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Abstract: This paper proposes a novel controller, fast fractional-order terminal sliding mode control
(FFOTSMC), for a seven-degree-of-freedom (7-DOF) robot manipulator with tracking control. The new
controller applies the fractional-order derivative on both the sliding surface design and the sliding
control/reaching law. Compared to previous research, which only applies the fractional-order
derivative on the sliding surface design, the proposed controller has a faster convergence for reaching
the sliding surface and maintaining stay on it because of the new fractional-order control law, which
helps the tracking accuracy. To implement the controller on the robot with less chattering, a sliding
perturbation observer (SPO) is used to estimate the disturbance and uncertainties. Stability analysis
is analyzed using Lyapunov functions for fractional-order systems. The controller performance is
evaluated by a simulation of a single-input and single-output (SISO) system in MATLAB Simulink
and experiments on the robot manipulator.

Keywords: robot control; sliding mode control; robust control; fractional calculus

1. Introduction

Sliding mode control (SMC) has been widely studied and applied to robot manipulators because
of its simplicity of implementation, fast global convergence, high robustness to external variations,
and insensitivity to modeling error and system parameter variations [1]. SMC includes a conventional
linear sliding mode (LSM) control, which is asymptotically stable, and a terminal sliding mode (TSM)
control with finite-time stability [2,3]. Typically, it includes two steps to design an SMC: the choice of
sliding surface and the control/reaching law to reach the sliding surface and maintain stay on it.

TSM control (TSMC) utilizes a nonlinear sliding surface instead of a linear sliding surface in sliding
surface design. It generates faster convergence, less tracking errors than LSM control (LSMC), and finite
stability for reaching the equilibrium point. The control/reaching law in TSMC also contains a nonlinear
term, which allows the sliding surface to be reached in finite time with fast convergence. Compared to
the LSMC, TSMC shows various superior properties such as fast and finite-time convergence and few
tracking errors. However, in TSMC, the first-order derivative of the nonlinear term in TSM causes a
singularity problem. In recent years, many researchers have focused on solving the singularity [4,5].
Using fractional calculus can avoid this singularity because of the hereditary and memory property,
such as fractional-order TSMC (FOTSMC) [6]. FOTSMC was proposed with a terminal sliding surface
using the fractional-order derivative. It can help avoid the singularity, which exists by taking the
first-order derivative to the sliding surface. In addition to this, compared to conventional TSMC,
FOTSMC has a faster convergence speed.

The study on applying the fractional-order derivative to SMC techniques starts by applying it
to the LSMC first. A fraction-order sliding mode control (FOSMC) was proposed based on LSM [7],
and it exhibited better performance than the conventional LSMC (integer-order derivative-based).
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The reason has been roughly analyzed and discussed. In [8], researchers analyzed and found that the
solution of a fractional-order (larger than zero and less or equal to one) differential equation could be
presented as a Mittag-Leffler function. This mathematical solution explains why FOSMC exhibited a
higher convergence speed than LSMC (see Appendix A). However, FOSMC is not globally faster than
LSMC. It has slow convergence near the terminal where small values are, which is discussed in detail
in Appendix A.

FOTSMC can compensate for the slow convergence drawback near the equilibrium of FOSMC
because the terminal sliding surface has a faster convergence speed than the linear sliding surface,
especially in the field of small values. Compared to TSMC and FOSMC, FOTSMC is a complementary
method, the terminal sliding surface helps the slow convergence in the interval of small values, and the
fractional-order derivative accelerates the convergence in other intervals.

Even though many researchers have demonstrated the performance of FOTSMC through real
applications and simulations [9–12], the specific reason why FOTSMC performs better than FOSMC
has not been introduced clearly, which is discussed in Appendix A. Additionally, all previous works
on FOTSMC only focused on applying the fractional-order derivative on the sliding surface design,
without paying attention to the design of the control/reaching law for reaching the sliding surface,
e.g., FOTSMC in [9] only utilized the fractional calculus in designing the sliding surface. It applied a
control law, obtained by taking the first-order derivative to the sliding surface with respect to time,
to reach the sliding surface and maintain stay on it. The control input of FOTSMC was merely derived
simply by the desired dynamics of the sliding surface.

In this research, the proposed controller, fast fractional-order terminal sliding mode control
(FFOTSMC), uses the fractional-order derivative on both the sliding surface design and the
control/reaching law. The new control law is conducive to reaching the sliding surface faster than the
previously studied one (FOTSMC), designed using the integer-order derivative only. This fast reaching
law is associated with fast convergence.

The controller is designed for a seven-degree-of-freedom (7-DOF) robot manipulator. Due to
its complex dynamics, only using FFOTSMC is not enough to have an ideal performance. The high
frequency switching in the control input of FFOTSMC can ensure the robustness of FFOTSMC; however,
it could make the robot oscillate. In this research, we apply the sliding mode perturbation observer
(SPO) [13] to estimate the perturbation. The estimated perturbation is used to compensate for the
uncertainties and disturbances in the controller design. It reduces the switching gain of the control
input of the FFOTSMC, which decreases the amplitude of chattering. SPO is efficient with high
estimation accuracy for a low-frequency vibration, which has been demonstrated in electric motors
and hydraulic cylinder actuated systems [14,15]. Through the compensation for the uncertainties and
disturbances, the control precision is also improved.

The contributions of this paper are summarized as follows.

(1) The new proposed controller, FFOTSMC, uses fractional-order derivatives on both sliding surface
design and sliding control/reaching law. It has faster convergence and more outstanding tracking
accuracy than FOTSMC, which has been researched previously.

(2) The new controller FFOTSMC was designed to control a real 7-DOF robot manipulator for
trajectory tracking. SPO is used to estimate the disturbance and uncertainties for reducing the
chattering, ensuring the controller can be implemented in practice.

(3) Stability is analyzed using the Lyapunov functions for fractional-order systems [16].

The paper is organized as follows. In Section 2, the 7-DOF robot manipulator modeling,
fundamental definitions, two useful properties, and one lemma for proving the stability are presented.
Section 3 describes the stability analysis of the new proposed FFOTSMC with SPO (FFOTSMCSPO).
In Section 4, simulations using the proposed controller and four different controllers are compared in
MATLAB for a single-input and single-output (SISO) system. Then, comparative experiments on the
robot manipulator are discussed. The conclusion of this work is shown in Section 5.
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2. Preliminaries

2.1. Mathematical Model for Robot Manipulators and Problem Formulation

Consider an n-links robotic manipulator is model as

M(x)
..
x + C(x,

.
x)

.
x + G(x) = τ(t) + d(t) (1)

where x = [x1, . . . , xn]
T
∈ Rn is the position state of the joints;

.
x ∈ Rn is the velocity state vector and

..
x ∈ Rn is the acceleration state vector; d ∈ Rn is the disturbance vector; τ ∈ Rn is the torque vector
acted on the joints; M ∈ Rn×n, C ∈ Rn×n and G ∈ Rn are the symmetric positive definite inertia matrix;
the Coriolis and centrifugal matrix, and the gravitational matrix, respectively. After identifying system
dynamics, the system in (1) can be rewritten with modeling parameters and uncertainties as

..
x = Mo(x)

−1(τ(t) −Co(x,
.
x)

.
x) + Ψ (2)

where Mo and Co are identified dynamic parameters, and Ψ = [Ψ1, . . . , Ψn]
T
∈ Rn represents the

perturbation, which contains the uncertainties of dynamics, the unknown gravitational term, and the
disturbance as

Ψ(x,
.
x,

..
x, t) = M−1

o (−∆M(x)
..
x− ∆C(x,

.
x)

.
x−G(x) + d(t)) (3)

where ∆M and ∆C represent the uncertainties of the inertia and the Coriolis and centrifugal term of
dynamics, respectively. Ψ is assumed to have a boundary limited as |Ψ| ≤ Φ = [Φ1, . . . , Φn]

T
∈ Rn.

Hence, the new dynamics can be rewritten as follows

..
x = Mo(x)

−1(τ(t) −Co(x,
.
x)

.
x) + Ψ (4)

For trajectory tracking, the error state is defined as

e = x− xd (5)

where xd ∈ Rn represents the desired position planning, and e = [e1, . . . , en]
T
∈ Rn. The notation of the

desired velocity state vector and the acceleration state vector are
.
xd and

..
xd, respectively.

In this research, we aim to design a robust controller for a 7-DOF robot manipulator (n = 7),
which is shown in Figure 1. All seven joints are rotary joints. The dynamic identification was finished
in previous research [17] with a result of Co = diag[2.47 10.359 0.849 2.210 0.555 0.560 0.560] ∈ R7×7,
Mo = diag[0.213 1.159 0.171 0.328 0.0643 0.057 0.0640] ∈ R7×7.
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Figure 1. Seven-axis robot manipulator.

The goal of the proposed controller is to guarantee the error states to reach the sliding manifold
and then slide to the equilibrium point (i.e., e = 0) despite Ψ.
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2.2. Fractional Calculus

Fractional calculus defines the real number order for integral and derivative calculations.
The Riemann–Liouville definition and the Caputo fractional derivative are adopted in this work.

Definition 1 [18]. The α th-order Riemann–Liouville integral of function is given as

D−αt0,t f (t) =
1

Γ(a)

∫ t

t0

(t− τ)α−1 f (t)dτ, t > t0 (6)

where Γ(·) is the well-known Euler gamma function. t0 is the initial time. The Riemann–Liouville integral has
the semigroup property of D−αt0,tD

−β
t0,t = D−β−αt0,t , ∀α, β > 0. The Riemann–Liouville definition of the α ∈ R+

th-order derivative is

RLDα
t0,t f (t) =

dm

dtm D−(m−α)t0,t f (t) =
1

Γ(m− a)
dm

dtm

∫ t

t0

(t− τ)m−α−1 f (t)dτ, t > t0 (7)

where m− 1 ≤ α < m, m ∈ Z+. For convenience, the Riemann–Liouville derivative is abbreviated as Dα
t0,t in

this article.

Definition 2 [8]. The α ∈ R+th-order Caputo fractional derivative on the half axis R+ for a continuous function
f(t) is defined as

CDα
t0,t f (t) = D−(m−α)t0,t

dm

dtm ( f (t)) =
1

Γ(m− a)

∫ t

t0

f (m)(τ)

(t− τ)α−m+1
dτ, t > t0 (8)

in which m− 1 ≤ α < m, m ∈ Z+.

Property 1 [8]. If the Riemann–Liouville derivative Dβ
t0,t f (t) (m− 1 ≤ β < m, m ∈ Z+) of a function f (t) is

integrable, then

D−αt0,t(D
β
t0,t f (t)) = Dβ−α

t0,t f (t) −
n∑

j=1

[Dβ− j
t0,t f (t)]

t=t0

(t− t0)
α− j

Γ(1 + α− j)
(9)

Property 2 [18,19]. The fractional-order Caputo fractional derivative has a relation to the Riemann–Liouville
derivative.

CDα
0,tx(t) = Dα

0,t(x(t) −
m−1∑
k=0

tkx(k)(0)/k!) (10)

2.3. Stabilities

Lemma 1 [16,20]. The stability analysis for fractional-order systems is given as

CDα
0,tx(t) = f (x(t)) , (0 <α < 1, x(t) ∈ R) (11)

If the following condition is satisfied
x(t) f (x(t)) < 0, ∀x , 0 (12)

Then x = 0 is the equilibrium point, and the system (11) is asymptotically stable. Lemma 1 is proved by using
the Lyapunov functions for fractional-order systems, which apply the fractional-order derivative to the Lyapunov
function candidate as CDα

0,tV(t, x(t)).



Appl. Sci. 2020, 10, 7757 5 of 17

3. Controller Design

The controller FFOTSMC with SPO (FFOTSMCSPO) is proposed in this section. SPO is used
to estimate the perturbation. Then, the estimated perturbation is transferred to the controller for
compensation. The flow chart of the system and controller is shown in Figure 2. The usage of SPO is
proposed first.
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3.1. SPO

SPO estimates partial unknown states and perturbation. It helps the controller to reduce
the chattering against uncertainties and disturbances. It is efficient in estimating perturbation in
low-frequency vibration [13]. For the motor-driven robot, the main component of the perturbation Ψ is
the external disturbance d(t) and gravity G(x). The minor components include dynamic uncertainties
and modeling errors.

The design of SPO is based on the state space. The state variables with a new state variable x3 j for
the j-th ( j = 1, 2, . . . n) joint of the robot can be represented as:

.
x1 j = x2 j
.
x2 j = η ju j + Ψ j
.
x3 j = η j

.
x2 j −

.
Ψ j/η j

y j = x1 j.

(13)

where η j is a positive constant. u = [u1, . . . , u j, . . . un] ∈ Rn is the new equivalent control input to
separate the perturbation from dynamics as follows:

Mo(x)
−1(τ(t) −Co(x,

.
x)

.
x) = ηu (14)

where η = [η1, . . . ηn]
T
∈ Rn. The new state variable x3 j is defined as:

x3 j = η jx2 j −Ψ j/η j. (15)

The SPO for j-th joint is designed as follows:

.
x̂1 j = x̂2 j − g1 jsat(x̃1 j).
x̂2 j = η ju j − g2 jsat(x̃1 j) + Ψ̂ j.
x̂3 j = η2

j (u j + η jx̂2 j − x̂3 j)

ψ̂ j = η j(η jx̂2 j − x̂3 j)

(16)

where g1 j and g2 j are positive constants, and the notationˆmeans the estimation; ∼means the estimation
error, i.e., x̃1 j = x̂1 j − x1 j; if

∣∣∣x̃1 j
∣∣∣ ≥ ε0 j, sat(x̃1 j) = x̃1 j/

∣∣∣x̃1 j
∣∣∣; else, sat(x̃1 j) = x̃1 j/εcj; ε0 j stands for the

boundary layer of the estimation error.
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The detailed stability analysis for the SPO has been proven in previous research [14]. Herein,
we only use SPO to protect the controller against lesser uncertainties, which is reduced from Ψ j to Ψ̃ j.
The perturbation estimation error has a relation to the real perturbation [13], as shown in a Laplace
transform as:

Ψ̃ j(p)

Ψ j(p)
= −

p(p + g2 j/g1 j)

p2 + (g2 j/g1 j)p + (g2 j/g1 j)η2
j

(17)

where estimation error Ψ̃ j = Ψ̂ j −Ψ j, and (17) shows a high-pass filter from the real perturbation
to the perturbation estimation error. It signifies that the SPO is effective for the system with a
low-frequency variability.

3.2. FFOTSMCSPO

The proposed controller has a fractional-order terminal sliding surface and a fractional-order type
control law. It has faster convergence in both reaching mode and sliding mode, which can guarantee
precise tracking.

3.2.1. Fractional-Order Sliding Surface

The fractional-order sliding surface of FFOTSMC is designed as:

s = cD
α
0,te + λ1sig(e)r1 (18)

where s = [s1, . . . , sn]
T
∈ Rn, λ1 = diag(λ1 j) ∈ Rn×n, (λ1 j > 0), cDα

0,te = [cD
α1
0,te1, . . . , cD

αn
0,ten]

T, sig(e)r1 ,

[sig(e1)
r11 , . . . , sig(en)

r1n ]
T, 0 < r11 , . . . , r1n < 1, and sig(·)r1n , sign(·)|·|r1n . Differentiating it using

Caputo fractional-order derivative with β-th order yields

cD
β
0,ts = cD

β
0,t cD

α
0,te + cD

β
0,t(λ1sig(e)r1) (19)

Depending on the definition of Caputo fractional derivative (8),

cD
β
0,ts = Dβ−1

0,t
d
dt

Dα−1
0,t

.
e + cD

β
0,t(λ1sig(e)r1) (20)

Applying the definition of Riemann–Liouville fractional derivative, we obtain

Dβ−1
0,t

d
dt

Dα−1
0,t

.
e = Dβ−1

0,t Dα
0,t

.
e (21)

In practice, the trajectory tracking always commences with zero velocity error. Using Property 2 and
assuming that the initial velocity error is zero.

Dβ−1
0,t Dα

0,t
.
e = Dβ−1

0,t CDα
0,t

.
e (22)

Depending on the Definition 1 and 2, then

Dβ−1
0,t CDα

0,t
.
e = Dβ−1

0,t Dα−1
t0,t

d
.
e

dt
= Dβ−1

0,t Dα−1
t0,t

..
e (23)

As the semigroup property of the fractional integral exists,

Dβ−1
0,t Dα−1

t0,t
..
e = Dβ+α−2

0,t
..
e (24)

It yields

cD
β
0,ts = Dα+β−2

0,t
..
e + cD

β
0,t(λ1sig(e)r1) (25)
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3.2.2. Fast Fractional-Order Sliding Control/Reaching Law

The control law of the new proposed controller is designed based on the fast-TSM-type [3].
It applies the fractional-order derivative to build the desired dynamics of the sliding surface as

cD
β
0,ts = −k1s− k2sig(s)r2 −Dβ+α−2

0,t (k3sgn(s) + Ψ̃) (26)

where β = [β1, . . . ,βn]
T
∈ Rn, (βj1 > 0.5), k1 = diag(k1 j) ∈ Rn×n, (k1j > 0), k2 = diag(k2j) ∈ Rn×n, (k2j > 0),

sig(s)r2 , [sig(s1)
r21 , . . . , sig(sn)

r2n ]
T, 0 < r21 , . . . , r2n < 1 and k3 = diag(k3 j) ∈ Rn×n, (k3 j ≥ Ω j). Ω j is

assumed as the boundary of perturbation estimation error Ψ̃ j for the j-th joint. Ψ̃ j can be estimated by
using (17) with the assumption of real perturbation boundary Φ j. The order (β j and α j) of the fractional
derivative is always selected from 0.7 to 0.9. The influence of the selection of fractional-orders on the
sliding surface design and the reaching law design is discussed in Appendix A.

Compared to the control law of previous research such as FOTSMC [9], in designing the control
law, the desired dynamics of the sliding surface is formed after a first-order derivative, i.e., (β j = 1 in
(26)). In FFOTSMC, the fast control law (β j ∈ [0.5, 1) in (26)) adopts the fractional-order derivative.
The fast control law results in a faster convergence speed to the sliding surface, which is the main
contribution of this research.

Substituting
..
e by

..
x−

..
xd and using the dynamics (14), the control input

¯
u of FFOTSCM with SPO is

given as (see Appendix B)

uFFOTSMCSPO = η−1[D2−β−α
0,t (−k1s− k2sig(s)r2) −D1

0,tD
−α
0,t D1

0,t(λ1sig(e)r1) −
^
Ψ +

..
xd − k3sgn(s)] (27)

Remark 1. The singularity of conventional TSMC is avoided by the fractional calculus, which is discussed in
the numerical method (see Section 3.4) for implementing the fractional-order derivative.

3.3. Stability Analysis

The asymptotic stability of reaching the sliding surface is proved by using Lemma 1 as follows.
For the j-th joint, substituting the equivalent control input (27) to the dynamics (14) and (26), then
applying 1 = sgn(s j)sgn(s j) yields (see Appendix B)

s jcD
β j
0,ts j = −s j(k1 js j + k2 jsig(s j)

r2 j ) − s jsgn(s j)D
β j+α j−2
0,t (k3 j + Ψ̃ jsgn(s j))

+D
1−β j−α j
0,t [k1 js js j + k2 js jsig(s j)

r2 j ]t=0
t1−β j−α j

Γ(2−β j−α j)

(28)

As k3 j ≥ Ω j >
∣∣∣Ψ̃ j

∣∣∣
D
β j+α j−2
0,t (k3 j + Ψ̃ jsgn(s j)) > 0 (29)

Additionally, for given parameters β j and α j, D
1−β j−α j
0,t [k1 js js j + k2 js jsig(s j)

r2 j ]t=0 is a positive constant.

As t1−β j−α j

Γ(2−β j−α j)
is a decreasing function of time t, t1−β j−α j

Γ(2−β j−α j)
≈ 0 when t is large. Hence, after a period of

time t,
s jcD

β j
0,ts j ≈ −s j(k1 js j + k2 jsig(s j)

r2 j ) − s jsgn(s j)D
β j+α j−2
0,t (k3 j + Ψ̃ jsgn(s j))

≤ −s j(k1 js j + k2 jsig(s j)
r2 j ) ≤ 0, ∀s j.

s jcD
β j
0,ts j < 0, ∀s j , 0

(30)

Depending on Lemma 1, the sliding manifold s j is asymptotically stable and can reach s j = 0 from any
initial condition.
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After reaching the sliding surface (i.e., s j = 0)

e jcD
α j
0,te j = −λ1 je jsig(e j)

r1 j ≤ 0 (31)

e jcD
α j
0,te j = 0 only if e j = 0. It satisfies the asymptotically stable condition in Lemma 1.

Remark 2. The asymptotic stability of the reaching mode and sliding mode is proved. However, the finite
reaching time has not been obtained in this research. An explicit solution of a fractional differential equation
with a nonlinear term cannot be solved, neither can an analysis solution. Despite this, in the tracking control of
a robot manipulator, the fast convergence is more critical than the finite-time stability. It ensures an overall
small tracking error. The fast convergence of FFOTSMC is discussed and obtained by analyzing the convergence
characteristics of FOSMC and TSMC in Appendix A.

3.4. Numerical Method

In order to implement the fractional-order derivative, the Grünwald–Letnikov fractional derivative
is applied in this research. The Grünwald–Letnikov fractional derivative is derived from the limit
definition for derivatives and equivalent to the Riemann–Liouville definition [18,19,21]. Thus, the
equivalent control input of the sliding mode control (27), which uses the Riemann–Liouville derivative,
was implemented using the Grünwald–Letnikov derivative. The Caputo derivative term in the sliding
surface (18) was transferred to a Riemann–Liouville derivative with the initial error first using the
properties mentioned. Then, it was implemented on the real system by the Grünwald–Letnikov
derivative method. The α th-order Grünwald–Letnikov fractional derivative for f (t) is

GLDα
t0,t f (t) = lim

h→0
h−α

(t−t0)/h∑
k=0

Γ(k− a)Γ−1(k + 1)Γ−1(−a) f (t− kh)

≈ h−α
(t−t0)/h∑

k=0
Γ(k− a)Γ−1(k + 1)Γ−1(−a) f (t− kh)

(32)

where h is the sampling time. For the gamma function, the property is obtained as [18]

Γ(z + 1)/Γ(z) = z,∀z ∈ C (33)

Thus, Γ(k− a)/Γ(k + 1) in (32) is rewritten as

Γ(k− a)/Γ(k + 1) =
Γ(k− a)

Γ(k− a− 1)
Γ(k− a− 1)
Γ(k− a− 2)

Γ(k− a− 2)
Γ(k− 1)

Γ(k− 1)
Γ(k)

Γ(k)
Γ(k + 1)

=
k− a− 1

k
k− a− 2

k− 1
Γ(k− a− 2)

Γ(k− 1)
=

Γ(−a)
Γ(1)

k∏
n=1

(
n− a− 1

n
)

(34)

The result of the Grünwald–Letnikov fractional derivative can be calculated using (34). When k is
large (large t), a considerable amount of calculation is needed. As the term 0 < (n− a− 1)/n < 1 for
n > 2, Γ(k − a)/Γ(k + 1) keeps decreasing. Γ(k − a)/Γ(k + 1) ≈ 0 was assumed when k ≥ 50. Thus,
the fractional-order derivative was calculated in the real application as

GLDα
t0,t f (t) ≈ h−α

50∑
k=0

Γ(k− a)Γ−1(k + 1)Γ−1(−a) f (t− kh) (35)

Remark 3. In the calculation of the fractional-order derivative with the numerical method, the singularity
problem does not exist. Compared to the TSMC, the term in control input, such as −D1

0,t(λ1 jsig(e j)
r1 j),

could have a singularity problem when e j = 0 and
.
e j , 0.
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4. Simulation and Experiment

4.1. Simulation

The designed controller, FFOTSMC with SPO (FFOTSMCSPO), was applied to a simple
second-order SISO system simulated by MATLAB Simulink. It compared with four different controllers
such as TSMC with SPO (TSMCSPO), LSMC with SPO (SMCSPO), FOSMC with SPO (FOSMCSPO) and
FOTSMC with SPO (FOTSMCSPO). The advantages of using the fractional-order derivative and the
terminal sliding surface were discussed via the simulation results. The dynamics of the second-order
SISO system corresponding to the model (1) were defined as follows.

m
..
x + c

.
x = τ+ d (36)

where m = 6.7 kg ·m2, c = 2400 kg ·m2s−1 and d = 10 sin(10t) N ·m. The given dynamics were used
to assume a hydraulic servo system, whose frictional coefficient term c has more impact than the
moment of inertia m. The control inputs of all controllers were calculated using (27) with different
parameters, as shown in Table 1. The simulation simulated as a regulator (xd = 0) with the initial state
x0 = [0, 0, 0]T .

Table 1. Partial parameters of controllers.

Controller β α r1 r2

SMCSPO 1 1 1 1
TSMCSPO 1 1 0.9 0.9

FOSMCSPO 1 0.7 1 1
FOTSMCSPO 1 0.7 0.9 0.9

FFOTSMCSPO 0.9 0.7 0.9 0.9

Where β determines whether the fractional-order derivative is used or not in the control law (27);
α represents the fractional/integer-order of the derivative in the sliding surface design; when β = 1
α = 1 it means the original first-order derivative. When selecting β ∈ [0.5, 1) and α ∈ [0.5, 1), it means
the fractional derivative is used. Selecting α and β closer to one, the fractional derivative is more similar
to the first-order derivative. As the discussion in Appendix A shows, a smaller fractional-order (close
to 0.5) results in a faster convergence speed in the beginning, leading to a short rising time in transient
response; however, it causes a slow convergence in the terminal interval, resulting in a considerable
settling time. r1 is selected less than one when using the sliding surface of TSM; r2 corresponding to
the reaching law is associated with the fast control law in TSMC [3]. r1 and r2 can be viewed as terms
to choose whether to approach linear control or discontinuous control between a linear control (r1 = 1
or r2 = 1) and a discontinuous one (r1 = 0 or r2 = 0). The discontinuous control input can generate
faster convergence; however, the more discontinuous it is, the more chattering there is. The other
parameters in (27) were selected as λ1 = η1 = 10, k1= 20 k2 = 0.35 and k3 = 0.01 in all five controllers.
Large η1 can help a more accurate estimating of SPO; however, it is limited by the sampling time [13].
The sliding surface slope λ1 relates to the sliding manifold convergence speed, and it is also limited
by the control input of the hardware limitation (maximum torque or voltage) in real applications.
The reaching law gains (k1, k2 and k3) are associated with the reaching speed from s(t = 0) , 0 to
s = 0, and larger gains can generate a faster speed; however, chattering is also increased.

The simulation results for the SISO system are shown in Figure 3. Compared to SMCSPO,
FOSMCSPO, and TSMCPO, FFOTSMCSPO exhibited the fewest errors, which means that both the
fractional-order sliding surface and the TSM can generate a faster convergence. This was demonstrated
by the result of the FOTSMCSPO, which applies the fractional-order derivative and terminal type in
the sliding surface design. Compared to FOTSMCSPO, the proposed controller with a fast control
law, FFOTSMCSPO exhibited a better tracking performance. Although an exact reaching time of
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FFOTSMCSPO cannot be solved, the simulation results demonstrate that applying fractional-order to
the control law design allowed the controller to have fast convergence.
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4.2. Experiment

The experiments on the 7-DOF robot (Figure 1) compared the controller FFOTSMCSPO with
FOTSMCSPO, TSMCSPO, and SMCSPO and FOSMCSPO under the same testing conditions for
comparison. The dynamic modeling and identified parameters were obtained from previous
research [17]. Control input τ(t) was calculated by (27) and (14).

4.2.1. Setting

Figure 4 presents the configuration of the hardware and communication for the robot manipulator.
The system uses a Windows operating system based PC for computation, IntervalZero RTX64 real-time
extension to provide the real-time operation environment, two controller area network(CAN)-bus
boards (each providing four channels) for the encoder data communication, and an eight-channel
analog output board to provide the control input.
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Figure 4. Robot arm configuration.

Considering the limited communication speed of CAN-Bus and the data volumes of seven
encoders, the system sampling time for receiving the rotary encoder data and transmitting the
control input was set to 2 ms. According to (A12) in previous research [13], the parameter η j in
SPO should be selected near 33.3. Thus, the controller parameters (27) for our proposed scheme are
selected as λ1 j = η j = {21, 14, 35.5, 20, 100, 34, 31}, other parameters k1 j = { 10, 7, 8, 7.5, 8, 9.5, 10 },
k2 j = {0.14, 0.15, 0.21, 0.165, 0.4, 0.25, 0.31}, k3 j = {0.01, 0.03, 0.01, 0.02, 0.01, 0.02, 0.1}, r1 = r2 =
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{ 0.9, 0.9, 0.9 , 0.89, 0.9, 0.89, 0.9 }, β j = { 0.9, 0.93, 0.92, 0.93, 0.9, 0.92, 0.9 }, where j = 1, 2 . . . 7.
For FOTSMCSPO, SMCSPO, TSMCSPOP, and FOSMCSPO, the values of β j, α j, r1 j, and r2 j are
set as the same as the simulations, which determine whether the controllers use the fraction-order
derivative and TSM or not (Table 1).

The desired trajectories are simulated assembly work on the end effector. They contain two stages
of movement, the first stage simulated grabbing, picking up and homing; the second one simulated
the movement that included moving to the assembled position and homing. The desired movement is
shown in Figure 5a,b in joint space and the machine coordinate space (MCS), respectively (the base of
the MCS is shown in Figure 1).
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4.2.2. Experimental Results

The trajectory tracking errors of the fourth link in joint space and the end effector tracking errors
on the Z-axis in the Cartesian coordinate are plotted in Figure 6. The right side of Figure 6 shows the
magnified figures to clarify the tracking error results. The results of SMCSPO are not plotted because
they have the largest errors and can affect the readability of the figure. The errors of other links (except
for the fourth link) and the end effector errors in X- and Y-axes in the Cartesian coordinate are shown
in Figure A3 in Appendix C.

The right side of Figure 6 shows that FFOTSMCSPO has the fewest tracking errors among
the four controllers during the whole experiment interval. The controller of FOTSMCSPO using
the fractional-order sliding surface showed fewer errors than TSMCSPO. This confirms that the
fractional-order derivative improves control performance. The effect of TSMC can also be found by
comparing the error result of FOTSMCSPO with FOSMCSPO. That is, it confirms that the FOTSMCSPO
reduced more errors than FOSMCSPO.

The results in Figure 6 also show lesser chattering in all four controllers. This demonstrates that
the approach of SPO in controllers is useful for reducing chattering and ensures the proposed controller
will be applied in practice.

The numerical analysis of the experiment results is analyzed by comparing the mean absolute
error (MAE). The MAE is calculated as

n∑
k=1

abs(e(k))

n
, n = 18750 (37)
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Table 2 shows the MAE results. In all seven links, the controller using fractional derivatives
performed better with less MAE than the integer ones, FOTSMCSPO shows less MAE than TSMCSPO,
and the results of FOSMCSPO are less than those using SMCSPO. Additionally, controllers using TSM
show less errors than the conventional LSM ones, which is obtained from comparing FOTSMCSPO
with FOSMCSPO, and TSMCSPO with SMCSPO. In the results of all five controllers, the new proposed
controller FFOTSMCSPO, using the TSM and applying the fractional-order derivative in both the sliding
surface design and the reaching law design, has the least MAE. It exhibits the fastest convergence and
demonstrates the improvement. Comparing the results in FOSMCSPO with TSMCSPO, FOSMCSPO
exhibits less MAE. This means that TSMCSPO is more efficient than FOSMCSPO.

Table 2. Mean absolute error.

Joint FFOTSMCSPO * FOTSMCSPO TSMCSPO FOSMCSPO SMCSPO

1 0.02211 0.02430 0.02697 0.04297 0.04837
2 0.01668 0.02025 0.02178 0.04141 0.04412
3 0.02347 0.02650 0.02838 0.05033 0.05427
4 0.03689 0.04238 0.04600 0.08465 0.09360
5 0.06975 0.07661 0.08230 0.11177 0.12822
6 0.04323 0.04652 0.04934 0.08188 0.08902
7 0.03573 0.03634 0.04380 0.05619 0.06348

X-axis 0.14354 0.16122 0.17215 0.26177 0.29921
Y-axis 0.31273 0.36022 0.39767 0.77066 0.86858
Z-axis 0.26544 0.31577 0.34160 0.60392 0.66034

* The tracking error unit in the joint space and the Cartesian coordinate is the degree and mm, respectively.

5. Conclusions

The proposed controller, FFOTSMC, applies fractional calculus on both the terminal sliding
surface design and the control/reaching law for reaching the sliding surface and maintaining stay on
it. This guarantees fast convergence and high trajectory tracking performance. FFOTSMC is used
with SPO for less chattering, resisting the modeling error and disturbance from the environment.
The stability of the controller is analyzed based on the Lyapunov stability theory for fractional-order
systems. Both the comparative simulation in MATLAB and experiments on the seven links robot
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manipulator verified the excellent tracking performance of the proposed controller. The experimental
results demonstrate the feasibility of the proposed controller, which shows a small error and less
chattering against the high gravity effect in dynamics and modeling errors.

Even the finite-time stability of FFOTSMC (reaching the sliding surface and the equilibrium
in finite time) cannot be proved in this research. The experimental results and simulation results
have demonstrated the outstanding performance in tracking and improvement by applying the
fractional-order derivative on the control/reaching law design. The finite-time stability problem will be
investigated in the future.
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Appendix A

The reason why FOTSMC provides benefits in terms of fast convergence is discussed here.
Considering the sliding surface of FOSMC as

s = cD
r
0,te(t) −Ae(t), r ∈ (0, 1], A ∈ R− (A1)

where e(t) is required to stabilize at the equilibrium point. When selecting the derivative order r = 1,
(A1) is a simple first-order LSM sliding surface. After reaching the sliding surface (i.e., s = 0), the solved
solution in the form of the Mittag-Leffler function is [22]

e(t) = Er,1(t)e0 = e0

∞∑
k=0

Aktrk

Γ(rk + 1)
(A2)

where e0 = e(t = 0). When r = 1, the solution corresponds to the first integer-order LSM. Its solution
is an exponential function as

e(t) = E1,1(t)e0 = e0

∞∑
k=0

Aktk

Γ(k + 1)
= e0

∞∑
k=0

Aktk

k!
= e0Exp(At) (A3)
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Figure A1. Solution of the fractional-order differential Equation (A1) where (0 < r < 1), e0 = 1 and A = −5.

Figure A1 shows the result of the time response of FOSMC after reaching the sliding surface.
The fractional-order one (0 < r < 1) has a faster decay than integer-order (r = 1) in the interval at the
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beginning (transient response); however, the convergence near the steady-state becomes slow. In the
beginning, fast convergence is observed. It has a more significant effect on trajectory tracking, which
can reduce the relatively large error fast. It explains why the fractional-order derivative allows for a
better control performance in SMC for robot manipulator trajectory tracking. However, drawbacks of
FOSMC, such as a slow convergence in the terminal interval (i.e., long settling time), exist. In addition,
the smaller r is associated with faster convergence in the transient response part; however, extremely
small r would result in a considerable settling time. Hence, selecting the order of the derivative is a
tradeoff problem.
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In order to compensate for the slow convergence in the interval of small values in FOSMC, TSM
control is expected to be used because the nonlinear sliding surface in TSM affects convergence speed
more efficiently in the interval of a small error. Considering a TSM sliding surface is

s =
.
e + λsign(e)|e|β (A4)

where λ > 0 and 0 < β < 1. After reaching the sliding surface, it yields∣∣∣ .
e
∣∣∣
|e|

= λ|e|r−1 (A5)

The e in TSM (i.e., β ∈ (0, 1)) generates larger
∣∣∣ .
e
∣∣∣ than using LSM (i.e., β = 1). Moreover, the smaller

e results in a larger gradient, as shown in Figure A2. This signifies that the TSM has fast convergence
benefits, especially in the small error field. This is useful to compensate for the drawbacks of FOSMC.

However, in the case of using TSM in FOSMC, FOTSMC, an explicit solution of the sliding surface,
such as FOSMC shown in (A2), cannot be solved because of the nonlinear term in the TSM sliding
surface. Thus, the finite time for reaching the sliding surface and the equilibrium has not been solved
in this research.

Appendix B

The derivation of (27) and (28) are shown in this section. Using (25) and (26), we obtain

− k1s− k2sig(s)r2 −Dβ+α−2
0,t (k3sgn(s) + Ψ̃) = Dα+β−2

0,t
..
e + cD

β
0,t(λ1sig(e)r1) (A6)

As
..
e =

..
x−

..
xd = ηu + Ψ −

..
xd, it yields

− k1s− k2sig(s)r2 −Dβ+α−2
0,t (k3sgn(s) + Ψ̃) = Dα+β−2

0,t (ηu + Ψ) + cD
β
0,t(λ1sig(e)r1) (A7)
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As the semigroup property of the Riemann–Liouville derivative is limited, such as
D2−α−β

0,t Dα+β−2
0,t x(t) = x(t) , Dα+β−2

0,t D2−α−β
0,t x(t) [8], taking the fractional derivative D2−α−β

0,t on
both sides of (A7) yields

D2−α−β
0,t (−k1s− k2sig(s)r2) − k3sgn(s) − Ψ̃ = ηu + Ψ + D2−α−β

0,t cD
β
0,t(λ1sig(e)r1) (A8)

As cD
β
0,t(λ1sig(e)r1) = D−β0,t

d
dt (λ1sig(e)r1) and Ψ̃ =

^
Ψ−Ψ, by substituting them for (A8), (27) is derived.

However, due to the limited semigroup property of the Riemann–Liouville derivative, using the
equivalent control input (27) for the real dynamics of the sliding surface (25) cannot obtain the desired
dynamics (26). This can be found after substituting (27) for (25) as

cDβ
0,ts = Dα+β−2

0,t [D2−β−α
0,t (−k1s− k2sig(s)r2 ) −D1

0,tD
−α
0,t D1

0,t(λ1sig(e)r1 ) − Ψ̃ − k3sgn(s)] + cDβ
0,t(λ1sig(e)r1 ) (A9)

The term Dα+β−2
0,t D2−β−α

0,t (−k1s− k2sig(s)r2) can be rewritten as follows, using Property 1.

Dα+β−2
0,t D2−β−α

0,t (−k1s− k2sig(s)r2 ) = −k1s− k2sig(s)r2 + D1−β−α
0,t [k1s + k2sig(s)r2 ]t=0

t1−β−α

Γ(2−β−α)
(A10)

With the assumption that the initial error of velocity and acceleration is zero, i.e.,
..
e(t = 0) =

.
e(t = 0) = 0,

the term Dα+β−2
0,t [D1

0,tD
−α
0,t D1

0,t(λ1sig(e)r1)] in (A9) is simplified as

Dα+β−2
0,t D1

0,tD
−α
0,t D1

0,t(λ1sig(e)r1 ) = Dα+β−2
0,t cD1−a

0,t D1
0,t(λ1sig(e)r1 ) = Dα+β−2

0,t D−a
0,tD

1
0,tD

1
0,t(λ1sig(e)r1 ) (A11)

As the semigroup property of the Riemann–Liouville integral exists, by using the Definition 2,
(A11) is derived as

Dα+β−2
0,t D−a

0,tD
1
0,tD

1
0,t(λ1sig(e)r1) = Dβ−2

0,t D1
0,tD

1
0,t(λ1sig(e)r1) = cD

β
0,t(λ1sig(e)r1) (A12)

Thus, substituting (A10) and (A12) for (A9), the dynamics of the sliding surface for the j-th element

cD
β j
0,ts j = −(k1 js j + k2 jsig(s j)

r2 j ) − sgn(s j)D
β j+α j−2
0,t (k3 j + Ψ̃ jsgn(s j))

+D
1−β j−α j
0,t [k1 js j + k2 jsig(s j)

r2 j ]t=0
t1−β j−α j

Γ(2− β j − α j)

(A13)

are derived.

Appendix C

Partial results of experiments are shown here.
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