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Abstract: In this study, we present a novel tracking system, in which the tracking accuracy can be
considerably enhanced by state prediction. Accordingly, we present a new Q-learning-based reinforcement
method, augmented by Wang–Landau sampling. In the proposed method, reinforcement learning is
used to predict a target configuration for the subsequent frame, while Wang–Landau sampler balances
the exploitation and exploration degrees of the prediction. Our method can adapt to control the
randomness of policy, using statistics on the number of visits in a particular state. Thus, our method
considerably enhances conventional Q-learning algorithm performance, which also enhances visual
tracking performance. Numerical results demonstrate that our method substantially outperforms other
state-of-the-art visual trackers and runs in realtime because our method contains no complicated deep
neural network architectures.
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1. Introduction

Visual tracking is a fundamental computer vision algorithm [1–6] with several applications,
including autonomous driving, surveillance systems, and robotic systems. Conventional visual
tracking methods aim to accurately predict a target state using observations up to the current time.
To predict the target state with greater accuracy, in this paper, we define multiple actions in a
reinforcement learning framework and move the current state according to the selected action.
Figure 1 illustrates how state prediction is related to the actions in reinforcement learning.

1.1. Basic Idea

We further enhance prediction accuracy by balancing the exploitation and exploration abilities of
reinforcement learning. The exploitation procedure is used to further simulate the movements at the
states around the current local optimum, which the tracker has extensively explored. For example,
assume that our visual tracker observes that the target in Figure 1 usually moves to the right, up to the
current frame. We likely need to further exploit possible states on the right side of the current state.
Our visual tracker can accurately predict the target state using exploitation, especially when the
target moves smoothly. In contrast, the exploration procedure is used to simulate the movements
at states far from the current local optimum, which the tracker has only minimally explored.
For example, the target in Figure 1 moves randomly and inconsistently in some cases; thus, we need to
explore unvisited states, far from the current state. Our visual tracker can predict the target state using
exploration, especially when the target is fast-moving. Traditional reinforcement learning methods
experience difficulty in scheduling the exploitation and exploration procedures. In contrast, our visual
tracker overcomes this problem by introducing Wang–Landau sampling [7], in which exploitation and
exploration compete against each other in a sampling framework and attain the equivalence status.
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Figure 1. Basis of the proposed Wang–Landau reinforcement sampler. Reinforcement learning proposes
one of the action choice (i.e., ale f t, aright, aup, and adown) to move the target state. For example, if aright

is selected by our visual tracker, we move the target state to the right. The proposed visual tracker
combines this reinforcement learning with Wang–Landau sampling to balance between the exploitation
and exploration degrees of the prediction.

1.2. Our Contributions

• We propose a new Q-learning algorithm, augmented by Wang–Landau sampling, in which
the exploitation and exploration abilities of reinforcement learning are balanced in searching
target states. Conventional Q-learning methods typically select an action that maximizes a
current action-value for exploitation, whereas the methods choose an action at random with a
probability ε for exploration. However, it is nontrivial to determine the optimal ε, which can
balance exploitation and exploration abilities. In contrast, the proposed method can balance
between the exploitation and exploration processes based on the Wang–Landau algorithm.
The method adapts to control the randomness of policy, using statistics on the number of visits in
a particular state. Thus, our method considerably enhances conventional Q-learning algorithm
performance, which also enhances visual tracking performance.

• We present a novel visual tracking system based on the Wang–Landau reinforcement sampler.
We exhaustively evaluate the proposed visual tracker and numerically demonstrate the
effectiveness of the Wang–Landau reinforcement sampler.

• Our visual tracker shows state-of-the-art performance in terms of frames per seconds (FPS) and
runs in realtime because our method contains no complicated deep neural network architectures.

The remainder of this paper is organized as follows. In Section 2, we introduce relevant visual
tracking algorithms. We explain reinforcement learning-based visual tracking in Section 3.2 and
enhance the proposed visual tracking using Wang–Landau sampling in Section 3.3. In Section 4,
we evaluate visual tracking algorithms quantitatively and qualitatively. In Section 5, we conclude
the paper.

2. Related Work

In this section, we discuss the advantages and disadvantages of the relevant visual tracking
methods, which can be categorized into four groups: tracking methods based on reinforcement
learning, Wang–Landau sampling, and general visual tracking methods.
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2.1. Tracking Methods Based on Reinforcement Learning

For visual tracking, Yun et al. [8] adopted a policy network and defined the actions to localize the
target in a current frame. Supancic et al. [9] trained a Q function using the YouTube video dataset and
defined the actions used to reinitialize a visual tracker and modify the appearance model of the tracker.
However, these trackers could not run in realtime. Thus, Huang et al. [10] enhanced the speed of
reinforcement-learning-based visual trackers and maintained their accuracy. They defined actions
to determine whether the tracker easily tracks the target. If it is easy, the method tracks the target
using inexpensive features; otherwise, the method tracks the target using expensive deep features.
Choi et al. [11] ran their tracker at a real-time speed of 43 FPS. They presented lighter-weight deep
neural networks and optimized deep neural architectures for matching and policy networks.

In contrast to these methods, our method aims to improve reinforcement learning accuracy
by incorporating the Wang–Landau sampling. Please note that Choi et al. [11] did not improve
conventional reinforcement learning algorithms but efficiently applied an existing REINFORCE [12]
method to target the appearance-updating problem. In contrast, we improve conventional
reinforcement learning algorithms (i.e., Q-learning) using Wang–Landau sampling. We enhance
conventional Q-learning algorithms to balance the exploitation and exploration abilities of
reinforcement learning. Moreover, we adaptively control the randomness of policy using statistics on
the number of visits in a particular state.

2.2. Tracking Methods Based on Wang–Landau Sampling

For visual tracking, Kwon and Lee [13] adopted Wang–Landau Monte Carlo (WLMC) sampling
to control significant changes in the target’s positions. Zhou et al. [14] enhanced the Wang–Landau
samplers and presented a stochastic approximation Monte Carlo (SAMC) sampling-based visual
tracker, in which the density of states (DOS) was more accurately estimated with low computational
cost. Kwon and Lee [15] extended the WLMC sampling into N-fold Wang–Landau (NFWL) sampling,
in which the N-fold algorithm was used to enable the accurate estimation of the DOS with a relatively
small number of samples. The NFWL-based visual tracking method can handle significant changes in
both the positions and scales of the target. However, these methods do not contain a feedback process
and cannot reflect the current visual tracking environment and results. Liu et al. [16] combined WLMC
sampling with a visual background extractor, considerably reducing the state space of the target.
They independently dealt with scale changes in the target using a fast scale estimation algorithm.

In contrast to these methods, we applied WLMC sampling to reinforcement learning and balanced
the exploitation and exploration degrees of the target prediction.

2.3. General Visual Tracking Methods

Because of the representation power of deep neural networks [17–19], recent visual trackers
have extracted useful features and considerably increased their accuracy [20–23] referred to as deep
learning-based visual tracking methods. Wang et al. [23] presented the first visual tracker that
adopted deep features, in which a stacked denoising autoencoder was used to extract generic features,
and a classification layer was utilized to determine whether a current image patch is the foreground.
Nam et al. [21] considered visual tracking problems as binary classification problems and divided
visual tracking videos into multiple domains to extract multidomain features. Ma et al. [20] improved
visual tracking accuracy by training deep neural networks using object recognition datasets and
extracting hierarchical features. Kwon et al. [24] extracted deep features using the VGG-m network [25]
and combined variational autoencoders with the particle Markov chain Monte Carlo method for
multiple variable inferences.

Siamese network-based visual trackers [26–28] transformed visual tracking problems into
matching problems, in which exemplar patches were matched to search window patches through
a cross-correlation operation. For this purpose, two deep neural networks were designed with
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similar architectures that share parameters. Because matching is typically faster than classification,
Siamese network-based visual trackers have demonstrated superior speed. Bertinetto et al. [26]
implemented a Siamese network using only convolutional layers for visual tracking. Held et al. [28]
proposed a Siamese network-based visual tracker that can run at a real-time speed of 100 FPS.
Tao et al. [29] introduced a novel approach for visual tracking, in which no model updating
was required. They argue that visual tracking accuracy is derived from a powerful matching
function, which can be learned using a sufficiently large amount of training data. However,
Siamese network-based visual trackers easily miss the targets if there are severe occlusions and
background clutter. They lack both an explicit process to obtain feedback from the environment to
recover erroneous trajectories and an exploration mechanism to sufficiently search the state space.

To handle long-term video sequences, DASiam [30] considered larger search areas than
conventional methods, if target objects have high confidence values. GlobalTrack [31] and
SiamRPN [32] have explicit redetection processes, in which whole regions are searched to recover
missed target trajectories. However, GlobalTrack and SiamRPN require high computational costs
because these methods employ full-search strategies. In contrast, our proposed tracker presents an
efficient exploration technique based on Wang–Landau sampling. Thus, our tracker is significantly
faster than the aforementioned methods and runs in realtime.

In contrast to the aforementioned methods, we incorporated reinforcement learning into visual
tracking problems formulated as action-decision frameworks, in which the proposed method can
recover erroneous trajectories using feedback from the environment and sufficiently explore the state
space to capture abrupt target motions.

3. Proposed Visual Tracking System

3.1. Bayesian Visual Tracking

The visual tracking system aims to accurately infer target configurations over frames.
This inference problem can be formulated using the posterior probability p(Xt|Y1:t):

X̂t = arg
Xt

max p(Xt|Y1:t), (1)

where X̂t is the best state at time t. We can accurately estimate p(Xt|Y1:t) in (1) by adopting Bayesian
filtering, which updates the posterior distribution p(Xt|Y1:t) using the following rule:

p(Xt|Y1:t) ∝ p(Yt|Xt)
∫

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1,

≈ p(Yt|Xt)∑ p(Xt|Xt−1)p(Xt−1|Y1:t−1).
(2)

where p(Yt|Xt) denotes the likelihood, i.e., the probability of coincidence between the target object
and observation at the proposed state, and p(Xt|Xt−1) represents the transition kernel that proposes
the next state Xt based on the previous state Xt−1. In (2), p(Yt|Xt) is defined as

p(Yt|Xt) = e− f (Yt(X),Ygt), (3)

where f measures the similarity between the observed features [33] of the image described by X,
Yt(X) and the ground-truth Ygt. We design f , which is similar to the matching function used in [29].
However, it is intractable to integrate probabilities over all possible values of Xt−1. Alternatively,
we can sample a small number of values for Xt−1 to approximate the integration. If we use an infinite
number of samples, the approximation will produce zero errors. However, because it is impractical
to use an infinite number of samples in real-world implementations, it is important to determine a
limited number of good samples to produce accurate posterior probabilities.
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Then, visual tracking aims to accurately approximate posterior probability using mathematical
expectation with a limited number of samples [34].

X̂t = arg
Xt

maxEq(Xt |Y1:t)
[log p(Xt|Y1:t)] , (4)

where q(Xt|Y1:t) is the function that outputs Xt given Y1:t. In (4), q(Xt|Y1:t) is designed by selecting
the optimal transition kernel p∗(Xt|Xt−1), as follows:

q(Xt|Y1:t) = p(Yt|Xt)∑ p∗(Xt|Xt−1)p(Xt−1|Y1:t−1). (5)

3.2. Reinforcement Learning for Visual Tracking

In this study, p∗(Xt|Xt−1) in (5) is implemented by selecting the optimal action at in a
reinforcement learning framework, in which Xt+1 ∼ at(·|Xt). We compute the rewardR by measuring
the improvement in the log-posterior probability in (2), as follows:

R(st, at, st+1) = log p(Xt|Y1:t)− log p(Xt+1|Y1:t+1), (6)

where st = {X1:t}. In (6), st, st+1 ∈ S and at ∈ A, where S and A denote the spaces of states and
actions, respectively. A can have four possible actions, {ale f t, aright, aup, adown}:

A =


ale f t : px → px − 1, py → py,

aright : px → px + 1, py → py,

aup : py → py − 1, px → px,

adown : py → py + 1, px → px,

(7)

where px and py are the pixel indexes at the x and y axes, respectively.
Our visual tracker aims to find the optimal policy π∗ : S → A that maximizes the expected future

reward at time t:

π∗ = arg
π

maxEπ

[
Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γτ−t−1Rτ

]
, (8)

for a single episode of length τ, where γ < 1 is a discounting parameter that weights rewards that
can be received immediately. The expected cumulative reward in (8) is efficiently implemented by
Q-learning [35] with the following updating rule:

Q(st, at)← Q(st, at) + α
[
Rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
, (9)

where γmax
a

Q(st+1, a)−Q(st, at) indicates the maximum update of the action-value function Q(st, at)

at time t. This update is caused by a state change from st to st+1 through action a. In (9),Rt+1 is the
reward at time t + 1 and α is a weighting parameter.

The optimal policy in (8) can be determined toward maximizing the Q-values:

π∗(·|s) = arg
a

max Q(s, a), (10)

where the next action at+1 is sampled by π∗(at|st) and the next state st+1 is determined by (7).
However, when using (10), there is a risk of choosing suboptimal actions because we select an action
that maximizes only a current action value. This problem causes our visual tracker to explore only
already-visited states, which become trapped in the local optimum.



Appl. Sci. 2020, 10, 7780 6 of 17

We overcome this problem by proposing the ε-greedy algorithm, in which we usually select an
action that maximizes a current action-value; with a probability ε, we choose an action at random.
This ε-greedy algorithm can be expressed as

a ∼

arg
a

max Q(s, a), with probability 1− ε

random(A) with probability ε,
(11)

where random(A) returns an action randomly. However, one of the difficulties we may experience
when using ε-greedy, as a result of randomness in (11), is the surplus of actions, which complicates
optimal solution identification. Therefore, we propose a semirandom strategy based on the Wang–Landau
algorithm [7], in which we control the randomness of policy using statistics on the number of visits in a
particular state. This approach will be further explained in the following section.

3.3. Wang–Landau Reinforcement Sampler for Visual Tracking

The proposed Wang–Landau sampler can be used to encourage the exploration of reinforcement
learning by estimating the DOS [15], in which the DOS value approximates the frequency of visits
to each state using Monte Carlo simulations. Based on the DOS, we determine whether a particular
state is sufficiently explored. If a state has a small DOS value, the Wang–Landau sampler guides the
reinforcement learning to explore that state. Otherwise, the sampler refrains from exploring that state.

For Wang–Landau sampling, we define D = {di}
|S|
i=1 and V = {vi}

|S|
i=1, in which di and vi are the

DOS score and the number of visits for the i-th state, respectively, and |S| is the total number of states.
Then, we update di if the visual tracker visits the i-th state:

di ← di × w, ∀i, (12)

where w > 1 is a weighting parameter. vi is updated as follows:

vi ← vi + 1, ∀i, (13)

where di and vi are initialized to 1 and 0, respectively. As the iteration proceeds, the Wang–Landau
sampling adopts a coarse-to-fine strategy to attain more accurate DOS values. In the early iteration,
we use a large value of w in (12), which increases the update speed. In the latter iteration, we use
a smaller value of wm to fine-tune the updates. Accordingly, we decrease the value of w, w ←

√
w,

if a current iteration satisfies the following condition, i.e., the semiflat status:

∀i, vi ≥ 0.8× 1
|S|∑∀i

vi, (14)

where we, at least partially, explore all states. After the modification of w, the value vi is
reinitialized to 0.

Owing to the need to balance the exploration of reinforcement learning with its exploitation,
we present a new scheduling approach for reinforcement learning, as follows:

a ∼

arg
a

max Q(s, a), with probability 1− εnew

random(A) with probability εnew,
(15)

with

εnew = max
[

1,
di

pi(Yt|Xt)

]
, (16)
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where pi(Yt|Xt) is the likelihood at the i-th state, which is defined in (3). In (16), exploration di and
exploitation pi(Yt|Xt) compete with each other. For example, if di increases with respect to pi(Yt|Xt),
reinforcement learning would explore diverse states with a high probability. If not, it tends to exploit a
current state with a high probability.

Algorithm 1 illustrates the complete process of the proposed method.

Algorithm 1 Wang–Landau reinforcement sampler

1: Input: X̂t, di = 1, vi = 0, ∀i, and w > 1.
2: Output: X̂t+1
3: for j = 1 to N do
4: • Reinforcement learning
5: Propose an action a according to (15).
6: Find the next state Xt+1 using the proposed action in (7).
7: Computer the posterior probability p(Xt+1|Y1:t) in (2).
8: Estimate the rewardRt+1 using p(Xt+1|Y1:t) in (6).
9: Update the Q value usingRt+1 in (9).

10: Determine the optimal policy function π using Q in (10).
11: •Wang–Landau Monte Carlo sampling
12: Find the index i of the state Xt+1.
13: Update the DOS score di using (12).
14: Update the number of visits vi using (13).
15: if vi reaches the semiflat status in (14) then
16: w←

√
w.

17: vi = 0.
18: end if
19: end for
20: Find the best configuration X̂t+1 using (1).

4. Experiments

4.1. Experimental Settings

The proposed method was compared with 30 non-deep learning methods (e.g., SCM [36],
STRUCK [37], ASLA [38], TLD [39], CXT [40], VTD [41], VTS [42], CSK [43], MEEM [44], Staple [45],
and SRDCF [46]) on 50 test sequences in the OTB dataset [47]. Furthermore, our method was
compared to state-of-the-art deep learning-based methods: C-COT [48], SINT [29], SINT-op [29],
ECO [49], ECO-HC [49], SiamRPN++ [32], TADT [50], DAT [51], and SiamDW [52]. Moreover,
the proposed visual tracker was compared based on the VOT2017 [53] dataset with 10 recent visual
trackers, including CFWCR [54], CFCF [55], CSRDCF [56], MCCT [57], and LSART [58]. Our proposed
visual tracker was also compared for the LaSOT [59] dataset with 8 state-of-the-art visual trackers,
namely ECO [49], SiamRPN++ [32], GlobalTrack [31], ATOM [60], DASiam [30], CFNet [61], SPLT [62],
and StructSiam [63]. Please note that we compared the proposed method with 30 non-deep learning
visual trackers but reported only top 10 visual tracker in Figure 2 to visualize precision and success
curves for each tracker more clearly.

We used the precision, success rate, and AUC as evaluation metrics for testing these methods [47].
For precision, we calculated the l2-norm distance between the estimated bounding box Et and the
ground truth bounding box Gt. Then, we depicted the precision plot, which shows the percentage of
frames such that the l2-norm distance is less than a specific threshold. For the success rate, we calculated
the intersection of union IoU = |Et∩Gt |

|Et∪Gt | , where | · | indicates the number of pixels. We considered
visual tracking at each frame to be successful, if IoU is greater than a specific threshold. Moreover,
we calculated the success rate, which is the ratio of the number of successful frames to the number
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of total frames. We then illustrated the success plot, which presents the success rates with different
thresholds, and we calculated the area under curve (AUC).

For fair comparison, we used the best visual tracking results reported by the authors in
the original papers and followed their experimental settings. For example, SiamRPN++ [32] was
pretrained on ImageNet [64] and used ResNet [33] as a backbone network. In addition, SiamRPN++
was trained using the training datasets of COCO [65], ImageNet DET [64], ImageNet VID,
and the YouTube-Bounding Boxes dataset [66]. All experiments were conducted using a desktop with an
Intel CPU i7 3.60 GHz and GeForce Titan XP graphics card for the proposed method. Throughout the
experiments, hyperparameters were fixed as follows: γ = 0.9 in (8), N = 2000 in Algorithm 1 and w = 0.8
in (12).
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Figure 2. Quantitative comparison with non-deep learning based methods. We evaluate the methods
using precision and success plots in (a,b), respectively.

4.2. Ablation Study

We examined the effectiveness of the Wang–Landau sampling for reinforcement learning
and sensitivity to hyperparameters of our method. Table 1 compares two variants of our
method: reinforcement learning-based visual trackers with ε-greedy and Wang–Landau sampling.
Table 1 demonstrates that the accuracy of reinforcement learning-based visual trackers
can be considerably increased if the exploration and exploitation abilities are balanced by
Wang–Landau sampling. Table 2 shows the visual tracking results of our method using different
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values of hyperparameters. If γ in (8) increases, our method imposes more weights on rewards in the
near future. If N = 2000 in Algorithm 1 has a larger value, our method can more accurately estimate
the DOS score and Q-values, sacrificing computational cost. If w = 0.8 in (12) is larger, our method
can estimate the DOS score with a smaller number of iterations but less accurately. As shown in
Table 2, our method is insensitive to hyperparameters. Although the values of these hyperparameters
severely change, our method consistently produces accurate visual tracking results, because our
proposed Q-learning-based reinforcement method accurately predicts target states regardless of the
hyperparameter values.

Table 1. Ablation study: Effectiveness of Wang–Landau sampling for reinforcement learning-based
visual tracking.

ε-Greedy Wang–Landau Sampling

AUC 0.583 0.694

Table 2. Ablation study: Sensitivity to hyperparameters, γ in (8), N in Algorithm 1, and w in (12).

γ 0.8 0.9 1.0

AUC 0.651 0.694 0.647

N 1000 2000 3000

AUC 0.642 0.694 0.649

w 0.7 0.8 0.9

AUC 0.650 0.694 0.637

4.3. Quantitative Comparison

Figure 2 shows the quantitative comparisons with non-deep learning-based visual trackers.
Our method considerably outperformed the second-best trackers, MEEM and Staple, in terms of
precision and success rate, respectively. Our method was able to accurately track the target despite
the severe appearance of the target. In particular, the proposed Wang–Landau Monte Carlo sampling
improves the exploration of unvisited states, enabling our tracker to cover abrupt motion changes of
the target.

Figure 3 shows the quantitative comparisons with recent deep-learning-based visual trackers.
SiamDW was the best in terms of the precision plot, and ECO was the best in terms of the success
plot. As shown in Figure 3, our method was competitive with deep learning-based visual trackers.
In particular, our method produced accurate tracking results in terms of the success plot but relatively
inaccurate tracking results in terms of the precision plot, implying that our method can be improved
by adopting multiscale approaches.

In Figure 4, we highlighted experiments on test sequences, which contain examples of interrupted
and recovered tracking. For example, “Out of view” and “Occlusion” sequences contain interrupted
and recovered tracking scenarios. In these sequences, target objects frequently disappear due to
occlusion and out of view attributes, which causes conventional trackers to miss the target trajectories.
After a long time, the targets reappear and the trackers need to recover the target trajectories.
In this situation, the proposed tracker efficiently recovers missing trajectories using the proposed
exploration mechanism. As shown in Figure 4, the propose visual tracker considerably outperforms
other state-of-the-art deep-learning visual trackers, which demonstrates the effectiveness of the
proposed exploration mechanism based on Wang–Landau sampling.

Figure 5 quantitatively evaluates the proposed method (ours) and the recent state-of-the-art
deep-learning-based visual trackers using the VOT2014 dataset. Our method considerably outperforms
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other methods in terms of accuracy. Staple shows the second-best accuracy. However, robustness is
significantly worse than the proposed method, implying that our method rarely missed the targets,
while preserving the accuracy over frames. Gnet is the best in terms of robustness, while its accuracy
is lower than ours.

Table 3 quantitatively evaluates the proposed method and deep-learning-based visual
tracking methods using the LaSOT dataset. Our method and GlobalTrack present state-of-the-art
tracking performance. GlobalTrack has an explicit redetection, which requires accurate object detectors.
In contrast, the efficient performance of the proposed method stems from reinforcement learning
with Wang–Landau-based exploration. Our method implicitly searches for the targets without any
object detector.
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Figure 3. Quantitative comparison with deep learning based methods in terms of precision and
success rate.
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Figure 4. Quantitative comparison in term of the success plot for interrupted and recovered
tracking scenarios.
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Figure 5. Quantitative comparison of our method with recent state-of-the-art deep-learning visual
trackers using the VOT2017 dataset.

Table 3. Quantitative comparison of our method with recent deep-learning-based visual tracking
methods using the LaSOT dataset.

GlobalTrack ATOM SiamRPN++ DASiam SPLT StructSiam CFNet ECO Ours

AUC 0.521 0.518 0.496 0.448 0.426 0.335 0.275 0.324 0.519
Precision 0.529 0.506 0.491 0.427 0.396 0.333 0.259 0.301 0.541

Normalized 0.599 0.576 0.569 - 0.494 0.418 0.312 0.338 0.605

Table 4 quantitatively evaluates the computational costs of recent visual trackers using the
LaSOT dataset. Our visual tracker shows state-of-the-art performance in terms of FPS and can run in
realtime because our method contains no complicated deep neural network architectures.

Table 4. Computational costs of visual trackers in terms of frames per seconds (FPS).

GlobalTrack ATOM SiamRPN++ DASiam SPLT StructSiam CFNet ECO Ours

FPS 6 30 35 110 26 45 15 5 115

Figure 6 measured the recovery rated for 8 state-of-the-art visual trackers, namely ECO,
SiamRPN++, GlobalTrack, ATOM, DASiam, CFNet, SPLT, and StructSiam using the LaSOT dataset.
We counted the average number of frames such that IoU is zero (i.e., the average number of
interruptions), which means that trackers missed the targets. After each frame such that IoU = 0,
we counted the average number of frames such that IoU becomes nonzero again (i.e., the average
number of recovered trajectories), which means that trackers recovered the targets. The recovery
rate was calculated by dividing the average number of recovered trajectories with the average
number of interruptions. As shown in Figure 6, our method considerably surpasses other methods
in terms of the recovery rate, which demonstrate the effectiveness of the proposed Wang–Landau
reinforcement sampler.
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Figure 6. Comparison on the recovery rate. Blue, orange, and gray bars denote the average
number of interruptions, the average number of recovered trajectories, and recovery rate
(i.e., average number of recovered trajectories

average number of interruptions × 100), respectively.

4.4. Qualitative Comparison

Figure 7 qualitatively compares our method with the method based on conventional ε-greedy
reinforcement learning using the OTB dataset. Although the test sequences contained abrupt
motions (e.g., Deer, Shaking, MotorRolling, and Biker sequences), severe deformation (e.g., Ironman,
Diving, Jump, Skiing, and Surfer sequences), occlusion (Soccer sequence), and illumination changes
(e.g., Matrix, Shaking, and Skating1 sequences), our method accurately tracked the targets. However,
conventional reinforcement learning with ε-greedy frequently failed to track the targets when there
were abrupt motions occurred because it could not sufficiently explore unvisited states.

Figure 8 shows qualitative visual tracking results of the proposed method with and without
the Wang–Landau algorithm using the LaSOT dataset. The video sequences include tiny objects
(e.g., boat-12, crocodile-3, drone-13, elephant-18, fox-3, and flog-9 sequences), background clutter
(e.g., chameleon-6, cram-18, and fox-3 sequences), nonrigid objects (e.g., bear-17, bird-17, cattle-7,
crocodile-3, fox-3, frog-9, and giraffe-10 sequences), motion blur (e.g., bus-5 and crab-18 sequences),
and rotation (e.g., bottle-1 sequence). Despite these challenging visual tracking environments,
the proposed method accurately tracked the targets. These results indicate that the proposed
Wang–Landau-based reinforcement learning is helpful for finding unexplored states and recovering
missed trajectories. As shown in Figure 8, the proposed Wang–Landau algorithm helps our visual
tracker to recover inaccurate bounding boxes.
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(a) Deer sequence (b) Ironman sequence (c) Matrix sequence (d) Shaking sequence

(e) Diving sequence (f) Jump sequence (g) MotorRolling sequence (h) Skating1 sequence

(i) Skiing sequence (j) Soccer sequence (k) Surfer sequence (l) Biker sequence

Figure 7. Qualitative comparisons. White boxes present the estimated bounding boxes of our method,
while red boxes represent the results of our method without Wang–Landau sampling.

(a) airplane-13 sequence (b) bear-17 sequence (c) bicycle-9 sequence (d) bird-17 sequence

(e) boat-12 sequence (f) bottle-1 sequence (g) bus-5 sequence (h) cattle-7 sequence

(i) chameleon-6 sequence (j) crocodile-3 sequence (k) crab-18 sequence (l) drone-13 sequence

(m) elephant-18 sequence (n) fox-3 sequence (o) frog-9 sequence (p) giraffe-10 sequence

Figure 8. Qualitative evaluation. White and green boxes present the predicted bounding boxes of the
proposed method with and without the Wang–Landau algorithm.

In summary, the proposed method works better than other state-of-the-art methods, as follows.
Our method can predict the target state with greater accuracy by defining multiple actions in a
reinforcement learning framework and moving the current state according to the selected action.
In addition, we further enhance prediction accuracy by improving reinforcement learning performance
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using Wang–Landau sampling, in which exploitation and exploration compete against each other in a
sampling framework and attain the equivalence status.

5. Conclusions

In this study, we present a visual tracking system based on reinforcement learning, in which
the accuracy of the tracking can be considerably enhanced by target configuration prediction for
the subsequent frame. Our visual tracker is improved by Wang–Landau sampling, in which the
exploration and exploitation of reinforcement learning are efficiently scheduled. The experimental
results demonstrate that our method significantly outperforms non-deep learning-based visual
tracking methods. Our method is competitive with deep learning-based visual trackers, whereas the
proposed method is the fastest algorithm among the compared visual trackers. For future work,
we adopt the deep Q learning method to improve the visual tracking accuracy, which is one of the
well-known deep learning-based reinforcement learning approaches.

Our method can fail to track the targets, if the target motions are highly random. In this case,
the proposed re-reinforcement learning method inaccurately predicts the target position and degrades
visual tracking performance. For future research, we plan to integrate explicit object detector into the
proposed framework to handle random motions.
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