool.
We compile our results in Table 1. The closest tool, called Arcan, was recently published [44] and only
detected three of the smells.

Table 1. Comparison of architectural code smell detection tools.

Tools / Smell 1
EU

2
MS

3
WC

4
NAG

5
HCE

6
AV

7
MG

8
SP

9
ISI

10
SL

11
CD

AI Reviewer [45] X

ARCADE [46] X

Arcan [44] X X X

Designite [47] X

Hotspot Detector [48] X

Massey Architecture Explorer [49] X

MSA Nose X X X X X X X X X X X

Sonargraph [50] X

STAN [51] X

Structure 101 [52] X

(EU), ESB Usage; (MS), Too Many Standards; (WC), Wrong Cuts; (NAG), Not Having an API Gateway; (HCE),
Hard-Coded Endpoints; (AV), API Versioning; (MG), Microservice Greedy; (SP), Shared Persistency; (ISI),
Inappropriate Service Intimacy; (SL), Shared Libraries; (CD), Cyclic Dependency.

4. Code Analysis and Extension for Enterprise Architectures

Static code analysis [53] is one of the most important software development topics, primarily its
role in detecting bugs in a system. However, as with most other problem domains, there exist
gaps around enterprise architectures. The two static code analysis processes, source code and
bytecode analysis, ultimately create a representation of the application. This is done through several
processes, including recognizing components, classes, methods, fields, or annotations, tokenization,
and parsing, which produce graph representations of the code. These include Abstract Syntax Trees
(AST), Control-Flow Graphs (CFG) [54–56], or Program Dependency Graphs (PDG) [57,58].

Bytecode analysis [59] uses the application’s compiled code and is useful in uncovering endpoints,
components, authorization policy enforcements, classes, and methods. It can augment or derive CFG
or AST [60–62]. However, the disadvantage is that not all languages have a bytecode.

In source code analysis [63], we parse through the source code of the application without having to
compile it into an immediate representation. Many approaches exist to do this; however, most tools
tokenize the code and construct trees, including AST [57,58], CFG [54–56], or PDG [64,65].

However, limits exist with these representations in encapsulating the complexity of enterprise
systems. To mitigate the shortcomings of existing static code analysis techniques on enterprise
systems, we augment the current techniques to recognize enterprise standards [6,66]. A more realistic
representation of the enterprise application can be constructed with aid from either source code
analysis or bytecode analysis. This includes a tree representation, detection of the system’s endpoints,
and a communication map’s construction. These augmented representations along with metadata
have been successful in other problem domains including security [67], networking [68] and semantic
clone detection [69].

The following section shows how we can use these representations and metadata for a more
thorough analysis of code smells in microservice applications.
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5. Proposed Solution to Detect Code Smells

Previous studies have shown that, without readily available information about the code smells
and easy integration into the software development pipeline, the smells are often not addressed. Thus,
our approach uses static-code analysis for fast and easily-integrated reports on the code smells in
an application. To cover a wide variety of possible issues within a microservice application, as well
as the different concerns (application, business, and data) that the identified smells cover, we must
statically analyze a couple of different areas of an application. Our approach specifically involves the
Java Enterprise Editions platform because of its rich standards for enterprise development. In fact,
we include Spring Boot (https://spring.io/projects/spring-boot) and Java EE (https://docs.oracle.
com/javaee). However, alternative standard adoptions exist also for other platforms. Next, these
standards can promote to UML [70,71], which shows platform-independence. Furthermore, extending
our tool to another language would be trivial since we utilize an intermediate representation for
analysis, as explained below.

The core of our solution is an automated derivation of a centralized view of the application, also
sometimes referred to as Software Architecture Reconstruction [72–74]. To begin with, we individually
analyze each microservice in the application. Once each module is fully analyzed, it can be aggregated
into a larger service mesh. Then, the full detection can be done on the aggregated mesh.

Our analysis process’s first step is to generate a graph of interaction between the different
microservices. This involves exploring each microservice for a connection to another microservice,
which is usually done through a REST API call. The inter-microservice communications are realized
using a two-phase analysis: scanning and matching. In the first phase, we scan each microservice to list
all the REST endpoints and their specification metadata. This metadata contains the HTTP type, path,
parameter, and return type of the endpoint. Additionally, the server IP addresses (or their placeholders)
are resolved by analyzing application configuration files that accompany system modules. These IP
addresses, together with the paths, define the fully-qualified URLs for each endpoint. We further
analyze each microservice to enumerate all REST calls along with request URLs and similar metadata.
We list these endpoints and REST calls based solely on static code analysis, where we leverage the
annotation-based REST API configuration commonly used in enterprise frameworks. We match
each endpoint with each REST call across different microservice modules based on the URL and
metadata in the second phase. During matching, URLs are generalized to address different naming
of path variables across different microservice modules. Each resultant matching pair indicates
inter-microservice communication.

Afterward, the underlying dependency management configuration file is analyzed for each of the
different microservices (e.g., pom.xml file for maven). This allows us to find the dependencies and
libraries used by each of the applications. Lastly, the application configuration, where developers
define information such as the port for the module, the databases it connects to, and other relevant
environment variables for the application, is analyzed.

The overall architecture of our proposed solution is shown in Figure 4. The resource service
module takes the path of the source files and extracts metadata from those files. These metadata are
then fed into the entity service and API service modules, which produce descriptions of entities and
definitions of API endpoints, respectively. The REST discovery service module takes the definitions
of the API endpoints and resolves inter-microservice communications. Once the processing of each
module is done, we begin the process of code-smell detection. In the following text, we provide details
relevant to each particular smell and its detection.

https://spring.io/projects/spring-boot
https://docs.oracle.com/javaee
https://docs.oracle.com/javaee
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Figure 4. MSANose architecture diagram.

5.1. ESB Usage

To detect if an Enterprise Service Bus (ESB) is being used, we start by tallying up all of the
incoming and outgoing connections within each module of the system. We define an ESB as a module
with a high, almost outlier, number of connections and a relatively equal number of incoming and
outgoing connections. Additionally, an ESB should connect to nearly all the modules.

5.2. Too Many Standards

Detecting if too many standards are used in an application is a tricky problem since it is entirely
subjective on how many standards is “too many.” Additionally, there are very good reasons developers
would choose different standards for different system modules, including speed, available features,
and security [67]. We tally the standards used for each of the layers of the application (presentation,
business, and data). The user can configure how many standards is too many for each of the
respective sections.

5.3. Wrong Cuts

Wrong cuts depend on the business logic and, therefore, nearly impossible to automatically detect
without extrapolating a deep understanding of the business domain. However, we would expect to
see an unbalanced distribution of artifacts within the microservices along with the different layers of
the application (presentation, business, and data). To detect an unbalance presentation microservice,
we look for an abnormally high number of front-end artifacts (such as HTML/XML documents for
JSP). For the potentially wrong cut business microservices, we look for an unbalanced number of
service objects, and, lastly, for wrongly cut data microservices, we look for an unbalanced number of
entity objects. To find microservices with this smell, we look for outliers in the number of the specified
artifacts within each microservice. Next, we report the possibility of a wrongly cut microservice to
the user. We define an outlier count of greater than two times the standard deviation away from the
average count of the artifacts in each microservice, which is seen in Equation (1).

2 ∗

√
∑n

i=0(xi − X̄)2

n − 1
(1)

5.4. Not Having an API Gateway

Not having an API gateway is something that is not always possible to determine from
code analysis alone. It is especially the case as cloud applications increasingly rely on routing
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frameworks such as AWS API Gateway (https://aws.amazon.com/api-gateway/), which uses an
online configuration console and is not discoverable from code analysis, to handle routing API calls.
In the study by Taibi et al. [43], it was found that developers could adequately manage up to 50 distinct
modules without needing to rely on an API gateway. For this reason, if the scanned application has
more than 50 distinct modules, we include a warning message in the final report that they will likely
want to use an API gateway. This is not classified as an error but rather a suggestion for best practice.

5.5. Shared Persistency

Shared persistency happens when two or more modules of the application share the same
relational database. An example of this can be seen in Figure 2. This is detected by parsing the
application’s configuration files and finding the submodules’ persistence settings location. For example,
in a Spring Boot application, the application YAML file is parsed for the datasource URL. Then,
the persistence of each module is compared to the others to find shared datasources.

5.6. Inappropriate Service Intimacy

Inappropriate service intimacy can appear in a couple of different ways. It is defined as one
microservice requesting the private data of another microservice. An example of this can be seen
in Figure 3. One of the ways we detect this is as a variant of the shared persistency problem. Here,
instead of sharing a datasource between two or more modules, a module is directly accessing another’s
datasource in addition to its own. This is detected in a similar way as shared persistency; however,
once a duplicate datasource is found, if the module also has its own private datasource, then it is
an instance of inappropriate service intimacy. Another way in which we search for inappropriate
service intimacy is to look for two modules with the same entities. If one of those modules is only
modifying/requesting the other’s data, we define it as inappropriate service intimacy.

5.7. Shared Libraries

To detect shared libraries, the dependency management files are scanned for each module of the
application to locate all shared libraries. Clearly, some shared outside libraries will exist among the
microservices; however, the focus should be on any in-house libraries. Developers can then decide to
extract into a separate module if necessary to bolster the application against changes in the libraries.

5.8. Cyclic Dependency

To find all cycles between modules, we use a modified depth first search [75]. First, we extract
the REST communication graph for the microservice mesh. In the graph, each vertex represents a
microservice, and each edge represents a REST API call. Then, we run our cyclic dependency detection
algorithm on the graph. We maintain a recursive stack of vertices while traversing the graph. Since the
graph is unidirectional (client to server), we mark it as a cycle if a vertex already exists in the stack.
The algorithm is presented in Listing 1 and Listing 2.

https://aws.amazon.com/api-gateway/
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Listing 1. Find all cycles.

boolean isCyclic () {

// Mark all the vertices as not visited
// and not part of recursion stack
boolean [] visited = new boolean[V];
boolean [] recStack = new boolean[V];

// Call the recursive helper function to
// detect cycle in different DFS trees
for (int i = 0; i < V; i++)
if (isCyclicUtil(i, visited , recStack ))
return true;

return false;
}

Listing 2. A Helper Function to Find All Cycles.

boolean isCyclicUtil(int i,
boolean [] visited ,
boolean [] recStack) {

// Mark the current node as visited
// and part of recursion stack
if (recStack[i])
return true;

if (visited[i])
return false;

visited[i] = true;

recStack[i] = true;
List <Integer > children = adjList.get(i);

for (Integer c: children)
if (isCyclicUtil(c,visited ,recStack ))
return true;

recStack[i] = false;

return false;
}

5.9. Hard-Coded Endpoints

Hard-coded endpoints are found during the bytecode analysis phase of the application. Using the
bytecode instructions, we can peek at the variable stack and see what parameters are passed into the
function calls used to connect to other microservices. In the case of Spring Boot, for example, we look
at any calls from RestTemplate. We then link the passed address back to any parameters passed to the
function or any class fields to find the path parameters used. Our system tests for both hardcoded port
numbers and hardcoded IP addresses. Both should be avoided to make scalability of the system easier
in the future.

5.10. API Versioning

To find unversioned APIs in the application, we first find all fully qualified paths for the
application. For example, the Spring Boot code in Listing 3 would produce a fully qualified API
path of “/api/v1/users/login”. Each API path is matched against a regular expression pattern
.*/v[0-9]+(.?[0-9]*).* to locate the unversioned paths. All unversioned APIs are reported back to
the user.
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Listing 3. Example Spring Boot API.

@RestController
@RequestMapping("/api/v1/users")
public class UserController{

@Autowired
private UserService userService;

@Autowired
private TokenService tokenService;

@PostMapping("/login")
public ResponseEntity <?> getToken (...){
return ResponseEntity.ok (...);
}
...
}

5.11. Microservice Greedy

To find superfluous microservices, we find a couple of different metrics for each microservice.
This includes front-end files (e.g., HTML, CSS, and javaScript), service objects, and entity objects in the
application. Then, we find outliers, if any exist, as potential microservice greedy modules. We define
outliers in the same way as when finding a wrongly cut microservice using Equation (1). However,
we focus only on those that are outliers due to being undersized, as opposed to too large.

6. Case Study

Based on the described approach, we developed a prototype tool called MSANose (https://
github.com/cloudhubs/msa-nose). This tool accepts Java-based microservice projects and performs
static analysis of microservice modules. From the individual modules, it extracts the interaction
patterns. It combines the partial results from each module to derive a single overall holistic view of
the distributed system.

MSANose utilizes the system’s derived centralized perspective to perform the eleven distinct
detections mentioned above. The tool’s outcome is a report containing a list of microservice code smell
patterns with references to the offending modules and code. In the next section, we describe a case
study to demonstrate our approach and the developed prototype tool MSANose.

Recent efforts [76] to catalog microservice testbed applications have found a lack of applications
that adhere to the guidelines for testbeds outlined by Aderaldo et al. [77]. We processed the benchmarks
list and concluded that these are insufficient in size, nature, and state to study code smells. We introduce
two testbed systems to verify the effectiveness of our application.

6.1. Train Ticket

To test our application, we chose to run it on an existing microservices benchmark, the Train Ticket
Benchmark [78]. We chose this benchmark since it is a reasonable size for a microservice application
and would provide a good test of all of our application conditions. This benchmark was designed as a
model of real-world interaction between microservices in an industry environment. Next, it is one
of the largest microservice benchmarks available. This benchmark consists of 41 microservices and
contains over 60,000 lines of code. It uses either Docker (https://www.docker.com/) or Kubernetes
(https://kubernetes.io/) for deployment which relies on either NGINX (https://www.nginx.com/) or
Ingress (https://kubernetes.io/docs/concepts/services-networking/ingress/) for routing.

Before running our application on the testbed system, we manually analyzed the testbed for each
of the eleven microservice code smells. This was performed as follows: first, through manual tracing of
REST calls, and then through the cataloging of entities and endpoints within the system. We utilized
two student researchers familiar with research into enterprise systems to ensure our manual assessment
accuracy. We show the results of our manual assessment in Column 2 of Table 2.

https://github.com/cloudhubs/msa-nose
https://github.com/cloudhubs/msa-nose
https://www.docker.com/
https://kubernetes.io/
https://www.nginx.com/
https://kubernetes.io/docs/concepts/services-networking/ingress/
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After taking the results manually, we ran our application on the testbed system. Column 3 of
Table 2 is a quick overview of the results from running our application on the testbed. The application
took just 10 s to run on a system with an Intel i7-4770k and 8 Gb of RAM. This includes the average
time (taken over ten runs) to analyze the source code and compile bytecode of the testbed application.
An individual breakdown of the times for each of the code smells available in Column 4 of Table 2.

Table 2. Case study in Train Ticket benchmark [78].

Smell Manual MSANose Time (ms)

ESB Usage No No 1
Too Many Standards No No 213
Wrong Cuts 0 2 1487
Not Having an API Gateway No No 1
Hard-Coded Endpoints 28 28 1
API Versioning 76 76 1981
Microservice Greedy 0 0 2093
Shared Persistency 0 0 123
Inappropriate Service Intimacy 1 1 1617
Shared Libraries 4 4 237
Cyclic Dependency No No 1

Total 7755

We tested the testbed for potential ESBs with a connectivity threshold on the microservices of
80%, which could be adjusted by the user. Our application reported no potential ESBs, which matched
our earlier manual assessment of the system.

Further, the testbed is built with Spring Boot, MongoDB, and uses static hosting for the front-end.
We confirmed this through manual verification and the publicly available design documents (https:
//github.com/FudanSELab/train-ticket) for the system. Our application correctly identified these
standards. We test for too many standards specifically within each layer (presentation, business, and
data), and so no layer was beyond our threshold of two standards.

Wrong cuts were one of the most difficult to discern within the testbed. Since the testbed used
static files for the front-end, we could only detect microservices that were wrongly split based on the
business and data layers. We manually searched for wrongly cut microservices, but the testbed was
designed well and did not have any that we could manually determine were wrongly cut. However,
our application found two potential wrongly cut microservices in the system. To find the wrong
cuts on the business and data layers, we looked at the distribution of services and entities within the
microservices. We know that any microservice that is wrongly cut with on the business layer would
have excess amounts of services, and any cut wrongly on the data layer would have excess entities.

To discover the entity objects as part of the system’s data model, we utilized standard
annotations [6] for entities and @Document annotation for MongoDB entities. We then matched any
object we found in the system against the previously known entities and on name similarity match.
To calculate name similarity, we used the WS4J project (https://github.com/Sciss/ws4j). Based on
this, we could determine that object was an entity in its microservice.

The two potential wrong cuts we found were both microservices with an unusually high number
of entity objects. Since the application only has 41 microservices, we did not report a need to use
an API gateway; however, we can verify using the publicly available design document, as seen in
Figure 5, that an API gateway is nonetheless used.

https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://github.com/Sciss/ws4j


Appl. Sci. 2020, 10, 7800 12 of 20

Advanced travel 
(route info & tickets)

Traffic management

Gateway

Service 
discovery

(Kubernetes)

Service 
registry

Load 
balancing

Monitoring & metrics

Travel admin 
(order, route, station)

Ticket 
rebook

High-speed 
ticket reserve

Ticket 
reserve News

Ticket 
office

Route plan 
(price, change, time)

Ticket 
execute

Pay
High-speed 

travel explore
Travel 

explore Security
Cancel 
order

Inside 
pay Consign

Route Seat Voucher High-speed 
order

Ticket info Order
Consign 

price

AssuranceUser
Basic 
infoNotifyFood 

service

Food 
map Config Station Train Contact Price

Verify 
code Authorization

Figure 5. Train Ticket testbed architecture diagram.

Of the 28 hard-coded endpoints we found, all of them were hardcoded port numbers. This is
still an issue for the application, as it makes it significantly harder to scale and change the
microservices later.

Of the 76 API endpoints that were unversioned, most were found in the admin modules, and some
miscellaneous, non-data endpoints throughout the other modules.

There were no shared persistencies among the microservices, as each microservice had its own
database. We could manually verify one inappropriate service intimacy in the system, which our tool
correctly found. The modules ts-admin-route-service and ts-route-service both use the exact same entities,
and ts-admin-route-service solely requests/modifies the private data of ts-route-service as opposed to
using its own data.

Of the four shared libraries our application found, only one was widespread. The library was also
not a public library, but an in-house library developed for the system. This is a perfect example of a
library that is too coupled to the microservices and should be refactored. Lastly, no cyclic dependencies
were found, which matches both what we found in our manual testing and the architecture diagram in
Figure 5.

6.2. Teacher Management System

The Teacher Management System (TMS) (https://github.com/cloudhubs/tms2020) is an
enterprise application developed at Baylor University for Central Texas Computational Thinking,
Coding, and Tinkering to facilitate the Texas Educator Certification training program. The TMS
application consists of four microservices: user management system (UMS), question management
system (QMS), exam management system (EMS), and configuration management system (CMS).
All of the microservices are developed using the Spring Boot framework and structured into the
controller, service, and repository layers. It uses Docker for application packaging, Docker-compose
(https://docs.docker.com/compose/) for deployment, and NGINX for routing.

Similar to the first case study, we manually analyzed the testbed for each of the eleven microservice
code smells. Then, we ran our MSANose application on the TMS testbed. It took around 2 s to run the
benchmark on a 2.9 GHz Intel Core i9 computer with 32 GB of RAM. Table 3 shows the results of the

https://github.com/cloudhubs/tms2020
https://docs.docker.com/compose/
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manual assessment and results from MSANose side-by-side. An individual breakdown of the times
for each of the code smells is listed in Column 4 of Table 3.

Table 3. Case study on TMS benchmark.

Smell Manual MSANose Time (ms)

ESB Usage No No 1
Too Many Standards No No 66
Wrong Cuts 0 0 279
Not Having an API Gateway Yes No 1
Hard-Coded Endpoints 2 2 1
API Versioning 62 62 546
Microservice Greedy 0 0 271
Shared Persistency 0 0 60
Inappropriate Service Intimacy 0 0 1
Shared Libraries 2 2 47
Cyclic Dependency No No 1

Total 1074

We ran our MSANose tool on the TMS testbed for potential ESBs with a connectivity threshold
on the microservices of 80%. Our tool reported no potential ESBs, which can be verified using the
REST communication diagram shown in Figure 6. At first look, one might think of the CMS as an ESB
since most of the outgoing connections are from CMS. However, ESBs are simply routers with some
intelligence like data conversion and filtering. Thus, ESBs typically have a high number of incoming
and outgoing connections compared to microservices. In Figure 6, we can see that CMS does not have
any incoming connection. This indicates CMS is not an ESB and our tool produced the correct result
for ESB detection.

/Users/das/Baylor/RA/tms-testbed/tms-cms/target/cms-0.0.1-SNAPSHOT.jar

/Users/das/Baylor/RA/tms-testbed/tms-ums/target/ums-1.0-SNAPSHOT.jar

/Users/das/Baylor/RA/tms-testbed/tms-ems/target/ems-0.1.0.jar

/Users/das/Baylor/RA/tms-testbed/tms-qms/target/qms-0.0.1-SNAPSHOT.jar

edu.baylor.ecs.cms.service.QmsService.createConfiguration

edu.baylor.ecs.qms.controller.ConfigurationController.createConfiguration

POST http://qms-service/configuration

edu.baylor.ecs.cms.service.EmsService.getQuestionsForExam edu.baylor.ecs.ems.controller.ExamController.listAllQuestionsForExamGET http://ems-service/exam/{id}/questions

edu.baylor.ecs.cms.service.EmsService.deleteINITExam edu.baylor.ecs.ems.controller.ExamController.deleteINITExamDELETE http://ems-service/exam/{id}

edu.baylor.ecs.cms.service.EmsService.createExam edu.baylor.ecs.ems.controller.ExamController.createExamPOST http://ems-service/exam

edu.baylor.ecs.cms.service.UmsService.isEmailValid
edu.baylor.ecs.ums.controller.UserInfoController.isEmailInUse

GET http://ums-serivce/userinfo/emailInUse/{email}

edu.baylor.ecs.cms.service.QmsService.getConfigurations edu.baylor.ecs.qms.controller.ConfigurationController.findAllConfigurationsGET http://qms-service/configuration

edu.baylor.ecs.cms.service.UmsService.getExamineeInfo
edu.baylor.ecs.ums.controller.UserInfoController.getUserById

GET http://ums-serivce/userinfo/userById/{id}

edu.baylor.ecs.cms.service.EmsService.getExams edu.baylor.ecs.ems.controller.ExamController.listAllExamsGET http://ems-service/exam

edu.baylor.ecs.cms.service.EmsService.getINITExams

GET http://ems-service/exam

edu.baylor.ecs.cms.service.UmsService.getAllUsers
edu.baylor.ecs.ums.controller.UserInfoController.getAllUsers

GET http://ums-serivce/userinfo/users

edu.baylor.ecs.cms.service.QmsService.getCategoryInfoDtos

edu.baylor.ecs.qms.controller.CategoryInfoController.findAllCategoryInfos

GET http://qms-service/categoryinfo

edu.baylor.ecs.ems.service.QmsService.getQuestions edu.baylor.ecs.qms.controller.createTestGET http://129.62.148.179:12345/test?configId={id}

Figure 6. Inter microservice REST communications of TMS application.

Our manual assessment found that the testbed is built with Spring Boot, PostgreSQL with JPA is
used for persistence, and static hosting is used for the front-end. Our application correctly identified
these standards. We ran our tool for too many standards for each of the presentation, business,
and data layers. No layer was beyond our threshold of two standards.

Since the application has only four microservices, we did not explicitly report for an API gateway.
However, our manual assessment found that no API gateway was used. Our tool did not report any
possible wrong cuts. We manually checked for access amount of services in the business layers and
access amount of entities in the data layers. Our manual assessment confirmed that the application
was well designed, and there were no possible wrong cuts.

Our tool found two hard-coded endpoints, both of them were in EMS and pointing to QMS.
Both of these endpoints were hardcoded IP, which makes it harder to scale the application. From our
manual assessment, as shown in Figure 6, we found QMS is also accessed from CMS using a non-hard
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coded endpoint, which is considered to be the best practice. Thus, those hardcoded endpoints were
probably mistakenly left unnoticed during the application development process.

The MSANose tool did not report any shared presidencies for the testbed, and we confirmed it by
identifying that each microservices had its own database. There was no inappropriate service intimacy.
We manually checked all entities and did not found any pair of entities that are exactly the same.

Our tool identified 62 unversioned API endpoints, which were verified by our manual assessment.
The further assessment found that the application did not use any API versioning at all, which is
critical for client-side code stability. Two shared libraries were identified, which matches the count of
our manual assessment. However, both of those libraries are related to the Spring Boot framework.
Thus, it is one of the false-positive warnings reported by our tool and can be ignored safely. Lastly,
no cyclic dependency was found, which matches our manual assessment.

Our tool correctly analyzed both testbed systems and successfully identified the applications’
microservice code smells. Code smells do not always break the system or cause system-crashing bugs,
but they are problems nonetheless and are indicators of poor programming practice. As a system
grows organically, as the testbed applications have done over the past couple of years, these smells can
easily work their way into the system. Our tool can assist developers in locating code smells in their
enterprise application, as well as providing a catalog of the smells and their common solutions as they
attempt to fix them.

6.3. Validity threats

One of the main validity threats is the three code smells microservice greedy, wrong cuts, and too
many standards. While these code smells are specifically defined as to what they are, they do not have
an established system for detection or solution [43]. We used our discretion, along with knowledge of
enterprise architecture, to determine how our application would detect those, but it is ultimately up to
interpretation. Below, we also address the internal and external threats to validity.

6.3.1. Internal Threats

We ran our application ten times to validate that the times we record in Tables 2b and 3b for
our system’s running time to avoid an unusual system deviation. Our application is tested against
manually gathered results. To mitigate potential error when collecting the results, we had multiple
researchers gather the results and matched them. We used these results to validate the correctness of
our system.

Our application uses several thresholds for determining different code smells, which are
documented with the results. These thresholds are required to estimate the severity of certain code
smells and set our detection algorithms’ tolerance. We used 80% connectivity threshold for detecting
ESB Usage. A threshold of 50 microservices was used to report not having an API gateway. The default
values of those thresholds were originally proposed by Taibi et al. [44] through an extensive survey
among industry specialist. However, these thresholds could be adjusted by the user, which would
produce different results.

6.3.2. External Threats

Our application was run on two open-source benchmark applications that were similar to
real-world conditions to make our test as applicable as possible. Our analysis utilizes established
enterprise standards. Thus, if applications follow the best practice standards, they are analyzable by
our system.

Both of the benchmark applications used in the case study are primarily written in Java. However,
microservice architecture usually follows polyglot programming styles. We utilized bytecode and
source code analysis in our tool to show that it can support both interpreted and compiled languages.
We used Java Parser and Javassist for parsing Java source code and bytecode, respectively. Similar
parsing tools are available for other modern languages; for example, Python and Golang have a built
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in parser package to obtain AST from the source code. Provided that a language has an appropriate
parser, our tool can be extended to support a wide variety of languages used in MSA.

We designed generic interfaces to analyze and detect code smells. In our case study, we chose our
first benchmark application (Train Ticket) randomly from a list of exclusively designed applications for
benchmarking [78]. Then, we implemented those interfaces for Spring boot and enterprise Java since
the chosen benchmark follows these standards. To verify our prototype is not application-specific,
we chose our second benchmark application (Teacher Management System) that follows similar
standards. However, there might exist different standards in other languages. To address this, we need
to implement the interfaces for those specific standards.

Modern cloud-native microservices are usually packaged as containers and deployed
using orchestration platforms such as Kubernetes, Cloud Foundry, Docker Swarm, etc. During
containerization, source codes are not typically included; only the compiled artifacts such as JAR or
EXE files are added into the containers. It is still possible to perform bytecode analysis for containerized
microservices by extracting the bytecode artifacts (e.g., JAR file) from container layers [53]. For this
approach, we also need to analyze the deployment configuration files to identify service names
associated with each microservices [53]. However, additional hard-coded dependencies in container
images might require further research to identify them properly. In addition, for compiled languages,
source code analysis is not possible within a containerized environment.

7. Future Trends

The area of microservice verification has only recently begun to be thoroughly explored.
This means that an enterprise system’s typical problem domains, such as security [67], data constraints,
and networking [79], have only a surface-level examination for verification. The problem domain
for code smells is not different. Although this work is based on established code smells from
industry advice and examination [43], there exists the possibility to expand the pool of code smells for
microservice-based applications. For monolithic systems, there exists hundreds of code smells in a
multitude of languages. Definitions of those code smells can be adjusted to make them appropriate for
MSA through an extensive survey among industry specialists. For example, the Artificial Coupling and
Hidden Dependencies smells described in [4] can be interpreted for microservice level coupling instead
of class-level coupling. In addition, similar to the study described in [80], a taxonomy of code smells
can be done exclusively for MSA.

Our implementation has a clear separation between the metadata extraction and code-smell
detection, where each detection algorithm is implemented in separate modules. Thus new detection
mechanisms can be easily plugged in as a discreet module without affecting the existing metadata
extraction and detection algorithms.

Similarly, this research could be expanded into other languages and enterprise standards.
In addition, exploration for containerized microservices along with rigorous deployment configuration
analysis can be done for cloud-native applications [53].

Our open-source tool can be integrated into the software development lifecycle. For instance,
it can be added to the CI/CD pipeline to run an automatic screening test before performing the
deployment. Further, it can be used to accelerate the code review process. These adoptions will reduce
the manual efforts and human errors of code reviewers and DevOps engineers resulting in a shortened
release and update cycle of a microservice applications along with improved code quality.

8. Conclusions

In this paper, we discuss the nature of code smells in software applications. Code smells, which
may not break the application in the immediate time-frame, can cause long-lasting problems for
maintainability and efficiency later on. Many tools have been developed which automatically detect
code smells in applications, including ones designed for architecture and overall design of a system.
However, none of these tools adequately address a distributed application’s needs, specifically a



Appl. Sci. 2020, 10, 7800 16 of 20

microservice-based application. To address these issues, we draw upon previous research into
defining microservice specific code smells to build an application capable of detecting eleven unique
microservice-based code smells. Our prototype application, MSANose, is open-source and available at
https://github.com/cloudhubs/msa-nose. We ran our application on two established microservice
benchmark applications and compared our results to manually gathered ones. We show that it is
possible, through static code analysis, to analyze a microservice-based application and accurately
derive microservice-specific code smells.

For future work, we plan to assess more application testbeds. Moreover, we plan to continue our
work on integrating the Python platform to our approach since there are no platform-specific details,
and most of the enterprise standards apply to across platforms. We also plan to detect code clones in
distributed enterprise microservice applications in future work.
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