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Abstract: This article will present two swarming behaviors for deployment in unstructured
environments using unmanned aerial vehicles (UAVs). These behaviors will use stigmergy for
communication. We found that there are currently few realistic deployment approaches that
use stigmergy, due mainly to the difficulty of building transmitters and receivers for this type
of communication. In this paper, we will provide the microscopic design of two behaviors with
different technological and information requirements. We will compare them and also investigate
how the number of agents influences the deployment. In this work, these behaviors will be
exhaustively analyzed, taking into account different take-off time interval strategies, the number of
collisions, and the time and energy required by the swarm. Numerous simulations will be conducted
using unstructured maps generated at random, which will enable the establishment of the general
functioning of the behaviors independently of the map used. Finally, we will show how both
behaviors are capable of achieving the required deployment task in terms of covering time and energy
consumed by the swarm. We will discuss how, depending on the type of map used, this task can be
performed at a lower cost without using a more informed (but expensive) robotic swarm.

Keywords: swarm robotics; UAV deployment; stigmergy behavior

1. Introduction

Swarm robotics is an approach for the coordination of multirobot systems inspired by the emerging
patterns observed in social insects. In this type of robotics, we work with large groups of robots so
that miniaturization and cost reduction of the units are both crucial factors. In swarm robotics,
individuals do not have to be cognitive, but cognition emerges from their interactions. There are many
examples of this type of behavior in nature: bees use swarms to find food sources, ants collaboratively
transport food, and fireflies use these strategies for synchronization.

In the field of robotics, multiple systems have been developed based on this approach,
for example, systems focused on the formation of patterns (aggregation, self-organization,
deployment, coverage, mapping), search (search for a goal, homing, foraging, etc.), and group behavior
(cooperative transport, shepherding, flocking, etc.).

Among these behaviors, we are interested in the development of swarm behavior for deployment
in unstructured areas. The coordination of robot teams for exploration is a complex problem, even more
so when facing large areas, for example, in a devastated area after a disaster [1].

In these types of environments, unmanned aerial vehicles (UAVs) are a great advantage, given
their ease of avoiding obstacles and their reduced sensory deprivation. However, these vehicles have
problems with autonomy and reduced loads due to the small vehicles/weight [2].
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We are currently experiencing a time of miniaturization and cost reduction for these devices,
going from drones weighing 20 g (autonomies of 10 min, with costs close to 25$ per individual) to
drones that are more autonomous, weighing less than 200 g (with greater load capacity and autonomies
close to 15 min with a cost of approximately 100 $).

Miniaturization and cost reduction make it possible to use swarm techniques to model systems
that contain a large number of individuals. This type of device satisfies the precepts of swarm robotics:
simple individuals, with limited sensors and limited autonomy but with the possibility of having a
large group to take advantage of their great mobility.

Therefore, it seems logical to propose the design of a behavior, oriented to UAVs, that enables
the development of tasks in difficult, unstructured environments, with both signal availability and
communication limitations. In addition, this behavior must take the limitations of the individual
agents into consideration (e.g., the load capacity of micro-drones is on the order of 5 g, which means
that the sensors that can be used in these devices are very limited).

In this article, two deployment behaviors for unstructured environments will be presented.
These are distributed, decentralized, scalable behaviors that do not require global localization
(and therefore are applicable to indoor environments). Both will be based on one of the most important
indirect mechanisms of decentralized communication in swarm intelligence, stigmergy.

In stigmergy, information is stored in the environment, which makes it possible to coordinate
agents. This type of communication has several advantages that make it especially attractive for
swarm systems: it is simple, scalable, and robust and can be integrated with the environment.
However, stigmergy is also one of the most complex communication systems to be implemented
in real robots. Taking this aspect into account, in this work, we will consider two different stigmergy
approaches without losing sight of what characteristics would be required for final implementation.

The first behavior is oriented to swarms with individuals with very limited perception capacities
who are not able to locate themselves locally. Therefore, this behavior will not require localization
capabilities of any kind and will require the local communication of only minimal information.
Our intention is that this behavior will be easy implementable with existing hardware. The second
behavior will require local localization capability, providing a greater convergence but requiring a
sensor, such as the one presented in [3] or more generally in [4], to support localization.

With this article, we wish to answer mainly the following questions: can we develop a swarm
behavior that uses stigmergy without the need to design specific hardware? How does the information
available to agents affect the development of the behavior? How does the number of parallel
agents influence the task? Does the energy consumed by the swarm depend on the sensor/emitter
of stigmergy?

The rest of this article will be structured as follows. On the one hand, the state-of-the-art will
be presented, with an exhaustive analysis of the existing deployment strategies. Special emphasis
will be placed on those strategies that consider the special characteristics of UAVs. Next, we will
describe in greater detail the problem of deployment in unstructured environments to be modeled,
together with the type of swarm and individuals to be used. The simulator used and the metrics that
will be used later will also be detailed. Subsequently, the two microscopic swarm behaviors will be
presented, along with a description of their functioning and the roles of the individuals that compose
them. In the results section, a set of tests will be developed to verify the behaviors and to compare both
strategies for the aggregation of individuals and their operation in different types of environments
(simple, complex, and hard-to-access areas). Finally, the results will be discussed, and the article will
be concluded by proposing potential future lines of research.

2. Related Work

Multirobot deployment has become a fundamental research topic in the field of multirobot
systems. In this section, we will provide a brief review of the existing types of swarm deployment and



Appl. Sci. 2020, 10, 7696 3 of 31

coverage of terrestrial robots. Then, we will review some applications designed to be executed using
aerial vehicles and comment on some examples of stigmergy communication in swarm systems.

Although many applications are related to multirobot deployment, many of them rely on a
preestablished communication network or external localization service. This precludes application
to emergency tasks, where we are not able to assume the existence of communication networks or
GPS. Therefore, there are several studies where the external communication network is substituted
by the deployment of a new network of sensor nodes or radio beacons. For example, in [5] uses
a distributed algorithm to guide a group of robots through a network of sensors, in [6] defines an
artificial pheromone map which consists of arbitrary graph of special devices called “place agents”.
However, this and other similar strategies, such as [7], define the prior deployment of the sensor
network, which may be difficult or not practical in emergency situations.

Another alternative is to include the deployment process in the behavior. In this case, the behavior
consists of two phases: beacon deployment and robot deployment. [8] deploys a network of static
radio beacons to form a long-range communication network to aid robot exploration. However, in a
general way, this strategy cannot be used with micro or small-sized UAVs (the most commonly used
type of UAVs in indoor environments) because of their low load capacity and limited autonomy [9].

In [10,11], a different strategy is presented, where each individual integrates a beacon,
creating their own communications network. However, the design of this behavior is intended
for the physical characteristics of terrestrial robots s-bot, which makes it very difficult to generalize to
other types of vehicles due to their different types of sensors and actuators.

In our case, we are interested in developing behavior that uses the advantages of indoor flying
vehicles, rather than terrestrial ones, in emergency situations. For example, these vehicles can avoid
many obstacles that limit ground vehicles and enable sensor data to be obtained from a vantage
point [12–16].

This type of device requires specific considerations and algorithms to ensure navigability [4,17].
In outdoor UAVs, GPS, which can be adjusted by using onboard inertial sensors, is the most common
localization system. For example, in [18], stigmergy is used in a behavior to search for a target.
This behavior requires all the agents to use global location to be able to perceive and place virtual
pheromones in a specific location.

However, such systems cannot be used indoors (signal reception occlusion) or in all outdoor
locations and situations [19], so another approximation, such as local localization, must be considered.

Robot local localization commonly requires environment maps and odometry sensing [20].
Environment maps may be unavailable, and the online creation of maps requires powerful processing
that may not be available on small flying robots [4,21]. Furthermore, such approaches do not scale
appropriately with large swarms [22]. Moreover, there are simple relative localization applications that
are suitable for small UAVs; for example, in [23] presents the relative positioning of sensors in reference
to nearby static robots with a decentralized approach. Nowadays, one of the main technologies
required to make the leap from flying a single UAV to flying a decentralized swarm is an accurate and
reliable intra-swarm relative localization technology [4].

One of the first applications related to UAV deployment can be found in [24]. This application
uses a predetermined communication network as the basis for guiding UAVs. Although this behavior
does not require an external communications network, it does need a predeployment phase, as in
the terrestrial application in [5], which is not applicable in real emergency situations. In a later work,
in [25] reconfigures the network of sensors to maximize system performance, but the method requires
a group of terrestrial robots to transport the sensor network, which is not practical for our needs.

More recently, ref. [23,26,27] present several behaviors where a fully distributed deployment
is achieved while creating a communication network. These systems do not require existing
communication networks or a global localization system. In addition, it is an effective strategy
that is designed to save energy when using UAVs, which is very important for increasing swarm
autonomy. in [23,27] assume that a robot can temporarily attach to the ceiling or land on the ground
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for efficient surveillance over extended periods of time. However, as the authors discuss, this behavior
requires special environment features (straight walls, 90 degree angles, etc.) to be executed (it is not
applicable for unstructured environments) and does not take into account uncertainty (for example,
the errors in sensor readings and robot actuators), which is very important in UAVs systems.

Using the ideas presented in [23,26–29], a UAV swarm can establish their own communications
network. This network can be used for communicating swarm tasks or even to help other robots or a
human team with subsequent work [5,10,11,24,30,31].

In this paper, we will present a behavior inspired by the work of [28], in terms of establishing
their own network of communications, and by [23,27], in terms of adapting the behavior to UAVs
using a power saving state. However, in contrast to previous articles, our distributed behavior will be
executable in any environment, without limitations on the specific features or size.

For this purpose, a virtual sematectonic stigmergy system will be used. The use of this
type of communication is not novel in the field of swarm robotics; the literature contains several
applications using stigmergy as a communication mechanism. In [32], swarm behavior that can develop
collaborative tasks through sematectonic stigmergy is presented. ref. [33] discusses a theoretical
approach to the use of stigmergy in UAVs using stigmergy potential fields. To implement this type of
communication, it is assumed that we have a local positioning mechanism [4] and a efficient system of
communication between individuals, for example, the use of mesh networks of XBEEs devices [34].

We want to highlight that the probabilistic microscopic model and the stigmergy system that
will be presented here take into account the inherent uncertainty of real robotic systems, which is not
considered in other approaches that assume ideal worlds, such as [23,27,29].

3. Methods

This section will initially detail the swarm on which the deployment task is planned. Details of
the types of base vehicles and the swarm simulator developed for this work will also be presented.
Additionally, the process of generating unstructured environments using a cellular automaton will be
described briefly. The two stigmergy-based swarm behaviors for deployment tasks will be described
in detail.

Stigmergy provides an indirect means of communication between individuals through the
environment. There are several types of stigmergy depending on how the communication is achieved.
If communication is established through the placement of markers in the environment, we call the
approach marker-based stigmergy. If individuals base their actions on the state of the solution, we
refer to the approach as sematectonic stigmergy. If we work with discrete signals, we refer to strategy
as qualitative stigmergy. On the other hand, if the communicated signals are continuous, we refer to
the approach as quantitative stigmergy.

In the first behavior, an approximation of quantitative sematectonic stigmergy will be presented.
In this case, some individuals will be deposited in areas of the environment and used as the main
elements in the communication of pheromones; that is, the individuals themselves are defined as
active markers of the environment.

The second behavior will use a hybrid of sematectonic, marker-based, and quantitative stigmergy.
In this case, a group of individuals will be deposited as markers, but these markers will form a local
gradient that will indicate the direction of navigation. The gradient of a pheromone map is managed
by this same group of individuals.

3.1. Description of the Swarm

3.1.1. The Individuals

As discussed above, our work will focus on the use of pheromones to design various swarm
behaviors capable of performing a deployment task in a structured environment. We will use a swarm
robotics simulator, which we will detail later, to assess and validate these behaviors. We design
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a plausible physical swarm close to our physical robots. Then, we will describe the two types of
individuals that will be modeled in our simulator.

We will focus on two types of UAVs, which we will call micro informed (micro) and mini informed
(mini), depending on the information and, therefore, the sensorization available to them. We consider
vehicles that do not exceed 200 g and that range in size from 6 cm to a maximum of 25 cm. We will
assume that the linear speeds they can achieve for safe indoor navigation do not exceed 1 m/s.
Both types of drones have a flight control board that allows simple movement commands to be sent to
the drone for later execution.

The input commands may be high level (rotate 90o, advance 1 m), similar to those used by
the current consumer drones (https://www.parrot.com/, https://www.dji.com/). To simplify the
interface, we will assume that we can send a displacement vector to the drones with the information of
the movement to be performed at a given moment and that the control board will adjust the state of
the drone according to this information.

Both types of drones use the same set of basic sensors. They will have IMU inertial unit data
and a digital compass to obtain their orientation relative to north. These sensors are widely used and
integrated by default in most control boards and commercial systems. In addition, the microdrones
will have a barometric sensor (which makes it easy to stabilize the flight height), and the mini drones
will have an ultrasound system in addition to the barometric system, for low-altitude flight. The mini
drones also have a GPS tracking system, although it will not be used in this work since we intend to
verify the behaviors presented here in indoor environments or where the GPS signal is not reliable.

We also require the drones to be able to avoid indoor obstacles. We will assume that they have
one of the many currently available avoidance systems, although due to the size of the devices the
most appropriate system is visual navigation. We do not require high accuracy since we need only a
repulsion vector to the area in the visual field of the drone that contains more obstacles.

The drones can perform detection among themselves by using BLE beacons and know if they
are near, far or out of range (for example, using the protocol established by Apple ibeacons (https:
//developer.apple.com/ibeacon/)). If they are close and in the field of vision, the obstacle avoidance
system will return a repulsion vector toward the position of the detected drone. The microdrones will
not have a relative location system, but the minidrones will. We will assume that they use a system
similar to [3] that allows them to be located in the near space. The Bluetooth technology used for the
location will also be used for short-range communications among drones. The autonomy of the drones
will be fixed at 15 min of continuous flight. However, as will be discussed later, autonomy increases
considerably if other tasks that save the energy consumed by the engines are performed.

As will be seen later, the proposed pheromone system can be implemented directly with the
drones described above without any additional sensors.

3.1.2. The Swarm

The proposed drones are characterized by their simplicity and low cost, which limits the type of
sensors to be used but makes it possible to use large swarms. With a cost of less than $20 per individual
in the case of micro drones, we can raise swarms of hundreds of agents. The behaviors that follow will
have this philosophy: with a system of many drones of very low cost, a collision not only does not
hinder the achievement of the desired behavior, but can actually help, as we will see later.

Given the simplicity of the individuals, we will not have sensors for the concentration of
individuals, such as those proposed in [27]. However, we assume that we can perform multipoint
communications, such as can be achieved with the devices presented in [34]. These communications
could be used indirectly to determine the concentration or, as in the case of this article, to articulate a
virtual evaporation system, as required by the pheromone system presented below.

The behaviors that we will see below do not allow redeployment since, given the characteristics
of the swarm enumerated previously, it does not contribute substantially to the development.
However, it could be added in the future without much difficulty (if the autonomy of the drones and
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a limited number of them require such an addition). Therefore, the swarm coverage metric will be
determined as the area currently seen by the drones, given their position. We will assume that they
have a sensor that allows them to see a concentric area centered on their position.

Our intention is to be able to use this behavior to inspect unstructured indoor areas that are
difficult to access, such as buildings after a disaster and caves. We will therefore assume that all drones
will be launched from the same position: the main (possibly only) entrance.

To verify the operation of the swarm depending on the developed behavior, we will use additional
metrics. We will analyze the total flight time of the swarm and the time required to perform deployment,
and we will verify the average number of collisions (both between drones and between drones and
the environment). Finally, as mentioned in [27,29], in this type of vehicle, it is essential to consider the
energy required by the swarm. We will therefore analyze the average energy consumed by the swarm
to complete deployment in an environment.

3.1.3. Simulator and Environments

In swarm robotics, it is essential to develop an exhaustive analysis of the simulated behavior
before real implementation of the system. This article focuses on this analysis, although we have
attempted to not leave out how this physical concretion would work.

Hundreds of simulations have been developed to test behaviors, so we require a fast simulator
to be able to test hundreds of agents in a multitude of environments. Therefore, we use our
simulator, called Multi Agent Swarm simulator in SCAla (MASCA) for the development of the
tests. This simulator is briefly described below.

MASCA is based on the MASON platform [35], which is a multiagent simulation platform that can
simulate any type of process. MASON provides facilities for simulations in text mode, 2D and 3D. It has
a multitude of simulation-oriented data structures that are optimally developed in terms of access times
to allow ultra-fast simulations. We have developed MASCA on this platform. Our aim was to provide a
system capable of rapidly simulating swarms with thousands of individuals. We therefore want to focus
on simulating the emergency process closest to swarm intelligence, where interaction and simulation
with large swarms is fundamental. This is not often the goal of simulators, where there are marked
limitations on the number of agents and the size of environments that can be simulated [35]. The next
step (when we know that the proposed global behavior works as expected), which is beyond the scope
of this article, focuses on the control, performing a more realistic physical simulation (dynamics of
fluids, trajectories and 3D collisions), with a much more limited number of individuals. This simulation
is performed prior to the implementation of behaviors and adjustment in physical robots.

MASCA enables the modeling of a range sensors, cameras, pheromone sensors, compasses, local and
global location sensors, and several types of actuators. In our concrete case, we have worked with
holonomic actuators for multirotor type vehicles. This simulator also makes it possible to use both
local and global communication.

Using SCALA as a base language, we provide a functional interface to the system that enables
the parallelization of a multitude of tasks in a secure manner. Due to speed issues, we use 2D
physics for our simulations and assume that robots are able to maintain themselves constantly in a
plane. This ability is not a problem for current micro or minidrones since barometric and ultrasonic
sensors are available to measure their height relative to the ground, and the flight controller itself is
responsible for stabilizing the height. Although the base physics is 2D, the simulator supports a 3D
environment for flight and is able to develop routes at different heights without interfering with the
collision calculations.

One of the advantages of our MASCA simulator is the ability to use any image as the basis for a
navigation map, which allows us to easily design hundreds of maps for different test environments.
In our specific case, we are interested in working with unstructured environments, so the first step
is to generate these environments. We have developed a system based on cellular automatons that
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generate environments with these characteristics and that allows us to conduct our simulations in a
great diversity of environments.

The operation is simple and is based on the idea, often used in video games, of how to generate
“coherent” caves in a random way. The idea is to start from an initial random map (where each cell can
be occupied or free) and iterate from the initial map via some simple rules, for example, a tile becomes
a wall if it was empty and if more than cab of its immediate neighbors were walls, or becames empty if
it was a wall and less than caa of its immediate neighbors were walls. Each iteration makes each tile
more uniform, and the entropy of the environment is gradually reduced. The fundamental advantages
of this type of generation are that practically all the levels generated are different. This is a very simple
strategy to implement, and the results, as will be seen later, are realistic.

More specifically, the function used to generate all these environments is presented in Algorithm 1.
Initially, function RANDOMMAPWITHEMPTYCELLS generates a random map where Pe of the total cells
will be empty. Once the random map has been generated, we apply the rule of the cellular automaton
through the procedure APPLYCELLULARAUTOMATARULE for each map cell. Furthermore, we must
adapt the map with JOINCAVES so that the different generated areas are connected to each other and a
dilatation process with a DISK of size D to produce more uniform environments. Figure 1 presents a
group of maps generated with this algorithm.

Algorithm 1 Unestructured Environment Generator

1: function GENERATEENVIRONMENT(size, Pe, D)
2: M← RANDOMMAPWITHEMPTYCELLS (size, Pe)
3: SETBORDERS (M)
4: for each cell in M do
5: APPLYCELLULARAUTOMATARULE (M, cell, 4, 5)
6: end for
7: JOINCAVES (M)
8: M← DILATION (M, DISK(D))
9: SETBORDERS (M)

10: return M
11: end function
12: procedure APPLYCELLULARAUTOMATARULE(M, cell, a, b)
13: S← GETNEIGHBORHOODSQUARE (cell)
14: if ADJACENTWALL(S)< a then
15: M[cell]← ∅
16: end if
17: if ADJACENTWALL(S)> b then
18: M[cell]←Wall
19: end if
20: end procedure

Finally, once a map has been generated, it is used with our physical simulator to develop the
simulation tasks required to thoroughly test our proposed behaviors. In Figure 2, an example of a map
and its 3D visualization, together with the first steps of a deployment behavior, are presented.

(0.11,3) (0.15,3) (0.25,1)(0.11,4) (0.11,4) (0.25,3)

Figure 1. Example of map generation using Algorithm 1. The first parameter is the randomness index
required by the automaton Pe (the higher the index is, the greater the generation of roads). The second
parameter indicates the intensity of a morphological expansion applied to the map for smoothing D.
The map size is 15 m × 15 m.
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a) b)

c) d)

Figure 2. (a) Example of environment obtained by Algorithm 1, representing an area of 15 m × 15 m.
(b) 3D visualization of this environment. Several bottom-right walls have been removed to highlight
the access point to the environment. (c,d) Example of drone entry process and first steps of
deployment behavior.

3.2. Slant Beacon Deployment (SLABE)

3.2.1. Behavior Description

Quantitative marker-based stigmergy is the most common choice in designing swarm intelligence
systems. Its simplicity, scalability, robustness, and integration with the environment make it an ideal
mechanism for communication in this type of system. However, the main difficulty is the lack of
functional systems that allow it to be implemented in real environments.

Sematectonic stigmergy has the advantage in this sense because it does not require any external
elements to be returned for communication: the same individuals may be deposited in the environment
to communicate. In nature, we can see several examples, such as ant cemetery clustering and wasp
nest construction.

Slant beacon deployment (SLABE) behavior aims to cover an unstructured and a priori complex
environment. It assumes the existence of a sufficiently large set of simple individuals that can cover
the environment without redeployment. As in [27], we propose the existence of two distinct states
of energy consumption. In UAVs, the highest consumption is established in flight, so this energy
consumption must be correctly modeled to increase the autonomy of these aircraft, which is a priori
very limited. As mentioned above, an initial launch area from which all drones will take off and will be
defined. The first drone will be placed in the immediate neighborhood of the launch area and will go
into the beacon state (also called repeater). Then, a new drone will take off and travel, simply avoiding
obstacles, through the interior of the area to be explored. As soon as it detects that it is near the limit of
the communication safety zone, it will stop the flight and return to the beacon status. This process will
be repeated until the environment is fully covered.

The role of beacon (repeater) drones is to recommend “the best address” they have observed so far
to all active drones that pass by. To do this, they will ask the drones to pass through their immediate
vicinity in the direction they were heading just before leaving their area of influence. This direction will
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be absolute and obtained from the compass of the vehicles. The drones that do not pass through other
vehicle again will be assumed to have managed to reach remote areas in the direction they took as
they passed through this particular beacon. However, the directions recommended by the drones that
repeatedly pass near the beacon should not be considered with the same importance since they do not
lead to the vehicle moving away from the drone’s zone of influence. There will also be a mechanism for
local communication between the beacons to prioritize promising paths, but this will be described later.

The active drones will navigate while considering several factors, including the obstacles in the
environment and the proximity to other active vehicles with which they can coexist at any given
moment.They will also take into account the recommendations made by beacon drones.

This behavior does not require local localization, which makes it especially suitable for
implementation with microdrones. In addition, the stigmergy used does not require any sensors
that are not currently available: we simply need to determine whether a vehicle is in a certain
range of action. For example, the iBeacons protocol provides the necessary technical requirements to
implement this behavior. This makes it possible to detect the location of two devices in a discreet way
(far, near, immediate) with sufficient accuracy, in addition to obtaining the RSSI signal strength.

3.2.2. Deployment Strategies

The previous behavior has not detailed how the robots will be introduced into the environment.
We know that the deployment process will be conducted at a single point from which the vehicles will
be introduced progressively. However, there are several criteria for deciding when to introduce a new
individual into the system.

A detailed analysis of various deployment methods is presented in [27]. In this case, three main
types of strategies are analyzed. Initially, the robots can be introduced one by one in a fixed interval
of time, which is known as linear-temporal incremental deployment (LTID). This strategy does not
consider whether there are drones in the active state, so we may find that time is wasted in the
unexplored state. The single incremental deployment (SID) strategy verifies that no robot is active in
the system and then adds a new robot. However, in this case, we find that only one robot is active
in the system, which can penalize the deployment process in large environments. The latest strategy
presented in this paper, adaptive group size (AGS), adds new robots to the environment on the basis
of the density of robots in the environment. To implement this strategy, a sensor is required to estimate
the density.

In our work, we will use two types of strategy presented in Figure 3. On the one hand, we will
test the behaviors with LTID deployment. This type of deployment has the advantage of reducing the
probability of collision between individuals if the time between deployments is adjusted appropriately,
or of prioritizing a parallel search for shorter intervals. This is a simple strategy to implement and
requires no special hardware, making it applicable to any type of drone.

We do not consider the SID strategy since it does not allow more than one active robot at a time,
preventing a parallel deployment of the swarm. The AGS deployment requires specific sensors for
its implementation, so we propose a hybrid strategy of SID and AGS, which we call fixed group
incremental deployment (FGID).

The FGID strategy allows the existence of multiple active drones in the system, as the SID strategy
does, i.e., instead of a single UAV, several can coexist simultaneously. This allows us to substantially
improve the time required for a SID strategy by working with groups of active robots, just as an AGS
strategy would allow. However, it requires the choice of group size for a given environment, at the
expense of not requiring any vehicle density sensors. In fact, given this strategy, it is easy to see that
both LTID and SID are special cases of the same strategy: in SID, the maximum number of drones that
can coexist is equal to one, and in LTID, it is equal to the number of drones available.



Appl. Sci. 2020, 10, 7696 10 of 31

Slant Beacon Deployment SBD

   

LTDI deployment strategy

neighbourds := 
detect_neighbourds(uav)

beacon := 
get_nearest_beacon(uav,neighbourds)

v_nav := get_navigation_vector()

uav.in_range(beacon) beacon = ∅uav.exit_range(beacon)

v_ble_angle := 
get_recommended_angle(beacon)

beacon.
recommend_dir(uav, uav.dir)

v_other_robots := 
uav.avoid_other_robots(neighbourds)

v_ble_angle:=0

uav.toBeacon()

uav.set_velocity(v_other_robots,v_b
le_angle,v_nav)

uav.set_velocity(0)

uav.decrease_recommended_angle_intensity()

uav.update_parents_intensity()

   

   

func uav.step_explorer()

func uav.step_beacon()

   

func uav.on_exit_range(uav)

uav.recommended_dir_list[uav] += 
uav.dir

uav.angle_dist := 
recalculate_angle_dist(uav.recomm
ended_dir_list[)

uav.apply_kernel_angle_dist

uav.decreate_intensity_recommended_exit
(uav)

func uav.on_visit(uav)

   

uav.decreate_intensity_recommended_visit
(uav)

add_first_beacon()

add_explorer()

event 
on_time_interlauch

FGS deployment strategy

   

add_first_beacon()

event 
on_time_interlauch

num_explores ≤ max_allowed add_explorer()

Deployment Strategies

Es fácil darse cuenta que FGS es 
una estrategia genética que 
engloba a LTDI y a SID 
(dependiendo de los parámetros 
utilizados). Comentar en el paper

Sematectonic Pheromone Deployment (SPD)

neighbourds := 
detect_neighbourds(uav)

   func uav.step_explorer()

v_other_robots := 
uav.avoid_other_robots(neighbourds)

v_nav := get_navigation_vector()

v_phero := get_pheromones_vector()

uav.add_pheromones(uav.pos,explorer_type)

beacon := 
get_nearest_beacon(uav,neighbourds)

uav.in_range(beacon) uav.exit_range(beacon) 
OR beacon = ∅

uav.set_velocity(0)

uav.decrease_pheromones()

   
func uav.step_beacon()

uav.set_velocity(v_other_robots,v_b
le_angle,v_nav)

uav.add_pheromones(uav.pos,beacon_type)

uav.toBeacon()

uav.update_phero_map()

uav.pos = 
uav.where_am_in(neighbourds)

Figure 3. State diagram for each of the deployment strategies used in this article. Note that the
linear-temporal incremental deployment (LTID) strategy is a special case of fixed group incremental
deployment (FGID) when max_allowed equals the number of swarm agents.

3.2.3. Role Description

This section will detail the behavior of slant beacon deployment (SLABE) and the roles required to
develop it. Initially, the role of active robots, which are responsible for the reconnaissance phase of
the environment, will be described to review the role of repeaters or beacon robots, which are mainly
responsible for providing the communication and stigmergy mechanisms required by the swarm.

Active

The main purpose of active robots is to explore the environment. Therefore, this behavior has a
high energy cost as it requires robots to fly over the environment to develop the deployment behavior.
The behavior of these individuals is defined in Figure 4.

Initially, the active robots (which we will also call explorers) will proceed to determine,
through their communication beacons, which drones are close to them (i.e., which drones are within
their range of communication). As previously mentioned, the support technology can be Bluetooth Low
Energy. Once all the nearby robots are identified, the nearest neighbor will be calculated (for example,
using the RSSI signal strength, or for more accuracy, the BLE location protocol). To implement this
behavior, we require that our communication system allows the determination of at least three ranges
of distance or signal reliabilities: maximum efficiency in communication (near), stable communication
(medium), and communication limit (far).

If the vehicle is within a close range (in_range in Figure 4), then it will proceed to include the angle
recommended by that neighbor beacon to the path to be performed by the robot. However, the vehicle
may not detect a nearest neighbor within the limit of communication or, for any particular failure,
it may not detect any nearby neighbor. In either case, the robot will change roles and become
a repeater. Before reaching the limit communication margin, a communication distance is output
(exit_range is established in the diagram). If the nearest neighbor is close to that distance, the active
robot communicates its current angle (obtained by its onboard compass), which will be stored in the
neighbor repeater robot. As we will see later, the purpose of communicating this angle is to determine
which angles of exit in this area of the environment make it possible to achieve better deployments.
A robot may also become a repeater if it is at a certain battery threshold, in which case, it does not have
to fulfill the above conditions.

The movement of the active robot will be determined mainly by its onboard collision sensors
(for example, using visual navigation or range sensors) and by the angle recommendations of its
nearest neighbor. If deployment strategies that allow for the coexistence of several active robots are
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tested, the robots can have collision-avoidance mechanisms, which should also be taken into account
when planning their movement.

ṽ = vangle(draw(P(Λr̂
Bt
)))) (1)

fr
t+1 = −α1

|Or
t |

∑
I=1

(oi − pos(rt)) + α2 · ṽΛr̂
ht
+ α3 · fr

tN (µ, σ) (2)

Equation (1) shows how the velocity vector fr
t+1 of a vehicle r is established by executing the

SLABE behavior at instant t + 1. The position of the robot pos(rt) and the position of the obstacles
detected by the drone are taken into account, where each detected position i is a coordinate vector
oi that is stored in a set of obstacles detected by robot r at time t (oi ∈ Or

t ). In addition, the angle
recommended by the beacon closest to the robot, which we will call Λr̂, and its intensity should also
be obtained. P(Λr̂

Bt
) is a probability distribution that stores the most promising angles in the area of

influence of a beacon. Λr̂
ht
∈ [0, 1] represents the recommendation intensity of the drone. In this way,

the rotation is included in the drone’s movement function by extracting a random angle following this
distribution (draw(P(Λr̂

Bt
))) and generating a unit vector ṽ with this angle by means of the function

vangle. This unit vector is rectified by the recommendation intensity of beacon Λr̂
ht

.
Speed in a previous instant is taken into account to produce fluid behavior. This velocity will be

slightly altered by a random term extracted from a Gaussian distribution N (µ, σ) to include a noise
term that accounts for possible modeling errors in the system. We will assume that the robot is stopped
at the initial instant ‖fr

0‖ = 0. The normalizing terms αi allows the performance of the behavior to be
adjusted based on the environment and the available sensors and actuators. For this article, we will
assume constant values of these parameters.

Repeater

The purpose of the vehicles beacon or repeaters is multiple. On the one hand, given that the
behavior guarantees that there will be at least one communication channel between two vehicles,
they are in charge of providing a communication platform between the drones. This platform could be
useful, for example, in case we want to manually inspect a specific area of the environment where the
drones have had access. It will also be used, when calculating the angular recommendation intensity
of each beacon, as we will see later. The behavior of these individuals is defined in Figure 5.

When a robot performs the role of repeater or beacon, it must move to a state of low consumption
and therefore stop its engines, setting its speed to 0. As discussed in [23], in the case of a linkage system,
it is preferable for the system to be located in areas as high as possible to maximize the perception and
coverage. The robot can land in the nearby area that best achieves these effects.

After stopped the robot becomes part of the swarm, the communication packages that it receives
must be communicated to the rest of the drones with which it communicates.This resending process is
conducted automatically by XBee devices using the appropriate protocol. However, the main goal was
to provide a distributed pheromone system.

Therefore, we wish to develop this behavior with simple drones (microdrones) without requiring
specific sensors for the communication of pheromones: we propose the use of repeater robots as
sematectonic deposits. In this way, each active drone that leaves the action range of the beacon will
recommend its exit angle to the repeater. The repeater will store the angles recommended by each drone
and will also take into account how many times the drones visit it.

The number of visits will be used by the repeater to calculate how good the vehicle’s
recommendation is. If a vehicle is displayed only once, this probably means that the drone was
able to move away from the repeating area in the direction it took. However, if the robot reappears
many times, it is likely that its starting angle will not be appropriate.
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Slant Beacon Deployment SBD

   

LTDI deployment strategy

neighbourds := 
detect_neighbourds(uav)

beacon := 
get_nearest_beacon(uav,neighbourds)

v_nav := get_navigation_vector()

uav.in_range(beacon) beacon = ∅uav.exit_range(beacon)

v_ble_angle := 
get_recommended_angle(beacon)

beacon.
recommend_dir(uav, uav.dir)

v_other_robots := 
uav.avoid_other_robots(neighbourds)

v_ble_angle:=0

uav.toBeacon()

uav.set_velocity(v_other_robots,v_b
le_angle,v_nav)

uav.set_velocity(0)

uav.decrease_recommended_angle_intensity()

uav.update_parents_intensity()

   

   

func uav.step_explorer()

func uav.step_beacon()

   

func uav.on_exit_range(uav)

uav.recommended_dir_list[uav] += 
uav.dir

uav.angle_dist := 
recalculate_angle_dist(uav.recomm
ended_dir_list[)

uav.apply_kernel_angle_dist

uav.decreate_intensity_recommended_exit
(uav)

func uav.on_visit(uav)

   

uav.decreate_intensity_recommended_visit
(uav)

add_first_beacon()

add_explorer()

event 
on_time_interlauch

FGS deployment strategy

   

add_first_beacon()

event 
on_time_interlauch

num_explores ≤ max_allowed add_explorer()

Deployment Strategies

Es fácil darse cuenta que FGS es 
una estrategia genética que 
engloba a LTDI y a SID 
(dependiendo de los parámetros 
utilizados). Comentar en el paper

Sematectonic Pheromone Deployment (SPD)

neighbourds := 
detect_neighbourds(uav)

   func uav.step_explorer()

v_other_robots := 
uav.avoid_other_robots(neighbourds)

v_nav := get_navigation_vector()

v_phero := get_pheromones_vector()

uav.add_pheromones(uav.pos,explorer_type)

beacon := 
get_nearest_beacon(uav,neighbourds)

uav.in_range(beacon) uav.exit_range(beacon) 
OR beacon = ∅

uav.set_velocity(0)

uav.decrease_pheromones()

   
func uav.step_beacon()

uav.set_velocity(v_other_robots,v_b
le_angle,v_nav)

uav.add_pheromones(uav.pos,beacon_type)

uav.toBeacon()

uav.update_phero_map()

uav.pos = 
uav.where_am_in(neighbourds)

Figure 4. State diagram for the slant beacon deployment (SLABE) behavior of individuals of type active.
For each processing step, any individual in this role will execute the steps listed in the diagram.

uav.set_velocity(0)

uav.decrease_recommended_angle_intensity()

uav.update_parents_intensity()

func uav.step_beacon() func uav.on_exit_range(uav)

uav.recommended_dir_list[uav] +=
uav.dir

uav.angle_dist :=
recalculate_angle_dist(uav.recomm
ended_dir_list[)

uav.apply_kernel_angle_dist

uav.decreate_intensity_recommended_exit
(uav)

Figure 5. State diagram for the SLABE behavior of individuals of type repeater, also called beacon.
For each processing step, any individual in this role will execute the steps listed by the diagram.

Specifically, each vehicle b in the beacon state will use a probability distribution P(Λb
Bt
) at time

t. This distribution will store the information about which angles are most promising for the entire
swarm. In addition, the recommendation intensity Λb

ht
will determine the weight with which it takes

into account the recommendations it makes.
The distribution P(Λb

Bt
) will be updated at each instant with the information from the environment

and will be filtered through the convolution filter presented in Equation (5), which will enable a new
distribution to be obtained for the instant t + 1. The previous filtering process makes it possible to
consider not only the discrete angles through which other vehicles passed but also the angles close to
their area of influence. More specifically, the distribution P(Λb

Bt
) will be implemented discretely using

a histogram of 360 values (one value for each degree). In Figure 6, the discrete kernel P(ΛK) used for
the convolution process is shown.

The process of calculating the distribution for each instant t is presented in Equaiton (3), where Λb
Γr

is the set of all the angles recommended to beacon b for a drone r, and β1 is a distribution normalization
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term. The variable ai represents the angle recommended to the beacon by robot r, which is calculated
from the sum of all the angles recommended by that robot to the beacon, where Λb

Γr
k

is each of the angles.

ai =

|Λb
Γr |

∑
k=0

(Λb
Γr

k
) · 1/|Λb

Γr | (3)

P(Λb
Bt

= ai) =

√
1/|Λb

Γr |
β1

(4)

P(Λb
Bt+1

= z) =
∞

∑
m=−∞

P(Λb
Bt

= m)P(ΛK = z−m) (5)

Note that when an active drone is about to leave the area of a beacon drone, it will communicate
its angle, and the intensity of its recommended angle will decrease Λb

ht
proportionally to a value

β2 ∈ [0, 1] so that each beacon will gradually reduce its influence over time.
Finally, the beacon drones will form a structure of parents/children so that when a drone transitions

from active to beacon, it will consider the last beacon node that it visited (which, according to the behavior
definition, should be in contact with it). As mentioned above, the recommendation intensity of a drone
Λb

ht
decreases with each visit by a factor of β2. However, there is a way to increase the intensity of the

influence. For each instant of time t, the recommendation intensity of a drone is calculated as presented
in Equation (6). In this way, the most promising roads, where a priori more beacon drones are located,
are enhanced. Finally, as time passes, the intensity of the pheromones will decrease by a factor of β3.

Λb
ht+1

= max(Λb
ht
· β2, parent(Λb)ht) · β3 (6)
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Figure 6. Discrete kernel P(ΛK) used for the convolution process of the distribution of beacon robots.

3.2.4. Example of Operation

As noted above, several parameters must be established for the performance of the presented
behavior. Most of the parameters can be established in a simple way based on the environment or
the type of sensors and actuators available on the robots. In all the experiments that we will perform,
we will use the fixed parameters that we present next, which are chosen for their versatility and good
performance in various environments. It is important to emphasize that these parameters will not be
altered, even for different types of maps (simple or complex) on which the behavior will be tested.
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The tuple of behaviors that define the SLABEa behavior used for all the experiments in this article is
defined in Equation (7).

SLABEa =



α1 = 0.26
α2 = 0.52
α3 = 0.21
Λh0 = 1
µ = 1
σ = 0.25
β1 : obtained for each t from P(Λb

Bt
)

β2 = 0.7
β3 = 0.999
P(ΛK)

‖f0‖ = 0

(7)

It should be mentioned that the normalizing term β1 will be calculated for each instant of time t,
in a simple way from the current data of the distribution P(Λb

Bt
) for each beacon b. As discussed earlier,

the kernel P(ΛK) is discretely specified in Figure 6.

RobotSLABE =



RFrmax = 6 m = uav.exit_range
RFibeacon = 3 m = uav.in_range
Obsrmax = 2.5 m
velmax = 1 m/s
rcoverage = 10 m

(8)

A robot that implements SLABE behavior must also define its sensory and motor characteristics,
as established in Equation (8). The maximum coverage range RFrmax to guarantee our radio frequency
system is set to 6 m, and a robot is considered to be within the margin of influence of a beacon RFibeacon
if the robot is within a 3 m radius of the beacon’s position. The detection range of the obstacle detection
system of the robot Obsrmax, its maximum velocity velmax, and the area that is considered to be covered
by its position rcoverage are detailed in Figure 6.

Finally, we will use an energy model based on [27], where a common energy consumption for both
types of drones will be used to facilitate the comparisons. A consumption of 120 W will be assumed
for a drone in the active state, and 1 W will be assumed for a drone in the beacon state. It should be
noted that microdrones with an appropriate configuration can achieve a much lower consumption
(mainly due to their reduced weight and therefore lower energy requirements for takeoff).

An example of how this behavior works for a simple-type map is provided in Figure 7.
Various states have been selected, from the initial step to 95% deployment of the map area. Each robot
has a viewing area that is used to calculate the percentage coverage of the map (area represented
in blue). This figure shows how the behavior and intensity of the recommendation of each beacon
robot evolve (the higher the yellow tone of the drone is, the greater intensity of the recommendation).
The communication area RFrmax of the drone can vary from white to yellow to represent this intensity.
Finally, the recommended angles for each beacon robot are also displayed.
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Figure 7. Behavioral trace for different simulation steps. Each simulation step is equivalent to 1/2 s.
An enlarged area of the simulation is shown when the target case (95% coverage of the map area) is
reached. The figure shows the robots (in red), their communication area RFrmax (yellow), the angles
recommended by the beacon robots (black concentric lines around the robot) and their visual or coverage
area (blue).

neighbourds :=
detect_neighbourds(uav)

func uav.step_explorer()

v_other_robots :=
uav.avoid_other_robots(neighbourds)

v_nav := get_navigation_vector()

v_phero := get_pheromones_vector()

uav.add_pheromones(uav.pos,explorer_type)

beacon :=
get_nearest_beacon(uav,neighbourds)

uav.in_range(beacon) uav.exit_range(beacon)
OR beacon = ∅

uav.set_velocity(v_other_robots,v_b
le_angle,v_nav)

uav.add_pheromones(uav.pos,beacon_type)

uav.toBeacon()

uav.pos =
uav.where_am_in(neighbourds)

low_battery

Figure 8. State diagram for the Sematectonic Pheromone Deployment (SEPHE) behavior of individuals
of type active. In each processing step, any individual in this role will execute the steps listed in
the diagram.

3.3. Sematectonic Pheromone Deployment (SEPHE)

3.3.1. Behavior Description

As observed in the previous section, the slant beacon deployment behavior requires not
special capacity for implementation. Any current UAV can fulfill all the hardware requirements,
including communication. Therefore, it is appropriate behavior for implementation in large swarms,
where individuals are simple. This type of behavior is therefore especially suitable for a swarm
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of microdrones, such as those presented above. If we have individuals with more sensory and
processing capabilities, we can take greater advantage of the benefits of the use of stigmergy for swarm
communication and the emergence of useful behaviors.

In this section, we will present a behavior called sematectonic pheromone deployment (SEPHE)
that has the same purpose as that of SLABE, that is, to cover an unstructured and a priori complex
environment. For this behavior, the drones will be required to be able to perform local localization
among themselves. In [3], the authors present a sensor that can be used to effectively perform local
localization among agents. Like SLABE, there will be two differentiated states. Active agents will take
off and navigate via an obstacle-avoidance algorithm until the signal from the farthest beacon vehicle is
within the safety limit. Then, the active vehicle will transition to the beacon state, as in the previous case.

The fundamental difference with SLABE behavior is that while an active drone navigates, it will
emit pheromones that will be collected by the beacon vehicles through which it travels. The beacon
drones will therefore serve as the local location mechanism of the swarm as well as stores of local
pheromone maps. These local maps will be communicated to any drone within range.

The repeater drones will therefore be responsible for the communication, both direct and indirect,
of the swarm. They must also maintain their virtual pheromone map, communicate it to their nearby
robots, and adjust it, if necessary. The repeater drones should also apply the intensity decrement to the
map, so that, among other tasks, areas that have not been explored for a long time can be re-verified.

This behavior is therefore a variation of the use of quantitative sematectonic stigmergy,
which requires more communication than that required by the SLABE behavior but which is more
similar to the standard implementations of community-based pheromone robotic systems, in addition
to providing much more information to the active robots for making decisions in flight. The following
describes the behavior in detail.

3.3.2. Role Description

Active

Active drones are drones that are in flight exploring the environment. The behavior of these
individuals is defined in Figure 8. Like the SLABE behavior, active drones determine their movement
based on several factors. On the one hand, they determine their position with respect to the repeater
vehicles, but in this case, the positioning is much more accurate (not only do they know that they are
in rank with a repeater, but they know their position relative to it). On the other hand, they also take
into account, in the event that two or more active robots coexist, their relative location, as long as they
are within the detection range. We will assume that they also use an onboard collision sensor that will
allow them to obtain a repulsion vector for areas that can generate collisions.

The main novelty with respect to SLABE is that a pheromone map sent by the nearest repeater
is now available, which will enable them to make more informed decisions. A pheromone type
of variable intensity that will lose intensity over time will be used. While active robots navigate
through the environment, they will leave a path of pheromones, which will be stored in the repeater
robots. The navigation process will continue until either the robot does not have sufficient battery
power to continue developing its active task or it is in the limit communication range (exit_range).
The pheromone emission of an active robot is characterized by its intensity Ψha and its radius Ψra.

Specifically, the motion of an active robot will be determined mainly by its onboard collision
sensors and the local pheromone map. If deployment strategies that allow the coexistence of several
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active robots are tested, the local location of those robots within a certain detection range will also be
used as planning information. All these parameters will be combined to obtain the robot speed.

C =

{
(x, y)|

√
x2 + y2 ≤ Ψra

}
(9)

fr
t+1 = γ1

|Or
t |

∑
I=1

(oi − pos(rt)) + γ2 · ∑
c∈C

(
〈y, x〉
‖〈y, x〉‖2 ·Ψ f ieldy,x

)
+ γ3 · fr

tN (µ, σ) (10)

where C is the set of local Cartesian coordinates (x, y) that are within the detection radius of the
pheromone sensor Ψrb. Or

t is the set of obstacles detected by robot r at time t, 〈y, x〉 is a vector formed
by the coordinates y, x normalized by its squared norm. Ψ f ieldy,x is a matrix that stores the reading
of the corresponding pheromone sensor in position y, x. The speed of the drone fr

t+1 at instant t + 1,
which is defined by the sum of terms in the previous equation, is adjusted by γi ∈ [0, 1], whose overall
sum is one.

Repeater

As in the SLABE behavior, the repeaters are responsible for maintaining the communication
channel. The behavior of these individuals is defined in Figure 9. In this case, this channel is of special
importance since we are not considering sporadic communications with very little bandwidth (as in
the previous case) but a channel that is used to update the pheromone map and the local location
of the swarm individuals. Repeaters will be responsible for forwarding the required packages to all
drones in their range of action.

uav.set_velocity(0)

uav.decrease_pheromones()

func uav.step_beacon()

uav.update_phero_map()

Figure 9. State diagram for the SEPHE behavior of beacon individuals. In each processing step,
any individual in this role will execute the steps listed in the diagram.

As soon as a drone transitions from the active state to the repeater state, it will emit a pheromone
halo of Ψhb intensity and radius Ψrb. The repeater robot will enter a state of low power consumption
and should therefore be located in an area of the environment that maximizes its perception and
coverage, if possible.

In this behavior, repeaters must provide local positioning mechanisms and must have sufficient
memory to store their local pheromone map. This map will be constantly updated, either by the
navigation process of the active drones or by the process of the constant reduction in pheromones
intensity as time passes. Specifically, each second, the intensity will decrease by a factor of Ψdecay.

3.3.3. Example of Operation

As noted above, several parameters must be established to achieve the presented behavior. Most of
the parameters depend mainly on the type of sensors and actuators available on the robots. In all
the experiments that we will conduct, we will use the following fixed parameters. It is important
to emphasize that these parameters will not be altered, even for different types of maps (simple or
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complex) on which the behavior will be tested. The tuple of behaviors that define the behavior SEPHEa

that will be used for all experiments in this article is defined in Equation (11).

SEPHEa =



γ1 = 0.57
γ2 = 0.28
γ3 = 0.14
µ = 4
σ = 1
Ψha = 0.09
Ψhb = 0.1
Ψra = 5 m
Ψrb = 5 m
Ψerror = 5 m
Ψdecay = 0.99
‖f0‖ = 0

(11)

In addition, in our simulator, to obtain a more realistic approach with respect to local location
systems, the pheromone layout events have a positioning error of Ψerror = 5 m around the actual
disposition point.

A robot that implements SEPHE behavior must also define its sensory and motor characteristics,
as established in Equation (12). The parameters are consistent with the previous behavior, and the same
energy model will be used (120 W consumption per drone in the active state and 1 W consumption
per drone in the beacon state, so we will assume that the same drones will execute both behaviors;
although, as previously shown, SLABE behavior has lower hardware requirements).

RobotSEPHE =



RFrmax = 5 m = uav.exit_range
RFibeacon = 3 m = uav.in_range
Obsrmax = 2.5 m
velmax = 1 m/s
rcoverage = 10 m

(12)

In Figure 10, we present an example of how this behavior works for a simple-type map. Various
states have been selected, from the initial step to 95% coverage of the map area. The distributed
pheromone map maintained by beacon robots is shown in blue. Along the route, the most promising
roads are prioritized to achieve greater coverage.

Figure 10. Behavioral trace for different simulation steps. Each simulation step is equivalent to 1/2 s.
An enlarged area of the simulation is shown when the target case (95% coverage of the map area) is
reached. The figure shows robots (in red), their detection area (concentric gray line with the robot),
and the pheromone map maintained by the beacon robots (blue).
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4. Results

4.1. Purpose and Design of Experiments

In this section, several tests will be conducted to verify the behaviors presented in the previous
section. Several experiments will be performed to analyze the number of collisions (if a collision occurs,
even if it is recoverable, it is counted for each of the agents involved), the time required to cover 95%
of the area to be explored, the energy consumed and the total flight time of the swarm.

We will use two main types of maps to compare, in a general way, the deployment strategy used
as well as the functioning of unstructured behaviors. We will add a type of map that is more oriented
to the comparison of the behaviors in complex environments of very difficult access.

For each test, a random map will be generated with the characteristics listed below using cellular
automata (as briefly described in the discussion of the simulator). In this way, we will check the
robustness of the behaviors in unstructured environments. The free points from which vehicles could
be introduced into the system will also be calculated. In this way, random behavior start points will
also be used.

The first type of maps will be called easy and will be maps with a walkable zone of approximately
75 m2. Easy maps will be unstructured maps with few ramifications and obstacles. The second type
will be called hard. Hard maps will be much more extensive maps with an approximately 200 m2

walkable zone. These maps will also have much higher entropy, with obstacles that will make it
difficult to navigate and with a multitude of paths and variants that will make it difficult to perform
the desired behavior. To verify exhaustively the behaviors presented in complex environments, we
will perform some tests in hard environments with very difficult access, where there will be a central
wall on the map that will divide it into two parts with a single access point of 10 m. To completely
cover these maps, at least half of the swarm must pass through the door. These maps will be called
wall. Figure 11 shows an example of each of type of map.
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Figure 11. Example of maps types. A 15 m × 15 m area is shown. (a) Easy, with approximately 75 m2

of walkable space; (b) hard, with approximately 200 m2 of walkable space and with a greater entropy;
(c) wall, the same as hard, but with a wall that divides the map into two zones.

In this section, we want to provide a set of tests that allow us to verify several aspects. On the one
hand, the take-off time interval is important in terms of the number of collisions and the total energy
required by the swarm. We are interested in validating two strategies (LTID and FGID), taking into
account a new parameter, the maximum number of active vehicles that may be navigating at a specific
moment. In addition, we want to validate the importance of the take-off time interval is maintained in
all types of maps.

We also want to test the energy efficiency of our two behavior patterns. The implementation
requirements are the same, so we assume that there will be variation in both with respect to the energy
required, deployment times and number of collisions. It is also important to verify how different types
of maps affect the behavior. We will verify the performance of both types of behavior with all three
types of maps.
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To test the LTID deployment strategy, 50 tests will be developed for different take-off time intervals
(6, 8, 10, 12, 18, and 24 s). Each test will have a randomly generated map of the type to be tested, as well
as a different starting point. By not considering redeployment, we will assume that we have a sufficient
number of individuals to completely cover the environment (given their area of perception, in our case,
set to rcoverage). In these tests, we will assume an upper limit of 100 individuals, which allows us to
cover a maximum area of 1000 m2.

In the case of the FGID deployment strategy, each of the previous take-off time intervals will be
tested for a maximum number of 2, 5, 10, and 20 individuals in flight. To reduce the influence of the
random generation of maps, because an increase in the number of tests per map is not feasible, we
will assume a single map of each type and a common starting point. In this way, for each behavior
and each type of map, 1200 simulations will be conducted (50 simulations on the same map for each
combination of take-off time interval and maximum number of vehicles in flight).

4.2. LTID Tests

Figure 12 presents the results of 600 simulations performed for SLABE and SEPHE using the LTID
strategy for different take-off time intervals on easy maps. For each take-off value, 50 random maps and
random take-off positions are generated. For both behavior types, the figure shows the average and
standard deviation of the number of collisions, the time required to cover the 95%of the environment,
the energy consumed and the total flight time required by the active members of the swarm.
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Figure 12. Results of the SLABE (a) and SEPHE (b) behavior simulations performed on 50 random
easy maps. In each simulation, a random start position has been chosen among all feasible locations.
Six different take-off time intervals have been tested for each map (6, 8, 10, 12, 18, and 24 s). The average
and standard deviation of the number of collisions, the time required to cover 95% of the environment,
the energy consumed by the swarm, and the total flight time are shown.



Appl. Sci. 2020, 10, 7696 21 of 31

At a general level, it is easy to see how the minimum time required to reach the desired
coverage (approximately 16 min) is achieved with a take-off time interval of 6 s (the shortest used).
However, the shorter interval also increases the number of collisions between vehicles. The energy
required by the swarm starts at 2000 kW for a take-off time interval of 6 s and decreases to 1000 kW
as the time interval increases. This decrease is significant for the initial interval and becomes much
less pronounced for an interval of 12 s. The same is not true for the deployment time, which increases
continuously from the initial 6 s take-off interval (and 16 min deployment) to the 24 s take-off interval
(and 30 min deployment) for the SLABE behavior.

The general tendencies are the same for both types of behavior: less energy is consumed and
fewer collisions occur as the take-off time interval increases. There is much greater variability in the
total flight time required and in the energy consumed for the SLABE strategy. Figure 13 presents the
results of 600 simulations for both types of behavior (SLABE and SEPHE) using the LTID strategy for
different take-off time intervals on hard maps. The parameters used in the tests are the same as in the
previous case.
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Figure 13. Results of the SLABE (a) and SEPHE (b) behavior simulations performed on 50 random
hard maps. In each simulation, a random start position has been chosen among all feasible locations.
Six different take-off time intervals (6, 8, 10, 12, 18, and 24 s) have been tested for each map. The average
and standard deviation of the number of collisions, the time required to achieve 95% coverage,
the energy consumed by the swarm and the total flight time are shown.

The time required for deployment is much longer than that of the previous case (a minimum
of approximately 40 min), which is a consequence of the size of the map and the greater difficulty
of navigation. The general tendencies observed in the previous case are maintained: the shorter the
take-off time interval, the greater the number of collisions and the shorter the time require to achieve
the desired coverage. However, the decrease in energy is not as substantial as that in the previous case.
Energy consumptions remains almost constant, even for smaller take-off time intervals. The coverage
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times of the two approaches are similar, although there is still much more variability in the flight time
required by the SLABE strategy.

Although the behaviors have been executed on the same type of agents, the SLABE behavior has
much lower hardware requirements for its implementation; therefore, the agents that support it do
not require higher energy consumption. Figure 14 presents a simulation of the SLABE and SEPHE
behaviors equivalent to the previous one but with a different energy model for the SLABE agents.
In this case, the agents executing this behavior require 15 W in the active state (equivalent to the
consumption of vehicles of the ARDrone type) and 0.5 W in the beacon state. The vehicles that execute
the SEPHE behavior follow general energy model based on [27]. With this assumption, the swarm
SLABE behavior requires less energy, even for a longer flight time.

Finally, the performance of the behaviors for wall-type maps has been checked. Figure 15 presents
the results of 600 simulations for the both types of behavior (SLABE and SEPHE) using the LTID
strategy for different take-off time intervals.

In this case, the time required is much longer (a deployment time or approximately 4 h) due to
the difficulty of the environment. The energy and time required, as well as the number of collisions,
are substantially increased compared to those of the previous tests. In this extreme case, there is
an increase in the variability of the SLABE approach due mainly to the low granularity of the local
location system.
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Figure 14. Results of the SLABE (a) and SEPHE (b) behavior simulations, equivalent to those presented
in Figure 13, with an energy model for SLABE agents with lower consumption, where active agents
consume 12 W and repeater agents consume 0.5 W.
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Figure 15. Results of the SLABE (a) and SEPHE (b) behavior simulations performed on 50 random wall
maps. In each simulation, a random start position has been chosen among all feasible locations. Six
different take-off time intervals (6, 8, 10, 12, 18, and 24 s) have been tested for each map. The average and
standard deviation of the number of collisions, the time required to achieve 95% coverage, the energy
consumed by the swarm, and total flight time are shown.

4.3. FGID Tests

Figures 16 and 17 show the tests performed for the SLABE and SEPHE behaviors, respectively,
using the FGID deployment strategy for different take-off time intervals and maximum number of
vehicles on easy maps.

In this case, we observe a great variability in the energy consumption and total flight time of
the swarm with a reduced maximum number of vehicles, which is important for SLABE behavior.
This variability is substantially reduced as the number of vehicles used increases.The SLABE behavior
is more constant with respect to energy consumption, which is lower and has less variability in the
case of SLABE, even with a limited number of vehicles. The number of collisions increases as the
maximum number of vehicles flying in parallel increases. The take-off time interval, which affects the
maximum number of active vehicles increases, also affects collisions, as in the previous case.

When the maximum number of active vehicles in the swarm increases, the energy consumption
remains constant or even decreases slightly. These results indicate that the energy cost of adding new
active agents is balanced by the contribution to swarm deployment. It is important to emphasize
that the variability of the energy use decreases as the maximum number of active vehicles increases.
However, beyond 5 active drones, the deployment time remains almost constant, regardless of the
number of active agents.

It is interesting to compare the previous results with those presented in Figures 18 and 19 for
complex maps. In this case, the time required to complete the deployment, the energy consumed and
the number of collisions increase substantially. The SLABE behavior shows greater variability in all
the observed variables. However, we can see that for a sufficient number of active individuals (greater
than or equal to 10), both the time and energy consumption are comparable to those of the SEPHE



Appl. Sci. 2020, 10, 7696 24 of 31

behavior. In complex environments, the decrease in energy used due to increasing the take-off time
interval is not appreciable, which indicates that shorter take-off time intervals are better when the
deployment time decreases. However, collisions between devices will increase.
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Figure 16. Results of the SLABE behavior simulations for the FGID take-off strategy in an easy
environment. The graph shows the average evolution and variation of the number of collisions,
the time required to achieve 95% coverage of the environment, the energy consumed by the swarm,
and the total flight time for 600 simulations (50 simulations on the same map for each combination of
take-off time interval and maximum number of vehicles in flight).
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Figure 17. Results of the SEPHE behavior simulations for the FGID take-off strategy in an easy
environment. The graph shows the average evolution and variation of the number of collisions,
the time required to achieve 95% coverage, the energy consumed by the swarm, and the total flight
time for 600 simulations (50 simulations on the same map for each combination of take-off time interval
and maximum number of vehicles in flight).
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Figure 18. Results of the SLABE behavior simulations for the FGID take-off strategy in a hard
environment. The graph shows the average evolution and variation of the number of collisions,
the time required to achieve 95% coverage of the environment, the energy consumed by the swarm,
and the total flight time for 600 simulations (50 simulations on the same map for each combination of
take-off time interval and maximum number of vehicles in flight).
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Figure 19. Results of the SEPHE behavior simulations for the FGID take-off strategy in a hard
environment. The graph shows the average evolution and variation of the number of collisions,
the time required to achieve 95% coverage of the environment, the energy consumed by the swarm,
and the total flight time for 600 simulations (50 simulations on the same map for each combination of
take-off time interval and maximum number of vehicles in flight).

5. Discussion

From the above data, we can draw some interesting conclusions regarding several of the aspects
analyzed. Below, we will analyze the two types of proposed behavior, as well as the different
deployment strategies.

5.1. Comparison of SLABE and SEPHE Behaviors

Two behaviors based on pheromones have been proposed to solve a common deployment
task in unstructured environments. The behaviors differ mainly in the sensory needs required for
their implementation. The SLABE strategy is much simpler and does not require a system for local
positioning, which is required by the SEPHE strategy.

In all the tests, both behaviors have shown that they are capable of achieving satisfactory coverage
of the environment, taking into account the energy limitations imposed by the dynamics of the UAVs
of the swarm.

The data appear to confirm that a lower resolution of the location sensor corresponds to a higher
collision rate and higher energy consumption of the swarm. We believe that this is due to the low
resolution of the stigmergy sensor used in the SLABE approach. This sensor is not continuous and does
not produce guidance information at all points in space, so the behavior is more subject to variation.
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The increase in energy cost is determined by the granularity of the stigmergy sensor and by the indirect
increase in the number of collisions.

However, it is important to note that the average deployment times in both cases are comparable.
We believe this to be an important conclusion since it reinforces the thesis that a swarm with a greater
number of less-informed individuals can perform the same task as a swarm with a smaller number of
more-informed individuals.

If a system of stigmergy is available, as required by the SEPHE behavior, we can expect lower
variability in all the parameters analyzed and a shorter time to achieve complete deployment.
The systems required by each individual will increase the cost of the swarm. However, a swarm of
low-cost drones with basic sensors can be used to develop a strategy with an average deployment time
very similar to that of the SEPHE behavior at the cost of a higher probability of collision, greater energy
needs (assuming that the drones that execute the behaviors have the same individual consumption)
and a greater variability (but a much lower total cost).

However, the devices that can execute the SLABE behavior can weigh less, thereby drastically
reducing the energy consumption. Therefore, the SLABE behavior may require less energy for its
implementation (as observed in Figure 14, where the drones develop a realistic energy model based on
the requirements of ARDrone commercial drones).

5.2. Take-Off Time Interval and Deployment Strategies

We considered how the take-off time interval and the different strategies used in the operation of
the behaviors presented affected the results.

In the LTID strategy, the longer the take-off time interval is, the longer the deployment.
However, for short take-off time intervals, the number of collisions between individuals increases
considerably because the density of vehicles in a given area is not limited and therefore increases the
probability of collision in the most active areas.

In general, the greater the number of active agents (shorter take-off time interval), the more energy
is required. However, in some cases, a longer take-off time interval can increase, rather than decrease,
the energy consumed by the swarm.

This result could be seen in wall maps with SLABE behavior because in some areas of the
environment, there is not sufficient information about the beacons that provide robots with navigation
information. Therefore, active robots develop a more random search behavior, increasing the flight
time for some maps. The results indicate that for the LTID strategy, the best take-off time interval for
the unstructured maps is between 12 and 18 s.

The FGID strategy, limits the maximum number of active vehicles that can circulate in the
environment. The time required for deployment increases for low values of the maximum number of
vehicles (2 or 5 vehicles maximum). However, for more than 10 vehicles, no substantial improvements
and a greater probability of collision are observed, regardless of the behavior used. This probability
stabilizes the results obtained for the LTID strategy, which has no limit on the number of active vehicles.
This evidence suggests that between 10 and 20 active UAVs in parallel is optimal for large maps of the
hard typology and between 5 and 10 active UAVs is optimal for small maps of the easy typology.

In general, it is convenient to limit the number of active individuals; therefore, the FGID strategy
produces better results than those of the LTID strategy, at the cost of requiring mesh-type point-to-point
communication (which allows the number of active individuals available at a given time to be known)
and requiring to determine for a certain environment the maximum number of active agents.

6. Conclusions

In this article, two types of swarm behavior that use stigmergy as an indirect communication
mechanism have been discussed. A microscopic model of both has been presented, considering the
requirements for the final implementation. Specifically, SLABE behavior can be implemented with
current hardware using drones and BLE beacons. The behavior has been tested via simulations;



Appl. Sci. 2020, 10, 7696 29 of 31

this behavior covers the environment and manages to develop a simple but effective stigmergy. In the
same way, the SEPHE behavior manages to develop an environmental deployment with a more
complex stigmergy sensor that requires local location.

Moreover, the information available under both behavior types affects several parameters.
The average deployment time in both cases is comparable, even though there is greater variability in
the least-informed option.

However, we consider it to be remarkable that for complex environments, the less-informed
approach can complete the deployment process in a similar way to that of the informed approach
but with a lower cost (both economic and energetic). This result reinforces the thesis of this type
of system: many simple agents can perform the same task as complex agents when they perform
appropriate behavior.

Finally, we have shown how the FGID strategy gives better results than those of the LTID strategy.
It is advisable to use mesh-type point-to-point communication (where the number of active individuals
available at any given time is known) whenever possible. Otherwise, LTID is an effective deployment
process that does not require a communications infrastructure.

Now that the performance of both behaviors has been demonstrated, our future line of research
will test these behaviors on real robots and adjust the microscopic model used on physical robots.
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