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Abstract: Deep learning technology is outstanding in visual inspection. However, in actual industrial
production, the use of deep learning technology for visual inspection requires a large number of
training data with different acquisition scenarios. At present, the acquisition of such datasets is
very time-consuming and labor-intensive, which limits the further development of deep learning
in industrial production. To solve the problem of image data acquisition difficulty in industrial
production with deep learning, this paper proposes a data augmentation method for deep learning
based on multi-degree of freedom (DOF) automatic image acquisition and designs a multi-DOF
automatic image acquisition system for deep learning. By designing random acquisition angles
and random illumination conditions, different acquisition scenes in actual production are simulated.
By optimizing the image acquisition path, a large number of accurate data can be obtained in a short
time. In order to verify the performance of the dataset collected by the system, the fabric is selected
as the research object after the system is built, and the dataset comparison experiment is carried
out. The dataset comparison experiment confirms that the dataset obtained by the system is rich
and close to the real application environment, which solves the problem of dataset insufficient in the
application process of deep learning to a certain extent.

Keywords: deep learning; image acquisition; camera position; path optimization

1. Introduction

As one of the branches of machine learning, deep learning forms more abstract and high-level
features by combining simple features at the bottom, so as to extract and represent complex features
of input data [1]. With the development of deep learning in recent years, it has shown superior
performance in many fields. Nowadays, deep learning has become the focus of many scholars’
attention in the field of image recognition and image analysis [2–7]. A dataset is the base of deep
learning and the final effect of a deep learning model largely depends on the comprehensiveness and
authenticity of training data.

Therefore, enterprises and institutions engaged in deep learning always spend a lot of time
and energy collecting datasets. For example, Microsoft has made the dataset named MS-COCO
with 328,000 images, Google has made the dataset named Open Image V4 with 1,900,000 images.
Expensive cost investment makes deep learning training datasets valuable. To solve the difficult
problem of dataset acquisition, scholars have put forward some solutions. One method is to install
camera equipment in the detection environment, and multi-attitude datasets can be obtained with
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the movement of the structure to be tested. Liu et al. [8] collect body posture by installing an indoor
camera to acquire the different postures of people in the process of daily activities. Berriel et al. [9,10]
obtained a road dataset by vehicle cameras. However, these ways are hardly applied in specific
industrial visual inspection. For example, it is necessary to classify and identify different kinds of
parts for convenient access in the field of automobile parts production. Meanwhile, in the production
process, scratches, bumps, and other defects need to be detected in time to guide the processing and
production [11–13]. However, the collection process is time-consuming and labor-intensive. In the field
of textile weaving, there is a wide variety of fabrics produced and different categories have a high degree
of similarity. In addition to the rapid update of fabric categories, the realization of rapid and accurate
identification of fabric types has instructive significance for production and sales. Besides, various
defects will inevitably occur in the production process, and the detection of different fabric defects
is also very important for the textile industry [14–17]. However, there is no perfect solution for the
fabric category and fabric defect image collection. In the above application fields, the image acquisition
environment is complex, which needs to be shot in multi-pose and multi-illumination directions to
obtain comprehensive datasets. It ensures that the final deep learning model adapts to various complex
situations. However, the existing automatic data’s acquisition methods cannot meet these kinds of
demands. Other data acquisition methods focused on extending the original data [18,19]. Two typical
methods are traditional digital image processing technology and neural networks. Traditional digital
image processing technology increases the number of images by rotating, translating, clipping, flipping,
converting color space, adding noise, mixing images, random erasing, and random combinations of
different operations. Alexander Jung [20] has published common flip, rotation, cropping, deformation,
zooming, and other geometric transformations and color transformations and other single-sample
enhancement techniques on the Internet. Zhong et al. [21] proposed a data augmentation method
of random erasure. During the training process, the training pictures are occluded to improve the
robustness of the model and reduce the risk of overfitting; Inoue et al. [22] used the SamplePairing
technique to synthesize a new sample by randomly selecting two images from the training data
(the average value of the two images per pixel of the image). Zhang et al. [23] proposed the data
augmentation method of Mixcut. First, a crop box was randomly generated to crop the corresponding
position of the A picture, and then the region of interest (ROI) of the corresponding position of the B
picture was placed in the cropped area of the A picture to form a new sample. The method based on a
neural network is to generate new image samples based on the original data through the neural network
models such as variational autoencoder (VAE) [24] and generative adversarial networks (GAN) [25].
Zhu et al. [26] proposed a data augmentation method using GAN. The results showed that the use of
GAN-based data augmentation techniques can increase the accuracy of emotion classification by 5% to
10%. However, though a large number of data can be generated by data augmentation, augmented data
are not always representative enough due to the complexity of the shooting environment, conditions,
and methods, such as the illumination diversity of the data in practical application, resulting in that the
final model has low accuracy in real data detection. In summary, in the field of deep learning, image
data acquisition is still a key technical difficulty and has not been solved well.

In view of the insufficient datasets in the practical industrial application of deep learning,
we propose a data augmentation method for deep learning based on multi-DOF automatic image
acquisition and build a multi-DOF automatic image acquisition system for deep learning to solve
the problem of difficult image acquisition. The system can comprehensively simulate the actual
image acquisition situation and quickly establish a large number of accurate and real training data.
The simulation of the real acquisition situation is carried out through changing the imaging’s main
factors which are shooting angles and illumination conditions. The system mainly involves two key
technologies: The first is to ensure the camera can shoot the object through the calculation of the
camera’s spatial pose accurately. The other is to optimize the spatial random acquisition path to acquire
image data rapidly. In order to verify the authenticity and richness of the dataset obtained by the
system, we took fabrics as the research object, then used the fabric data collected by the system and the
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fabric data collected under ideal conditions to conduct fabric classification experiments. The results
show that the model trained by the system collected dataset can recognize fabrics in different scenes,
and the recognition accuracy rate was more than 91%. It shows that the images obtained by the system
were more abundant including all kinds of actual acquisition situations.

The structure of the paper is as follows: Section 2 proposes a method of the multi-DOF image
automatic acquisition and designs the system architecture. Furthermore, the process of the acquisition
system is also introduced. Section 3 includes two key technologies: camera pose calculation and random
acquisition path optimization. By comparing two methods of calculating camera pose, the formula of
the camera pose is determined. In Section 4, dataset acquisition and dataset comparison experiments
were carried out to verify the representativeness of images collected by this system. Section 5 concludes
the paper.

2. The Method of Multi-DOF Image Automatic Acquisition

In practical industrial applications, due to the complexity of the image acquisition environment,
the angle of the acquired image is variable, and the illumination is different. In order to simulate the
image acquisition situation comprehensively in the industrial application, we designed a multi-DOF
automatic image acquisition system. This system can collect data under different shooting angles and
different illumination conditions. Figure 1 shows the general idea of the system design. The system is
composed of a motion control module and an illumination control module. The lighting control module
takes random lighting in different directions to construct different lighting conditions. The motion
control module controls the random motion of multi-degree of freedom motion axis to realize different
angles in the spatial range. Considering the relative position between the industrial camera and object
and the acquisition time-consuming problem, it is necessary to calculate the camera’s spatial pose and
optimize the whole random acquisition path when controlling the random motion of the multi-DOF
motion axis.
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2.1. The Design of System Architecture

Figure 2 is the structure diagram of the designed a multi-DOF automatic image acquisition system,
which is mainly composed of an industrial camera, industrial lens, 5-DOF motion axis (x, y, z, a, b),
flat illuminant source, circular illuminant source, computer, etc. Specifically, the x-axis and y-axis
drive the object to move randomly in the plane of x-, y-, and z-axis, and the a-axis, and b-axis drive
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the camera to move randomly in space. The flat illuminant source is placed on the inferior and inner
wall of the system. The annular illuminant source is mounted on the camera’s lens for front lighting.
In the actual image acquisition process, the external conditions, such as the camera shooting angle,
field of view range, illumination conditions. and other external conditions, will vary. The position and
posture of the camera are variable, so the actual image acquisition process can be simulated, and the
corresponding design is a camera with two rotation degrees of freedom. Moreover, the height of the
camera is adjustable in the vertical direction to realize the image acquisition of a different field of view.
For the object to be photographed, the two degrees of freedom displacement platform was designed,
which can move the object randomly in the horizontal direction to realize the shooting of different areas
of the object. In order to simulate the diversity of lighting modes, the system was set upside, front,
and back lighting. The front lighting can highlight the surface morphology of the object; the lateral
lighting is to simulate the illumination in different directions; for some complex objects, backlighting is
used to highlight the contour information of the object.
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The system needs to shoot the object from multiple angles and illuminant sources (as shown
in Figure 3), the camera rotates with two degrees of freedom in the A and B directions and moves
vertically in the Z direction; the object moves in the X and Y directions in the plane X–Y, so as to realize
the photographing of the object in different positions. Different directions of the front, side, and back
are used to shoot the object under different lighting conditions.
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2.2. The Process of System Acquisition

The specific acquisition process is shown in Figure 4: The object is placed on the surface of the
backlight source, and then the computer sends out the command to control the multi-axis motion.
The x-axis and y-axis drive the object to move randomly in the plane after receiving the command.
Meanwhile, z-axis, a-axis, and b-axis drive the industrial camera to move up and down, tilt and
pitch in space after receiving the command. When the object moves randomly to a certain position,
the industrial camera moving in space can track the position of the object (the center point of the
camera’s field of view coincides with the center of the object), the computer sends out the command to
control the random illumination. At this time, the flat light sources on the inner wall of the system’s
cavity, the circular light source carried by the camera and the backlight light source mounted on the
object are turned on or off randomly. Consequently, the camera can grab the images under different
lighting conditions. Different objects move along random paths in a period, the camera collects images
under different angles and illumination conditions, the whole acquisition process simulates all kinds
of practical shooting conditions and obtains rich and diverse data.
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3. The key Technology of the Multi-DOF Automatic Image Acquisition System

The key metrics of this multi-DOF automatic image acquisition system are the high quality of
dataset (rich and diverse data) and short acquisition time. Therefore, the system mainly involves two
key technologies: the coordination of the camera angle and the moving position of the object as well as
the optimization of the random motion path.

3.1. The Calculation of Camera Position

In the calculation of the camera pose, this paper adopted two methods: mathematical modeling
and data fitting, and it compared the two methods. The introduction of these two methods is below.

3.1.1. Camera Position Calculating Method by Mathematical Modeling

In the process of object movement, it is necessary to ensure that the image is in the camera field of
view, that is, the camera needs to be aligned with the object through the rotating axis. In order to meet
this constraint, we established a mathematical model to study the multi-axis geometric relationship as
shown in Figure 5. The coordinate system was established with the center of the initial moment of the
object being photographed as the coordinate origin, the coordinates of the object to be photographed
were O (0, 0, 0) at this time. At the initial moment, the camera direction was vertically downward.
The camera installation was set as h0, and the camera coordinates were C (0, 0, h0) as shown in Figure 5a.
Suppose that the camera is in focus by moving up z0, and the camera coordinates are C’ (0, 0, h0 + z0)
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as shown in Figure 5b. Control the x- and y-axes to move ∆x and ∆y, respectively. At the same time,
for keeping the distance between the camera and the object unchanged, it is necessary to control the
z-axis motion ∆z to ensure that the distance between the camera and the object is h0 + z0. At this time,
the center coordinates and camera coordinates of the photographed object become O’ (∆x, ∆y, 0) and C’
(0, 0, h0 + z0 − ∆z), as shown in Figure 5c. To guarantee that the camera can shoot the object, rotation
axis A and B are controlled to rotate the corresponding angle to ensure that the camera optical axis
points to the object to be photographed, as shown in Figure 5d. The specific process, firstly, is the a-axis
controls the camera rotation α, and then the b-axis controls the camera rotation β, given that,

tan(α) =
∆x

h0 + z0 − ∆z

tan(β) =
∆y√

∆x2 + (h0 + z0 − ∆z)2

∆z = h0 + z0 −

√
(h0 + z0)

2
− ∆x2

− ∆y2

(1)

Based on Equation (1), the rotation angle of the rotating shaft can be calculated.
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Figure 5. The model of the relationship between camera angle and the motion of the object to be
photographed: (a) the position of the camera installed at the initial moment and the position of the
object to be photographed; (b) the position of the camera in the focusing state; (c) the position after the
x-, y-, z-axes movement; (d) the rotation axis of the camera controls the camera optical axis to aim at the
shooting object.

There are inevitably installation errors that must be considered in the process of building the
system. Hence, the camera may have a certain offset relative to the object in the x, y, and z directions at
the initial moment. Specifically, in the actual case, the initial coordinates of the camera are C (x0, y0, h0),
and x0, y0, and h0 are unknown. In this case, the coordinate motion relationship among the axes can be
modified as follows:

tan(α) =
∆x− x0

h0 + z0 − ∆z

tan(β) =
∆y− y0√

(∆x− x0)
2 + (h0 + z0 − ∆z)2

∆z = h0 + z0 −

√
(h0 + z0)

2
− (∆x− x0)

2
− (∆y− y0)

2

(2)

To realize the calculation of x0, y0, and h0, we manually adjust the camera and the object to calibrate
the parameters x0, y0, and h0. Specifically, the x-, y-, z-axes move randomly in multiple positions, then
the rotation axis is adjusted artificially to ensure that the object is in the center of the camera field of
view. After repeating many times, the mapping relationship between multiple groups of x0, y0, h0

and ∆x, ∆y, ∆z, α, β is obtained, as shown in Table 1. Since ∆x, ∆y, ∆z, α, β are all known parameters,
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a number of constraint equations about x0, y0, h0 can be established by introducing Equation (2),
and the initial parameters x0, y0, and h0 can be calculated by solving the equations.

Table 1. Acquisition points of each axis.

ID ∆x (mm) ∆y (mm) ∆z (mm) α (◦) β (◦)

1 −32.005 40.737 −62.9 −9.71 13.1875
2 −48.803 59.681 −51.652 −15.5475 19.575
3 −67.044 82.066 −36.371 −22.9025 27
4 −79.439 89.984 −18.315 −29.5975 30.75
5 −85.581 34.003 −41.329 −27.7375 11.4425
6 −21.941 −27.195 −62.9 −6.895 −8.2525
7 −41.033 −48.84 −49.987 −13.725 −15.425
8 −60.088 −43.401 −44.696 −20.0725 −13.625
9 −75.295 −59.2 −27.972 −27.0875 −19.1775

10 −84.397 −77.108 −13.542 −32.455 −25.36
11 45.658 22.681 −62.9 14.055 7.01
12 63.27 46.472 −51.282 20.26 14.7425
13 82.88 62.9 −33.966 28.1025 20.3125
14 90.946 75.48 −24.975 31.85 24.4275
15 −49.765 −67.451 −39.849 −17.61 −21.5625
16 −72.113 −41.736 −36.371 −24.8475 −13.34
17 −86.062 −30.599 −31.783 −29.58 −9.5825
18 −67.895 −48.396 −35.039 −23.82 −15.65
19 99.271 −67.044 −12.58 35.41 −22.86
20 77.552 −75.036 −25.16 26.8125 −24.83

z0 = 62.9 mm when the camera is in focus.

By solving several constraint equations and averaging the calculated results, the solution is
x0 = 0.5241 mm, y0 = 0.1761 mm, h0 = 121.4259 mm.

To verify the effect of the modified equation, the above-calculated x0, y0, h0 were substituted into
Equation (2), then 15 groups of test points were collected. ∆z, α, and β were calculated according
to Equations (1) and (2) and compared with the actual measured value; the results are shown in
Figure 6. We evaluated the accuracy of the calculated value by error. The smaller the error, the closer
the calculated value was to the measured value, and the more obvious the effect of the equation’s
correction. It can be seen from the figure that the error values after correction were less than those
before correction, indicating that the error correction had a certain effect. However, the calculated ∆z,
α, and β still had some deviation from the measured values.
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3.1.2. Camera Position Calculating Method by Data Fitting

The relationship between each axis needs to be determined by data fitting. The reasons are as
follows: On the one hand, the mathematical modeling method is usually assumed to be carried out
under ideal conditions. However, there will be camera installation errors in the actual measurement
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process. On the other hand, there is also the error caused by the rotation axes when calculating the
camera rotation angle through a simple geometric relationship. The specific process is as follows:
Controlling the x-, y-, and z-axes to move ∆x, ∆y, and ∆z, then control the rotation axes a and b to rotate
the corresponding α and β angles respectively to ensure that the camera optical axis points (the record
the values of ∆x, ∆y, ∆z, α, β); Repeating the above steps and recording the values of multiple groups
of ∆x, ∆y, ∆z, α, β. Finally, fitting the corresponding relationship between each axis. The experimental
acquisition points are shown in Table 1. The polynomial fitting of degrees 1, 2, 3, and 4 were performed,
and the fitting error is shown in Table 2.

Table 2. Polynomial fitting error.

Degrees ∆z (mm) α (◦) β (◦)

1 15.9265 1.36364 0.355234
2 2.0463 1.231859 0.372423
3 1.7221 0.280749 0.189076
4 1.5537 0.257831 0.177617

It can be seen from Table 2 that the error decreased with the increase of fitting times. When the
fitting degrees were 4, the errors of ∆z, α, and β reached the minimum, but the errors were only
slightly less than the errors of degrees 3. Considering the computational complexity and overfitting
phenomenon, the fitting degrees were finally selected as 3. Finally, the relationship between the axes
was obtained by data fitting as shown in Equation (3).



α = 8.127× 10−8
× ∆x3

− 3.562× 10−8
× ∆y3

− 4.424× 10−7
× ∆x2

− 2.074× 10−6
× ∆y2 + 1.864× 10−8

× ∆x2
× ∆y + 9.825× 10−8

×

∆x× ∆y2
− 2.286× 10−6

× ∆x× ∆y+0.0051× ∆x+0.0001905× ∆y + 0.001021

β = −6.336× 10−9
× ∆x3 + 2.108× 10−8

× ∆y3
− 4.218× 10−7

× ∆x2
− 6.109× 10−10

× ∆y2 + 3.101× 10−8
× ∆x2

× ∆y− 8.65× 10−10

×∆x× ∆y2
− 5.084× 10

−7
× ∆x× ∆y− 2.631× 10−5

× ∆x + 0.005444× ∆y + 0.002839

∆z = −2.708× 10−7
× ∆x3 + 1.319× 10−5

× ∆y3 + 0.004024× ∆x2 + 0.003225× ∆y2
− 5.464× 10−6

× ∆x2
× ∆y− 2.844× 10−6

× ∆x

×∆y2 + 0.0002364× ∆x× ∆y− 0.004346× ∆x− 0.1057× ∆y− 69.67

(3)

3.1.3. Comparison of the Two Methods

To find the optimal solution between these two methods, the calculation results of the two methods
were compared. The method of obtaining ∆x, ∆y, ∆z, α, and β values was the same as the method in
Section 3.1.2. The values of ∆z, α, and β were calculated by introducing ∆x and ∆y into Equations (2)
and (3), respectively, and the calculated values were compared with the actual values.

It can be seen from Figure 7 that the errors of ∆z, α, and β of method 2 were less than those of
method 1, indicating that method 2 is more suitable for the calculation of camera pose. Therefore,
the system uses the result of data fitting (Equation (3)) to calculate the camera pose.
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3.2. Random Acquisition Path Optimization

The random distribution of acquisition points in the system space is the premise of simulating
actual shooting situations. More specifically, the common shooting angle is generally in a certain range
with the top of the object as the center point, and the probability of the occurrence of large-angle tilt is
relatively small. Therefore, the random points on the x- and y-axes were set to obey normal distribution,
and then the coordinates of z-, a-, b-axes were obtained according to the above calculation method of
camera space pose. At this time, the coordinate points of the five axes of x, y, z, a, and b constitute the
random acquisition points that obey normal distribution in the system space, as shown in Figure 8.
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After generating random acquisition points, a “detour” will occur when the system collects
images in the order of generating random points, the acquisition time will be consumed. Therefore,
it is necessary to optimize the path of the generated random acquisition points, so that the system
can complete image acquisition in a short time. According to the actual acquisition requirements,
the camera is required to start from the origin (initial position), then pass through all acquisition points
only once. Eventually, it takes the least time to return to the original acquisition point, which is in
line with the travelling salesman problem (TSP) proposed by Dantzig et al. [27]. The algorithm has
two path optimization methods: local optimization and global optimization as shown in Figure 9.
The advantages and disadvantages of these two algorithms are shown in Table 3. Although the path
obtained by the global optimal search method is optimal, its algorithm takes a long time and has high
computational complexity, which is not suitable for the case of hundreds or even thousands of points.
Therefore, the system adopts the local optimal search method to optimize the acquisition path.

Table 3. Comparison of local optimal algorithm and global optimal algorithm.

Index Local Optimal Global Optimal

Time-consuming Less More
Optimal path No Yes

Algorithm complexity n n!

Comparative experiments before and after path optimization are carried out to evaluate the
impact of path optimization algorithm on system acquisition time. The number of acquisition points is
set as 5, 10, 15, . . . , 100 (spacing is 5). Recording the acquisition time of the system before and after
the path optimization of the acquisition algorithm. Each point is tested three times to get the average
value. The final acquisition time is shown in Figure 10. The search principle of the above TSP path
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optimization algorithm is the shortest distance between two points. However, when the system uses
the optimal path search, the distance between two points in space is not the shortest path of the axis
movement. The reason is that under the condition of the same speed of each axis, when the point with
the largest distance among the five coordinate points moves, the remaining coordinate points will also
complete the movement. Hence, we take the maximum distance max (x, y, z, a, b) of five coordinate
points as the search principle.
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As can be seen from Figure 10, the system acquisition time is increasing with the increase in the
number of acquisition points. The path acquisition time before optimization increases significantly.
However, the path acquisition time after optimization increases slowly. Meanwhile, it can be seen from
Figure 10 that the time consumption of path acquisition before the optimization is about 1.6 times of
that after optimization. In conclusion, it is very necessary to optimize the acquisition path when the
number of acquisition points is large, the path optimization algorithm adopted in this paper had an
obvious effect.

4. Experiments and Discussions

Since the first industrial revolution, the textile industry has become the most fundamental industry
and is closely related to people’s lives. With the development of textile technology, the application
field of fabric is also expanding. Fabric has penetrated all aspects of industrial production and life
such as military, medical, architecture, aerospace, etc. At present, there are tens of thousands of known
fabrics on the market. It is of guiding significance for production and sales control to determine a
category of fabric quickly and accurately in the process of fabric production and sales. However, due
to the variety of fabrics, it is very difficult to search by manual or traditional digital image processing
technology. In addition, a fabric itself is a periodic structure based on pattern design, which is more
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suitable for image recognition and classification by deep learning methods. In this work, the fabric is
taken as the experimental object, and the fabric data is collected by the multi-DOF automatic image
acquisition system, and the fabric classification is realized by the deep learning method.

4.1. Construction of Multi-DOF Automatic Image Acquisition System

The multi-DOF automatic image acquisition system is shown in Figure 11. Figure 11a shows
a hardware structure of the multi-DOF automatic image acquisition system, which mainly includes
motion control and light source control. The motion control component mainly includes an electric
guide rail, driver and 8-axes motion control card. The light source control component mainly includes
flat light source, ring light source, light source controller and STM32 single chip microcomputer.
The key components and related parameters used in the system are shown in Table 4.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

driver and 8-axes motion control card. The light source control component mainly includes flat light 
source, ring light source, light source controller and STM32 single chip microcomputer. The key 
components and related parameters used in the system are shown in Table 4. 

 
Figure 11. The multi-DOF automatic image acquisition system: (a) Hardware structure of the multi-
DOF automatic image acquisition system; (b) The UI of the multi-DOF automatic image acquisition 
system. 

Table 4. Key components and related parameters of the system. 

 Key Components Model Parameters 

Motion control 

Electric guide rail JD45P Travel: 300 mm 

Driver DM442 
Two-phase stepping  

motor driver 
8 axes motion control 

card 
IMC408E 8 axes 

Illumination 
control 

Flat light source HF-FX160 DC12V, white light 
Ring light source, YC-DR6836WL DC12V, white light 

Light source 
Controller CCS PD-3012-8 

Input AC100-240V, output: 
DC12V, power: 25 W 

Single chip 
Microcomputer STM32F103ZET6 Cotex-M3 core chip 

Figure 11b shows the user interface designed according to the multi-DOF automatic image 
acquisition system. The interface mainly includes an image display area and parameter setting area. 
The image display area is used to display the fabric image in real-time. The parameter setting area 
mainly includes camera parameters (exposure, frame rate, gain, etc.), illumination (light source, 
brightness), image saving path, and the number of collected images. 

4.2. Image Acquisition Experiment 

To verify the representativeness of images collected by this system, this section divides the 
image acquisition experiment into two parts, which are image acquisition by using this system and 
image acquisition by manual. The camera used in the experiment was a Hikvision industrial area array 
camera, the model was MV-CA032-10GM, the resolution was 1920 × 1440, the focal length of the lens was 
25 mm, and 30 classes of fabrics were collected. The size of each fabric was 15 cm × 30 cm, and the field 
of view of the camera was 3.5 cm × 2.6 cm. 

4.2.1. Image Acquisition by the System 

Before collecting the fabric image, it was necessary to calibrate the speed of x, y, z, a, b axes of the 
system. Additionally, the fabric surface should be kept as flat as possible in the acquisition process, 

Figure 11. The multi-DOF automatic image acquisition system: (a) Hardware structure of the multi-DOF
automatic image acquisition system; (b) The UI of the multi-DOF automatic image acquisition system.

Table 4. Key components and related parameters of the system.

Key Components Model Parameters

Motion control

Electric guide rail JD45P Travel: 300 mm

Driver DM442 Two-phase stepping
motor driver

8 axes motion control card IMC408E 8 axes

Illumination control

Flat light source HF-FX160 DC12V, white light
Ring light source, YC-DR6836WL DC12V, white light

Light source Controller CCS PD-3012-8 Input AC100-240V, output:
DC12V, power: 25 W

Single chip Microcomputer STM32F103ZET6 Cotex-M3 core chip

Figure 11b shows the user interface designed according to the multi-DOF automatic image
acquisition system. The interface mainly includes an image display area and parameter setting
area. The image display area is used to display the fabric image in real-time. The parameter setting
area mainly includes camera parameters (exposure, frame rate, gain, etc.), illumination (light source,
brightness), image saving path, and the number of collected images.

4.2. Image Acquisition Experiment

To verify the representativeness of images collected by this system, this section divides the image
acquisition experiment into two parts, which are image acquisition by using this system and image
acquisition by manual. The camera used in the experiment was a Hikvision industrial area array
camera, the model was MV-CA032-10GM, the resolution was 1920 × 1440, the focal length of the lens
was 25 mm, and 30 classes of fabrics were collected. The size of each fabric was 15 cm × 30 cm, and the
field of view of the camera was 3.5 cm × 2.6 cm.
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4.2.1. Image Acquisition by the System

Before collecting the fabric image, it was necessary to calibrate the speed of x, y, z, a, b axes of the
system. Additionally, the fabric surface should be kept as flat as possible in the acquisition process,
so as to obtain high-definition images. Five hundred images were collected for each class of fabric.
Part of the image collected by the system is shown in Figure 12.
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4.2.2. Collect Images Manually

To obtain the contrast dataset, under the ideal conditions (the industrial camera was fixed vertically
at a certain distance above the fabric, and the ambient light was uniform when collecting the image),
the image was collected by manually controlling the camera. Part of the image collected by the system
is shown in Figure 13. Fifty images were collected for each class of fabric. Images were expanded to
500 through image processing to keep consistent with the number of images collected by the system.
Since the image enhancement technology based on deep learning [28] will increase the calculation time
to a certain extent, and the quality of the generated image is difficult to control, it is difficult to meet the
needs of automatic training. Therefore, this paper uses the traditional data augmentation technology to
expand the collected data. Typical traditional data augmentation techniques include flipping, clipping,
rotation, translation, scaling, histogram equalization, enhancing contrast or brightness, random erasure,
etc., [18–21]. In order to ensure that the augmented data are consistent with the real data as much as
possible, combined with the actual environmental conditions in the fabric detection process, this paper
finally used rotation, stretching, brightness transformation, and other methods to augment the data.

Table 5 shows the collection methods and collection time-consuming of the three types of datasets
in image acquisition experiment. The experimental results show that the system takes about 9 min to
collect 500 images (a kind of fabric) and about 3 min to collect 50 images (a kind of fabric) manually.
On average, the image acquisition speed of the system is faster than that of manual acquisition
obviously, and the angle and illumination of the manual acquisition are single. The image shooting
angle and illumination obtained by the system are variable, and the image richness is higher.
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Table 5. Acquisition methods and time-consuming image data.

Datasets Acquisition Method Size
Time-Consuming

One Class One Image

dataset1 Manual acquisition 50 × 30 3 min 3.6 s
dataset2 Dataset1, data augmentation 500 × 30 - -
dataset3 System acquisition 500 × 30 9 min 1.1 s

4.3. Datasets Comparison Experiment

4.3.1. Experiment Description

To further verify whether the validity and representative of the obtained datasets, this section
shows results of comparative experiments on the datasets obtained by the above methods. The image
classification network model used was ResNet [27] in the experiment, which successfully solved the
problem of gradient explosion or gradient disappearance with the deepening of network depth by
introducing residual block. Due to the fact that the amount of data was not too large (500 × 30),
we chose a shallow network structure resnet18 which also has good stability. The specific experimental
process is shown in Figure 14. The above three different image datasets dataset1, dataset2, and dataset3
are scaled to adapt to different resolutions, then separately put these three types of training datasets
into the same classification network model for training. Under the same training strategy (the number
of iterations is 20, the learning rate was 0.001, the batch size was 32, and the image size was 224 × 224),
the same image classification network (ResNet18) learned the distribution state of dataset1, dataset2,
and dataset3 separately, then obtained three different models: model1, model2, and model3. Specifically,
model 1 was trained from a small number of data collected manually (dataset1). Model 2 was trained
from the augmentation data (dataset2), and model 3 was trained from the dataset collected by the
system (dataset3). Finally, the performance of the three models were tested by using the test datasets,
and the conclusions were drawn through the comparative analysis of the test results.
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4.3.2. Test Datasets Composition

In the practical application process, the image acquisition method was arbitrary in order to verify
that the data collected by the system were representative enough and the trained model could identify
the data collected under various conditions. Firstly, the test dataset should contain an ideal collection
environment, where the camera is facing the fabric and the illumination is uniform, and it is named as
the manual test dataset. Secondly, the test dataset should contain complex collection scenes (collection
environment built by the system) with complex lighting environments and arbitrary shooting angles,
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and it is named as the system test dataset. Additionally, the shooting equipment will be different in
actual applications. For example, people are more accustomed to taking pictures with mobile phones
in real life. Therefore, the test dataset should include images taken by mobile phone, which is named
as mobile phone test dataset. Some images of the above three test datasets are shown in Figure 15.
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4.3.3. Result Analysis

Figure 16 shows the recognition effect of model 1, model 2, and model 3 on the dataset collected
manually, the dataset collected by the system, and the dataset collected by the mobile phone. Each row
in the table represents the recognition effect of a model for different test dataset, and each column
represents the recognition effect of different models for the same test dataset. They are represented by
a confusion matrix, where the abscissa represents the predicted label of the model for the test data,
and the ordinate represents the true label of the test data. When the number of predicted labels equal to
true labels, the more data on the diagonal, the better the recognition effect of the model. As can be seen
from Figure 16, the data distribution of model 1 in the three test datasets is very scattered, indicating
that the performance of model 1 is poor. In model 2, although the data distribution has been improved,
there are still some data outside the diagonal in the system test dataset and mobile phone test dataset,
which shows that the recognition performance of model 2 for the system and mobile phone test dataset
is not high, that is, when the shooting environment is complex, it is difficult for model 2 to detect the
data. From the confusion matrix of model 3 for the three test datasets, it can be seen that the data
distribution of the three types of test datasets were all concentrated on the diagonal, which shows that
model 3 has good recognition effect on the manual, system, and mobile test datasets.

As can be seen from the Figure 17, the recognition accuracy of model 1, which was trained with
fewer data (dataset 1), was generally lower than 60%. This shows the performance of the model
obtained through the small sample training data was poor. For the recognition rate of model 2,
which was trained with the augmentation of the data (dataset 2), the accuracy improved for the data
obtained under ideal conditions. However, the recognition accuracy rate for the test dataset collected by
the system and mobile phone was still less than 80%. This shows that the dataset augmented through
the data augmentation technology was quite different from the dataset collected in actual applications.
Only relying on the data augmentation technology to augment the data, the trained model cannot
be applied to actual industrial production. The recognition accuracy of model 3, which was trained
with the data obtained by this system (dataset 3), was over 91% for the three types of test datasets.
In particular, the accuracy of the test dataset collected by the system and mobile phone was significantly
improved, indicating that the dataset collected by the system contained most of the collection scenarios
in the application. The model trained from the dataset collected by the system could recognize images
taken in most complex environments.
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The results showed that this system can not only obtain a large amount of data in a short time
but also include most of the actual data collection. The model trained by the system acquisition data
has a better recognition effect for the images obtained by common acquisition methods in practical
application and has a good recognition effect for the data collected in complex scenes. At the same
time, it also shows that the model trained by our system can be embedded into mobile terminals, such
as mobile apps, for image recognition.
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The method proposed in this paper forms a mature acquisition system in the actual project
(Figure 18a) and has been applied to a large number of industrial field tests. As many as dozens of



Appl. Sci. 2020, 10, 7755 16 of 18

light sources were built in the system to simulate a more complex acquisition environment. It was
mainly used for defect image acquisition of complex structural parts such as automobile combination
teeth (Figure 18b). In addition, the proposed method can also be applied to image acquisition of high
reflective workpieces (Figure 19a) and transparent workpieces (Figure 19b). In the specific application
scenario, the actual acquisition system can be set-up according to our method.
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5. Conclusions

Aiming at the problem that datasets are scarce in the process of deep learning in industrial
applications, this paper proposed a data augmentation method based on multi-freedom automatic
image acquisition and built a multi-degree of freedom image automatic acquisition system for deep
learning. The main conclusions are summarized as follows:

(1) A multi-degree of freedom automatic image acquisition system for deep learning was built to
simulate the actual image acquisition situation. In this system, the multi-directional light source
was arranged for random lighting, and the multi-degree of freedom motion axis was designed to
carry out random motion of the object;

(2) In the process of image acquisition, rich and diverse data can be obtained in a short time; this work
calculated the camera position and optimized the random acquisition path. The system can
collect 500 images (a class of fabric) in only 9 min;

(3) A deep learning model was used to verify the type of obtained datasets by different methods.
The results showed that the recognition accuracy of images collected by the system for different
scenes was more than 91%. The construction of the system further promotes the application of
deep learning in industrial production.
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